1
|
Shaposhnikov LA, Savin SS, Tishkov VI, Pometun AA. Ribonucleoside Hydrolases-Structure, Functions, Physiological Role and Practical Uses. Biomolecules 2023; 13:1375. [PMID: 37759775 PMCID: PMC10526354 DOI: 10.3390/biom13091375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ribonucleoside hydrolases are enzymes that catalyze the cleavage of ribonucleosides to nitrogenous bases and ribose. These enzymes are found in many organisms: bacteria, archaea, protozoa, metazoans, yeasts, fungi and plants. Despite the simple reaction catalyzed by these enzymes, their physiological role in most organisms remains unclear. In this review, we compare the structure, kinetic parameters, physiological role, and potential applications of different types of ribonucleoside hydrolases discovered and isolated from different organisms.
Collapse
Affiliation(s)
- Leonid A. Shaposhnikov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Svyatoslav S. Savin
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir I. Tishkov
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Anastasia A. Pometun
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (S.S.S.); (V.I.T.)
- Department of Chemical Enzymology, Chemistry Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Muellers SN, Nyitray MM, Reynarowych N, Saljanin E, Benzie AL, Schoenfeld AR, Stockman BJ, Allen KN. Structure-Guided Insight into the Specificity and Mechanism of a Parasitic Nucleoside Hydrolase. Biochemistry 2022; 61:1853-1861. [PMID: 35994320 PMCID: PMC10845162 DOI: 10.1021/acs.biochem.2c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichomonas vaginalis is the causative parasitic protozoan of the disease trichomoniasis, the most prevalent, nonviral sexually transmitted disease in the world. T. vaginalis is a parasite that scavenges nucleosides from the host organism via catalysis by nucleoside hydrolase (NH) enzymes to yield purine and pyrimidine bases. One of the four NH enzymes identified within the genome of T. vaginalis displays unique specificity toward purine nucleosides, adenosine and guanosine, but not inosine, and atypically shares greater sequence similarity to the pyrimidine hydrolases. Bioinformatic analysis of this enzyme, adenosine/guanosine-preferring nucleoside ribohydrolase (AGNH), was incapable of identifying the residues responsible for this uncommon specificity, highlighting the need for structural information. Here, we report the X-ray crystal structures of holo, unliganded AGNH and three additional structures of the enzyme bound to fragment and small-molecule inhibitors. Taken together, these structures facilitated the identification of residue Asp231, which engages in substrate interactions in the absence of those residues that typically support the canonical purine-specific tryptophan-stacking specificity motif. An altered substrate-binding pose is mirrored by repositioning within the protein scaffold of the His80 general acid/base catalyst. The newly defined structure-determined sequence markers allowed the assignment of additional NH orthologs, which are proposed to exhibit the same specificity for adenosine and guanosine alone and further delineate specificity classes for these enzymes.
Collapse
Affiliation(s)
- Samantha N Muellers
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mattias M Nyitray
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Nicholas Reynarowych
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Edina Saljanin
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Annie Laurie Benzie
- Department of Biology, Adelphi University, Garden City, New York 11530, United States
| | - Alan R Schoenfeld
- Department of Biology, Adelphi University, Garden City, New York 11530, United States
| | - Brian J Stockman
- Department of Chemistry, Adelphi University, Garden City, New York 11530, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Degano M. Structure, Oligomerization and Activity Modulation in N-Ribohydrolases. Int J Mol Sci 2022; 23:ijms23052576. [PMID: 35269719 PMCID: PMC8910321 DOI: 10.3390/ijms23052576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Enzymes catalyzing the hydrolysis of the N-glycosidic bond in nucleosides and other ribosides (N-ribohydrolases, NHs) with diverse substrate specificities are found in all kingdoms of life. While the overall NH fold is highly conserved, limited substitutions and insertions can account for differences in substrate selection, catalytic efficiency, and distinct structural features. The NH structural module is also employed in monomeric proteins devoid of enzymatic activity with different physiological roles. The homo-oligomeric quaternary structure of active NHs parallels the different catalytic strategies used by each isozyme, while providing a buttressing effect to maintain the active site geometry and allow the conformational changes required for catalysis. The unique features of the NH catalytic strategy and structure make these proteins attractive targets for diverse therapeutic goals in different diseases.
Collapse
Affiliation(s)
- Massimo Degano
- Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, via Olgettina 60, 20132 Milano, Italy;
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
4
|
Abstract
Transition state theory teaches that chemically stable mimics of enzymatic transition states will bind tightly to their cognate enzymes. Kinetic isotope effects combined with computational quantum chemistry provides enzymatic transition state information with sufficient fidelity to design transition state analogues. Examples are selected from various stages of drug development to demonstrate the application of transition state theory, inhibitor design, physicochemical characterization of transition state analogues, and their progress in drug development.
Collapse
Affiliation(s)
- Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
5
|
Fan F, Chen N, Wang Y, Wu R, Cao Z. QM/MM and MM MD Simulations on the Pyrimidine-Specific Nucleoside Hydrolase: A Comprehensive Understanding of Enzymatic Hydrolysis of Uridine. J Phys Chem B 2018; 122:1121-1131. [PMID: 29285933 DOI: 10.1021/acs.jpcb.7b10524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pyrimidine-specific nucleoside hydrolase Yeik (CU-NH) from Escherichia coli cleaves the N-glycosidic bond of uridine and cytidine with a 102-104-fold faster rate than that of purine nucleoside substrates, such as inosine. Such a remarkable substrate specificity and the plausible hydrolytic mechanisms of uridine have been explored by using QM/MM and MM MD simulations. The present calculations show that the relatively stronger hydrogen-bond interactions between uridine and the active-site residues Gln227 and Tyr231 in CU-NH play an important role in enhancing the substrate binding and thus promoting the N-glycosidic bond cleavage, in comparison with inosine. The estimated energy barrier of 30 kcal/mol for the hydrolysis of inosine is much higher than 22 kcal/mol for uridine. Extensive MM MD simulations on the transportation of substrates to the active site of CU-NH indicate that the uridine binding is exothermic by ∼23 kcal/mol, more remarkable than inosine (∼12 kcal/mol). All of these arise from the noncovalent interactions between the substrate and the active site featured in CU-NH, which account for the substrate specificity. Quite differing from other nucleoside hydrolases, here the enzymatic N-glycosidic bond cleavage of uridine is less influenced by its protonation.
Collapse
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 360015, China
| | - Nanhao Chen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Yongheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 360015, China
| |
Collapse
|
6
|
Alesso M, Talio MC, Fernández LP. Solid surface fluorescence methodology for fast monitoring of 2,4-dichlorophenoxyacetic acid in seed samples. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
New nucleoside hydrolase with transribosylation activity from Agromyces sp. MM-1 and its application for enzymatic synthesis of 2'-O-methylribonucleosides. J Biosci Bioeng 2017; 125:38-45. [PMID: 28826816 DOI: 10.1016/j.jbiosc.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
Abstract
Microorganisms were screened for transribosylation activity between 2'-O-methyluridine (2'-OMe-UR) and nucleobases, for the purpose of developing a biotransformation process to synthesize 2'-O-methylribonucleosides (2'-OMe-NRs), which are raw materials for nucleic acid drugs. An actinomycete, Agromyces sp. MM-1 was found to produce 2'-O-methyladenosine (2'-OMe-AR) when whole cells were used in a reaction mixture containing 2'-OMe-UR and adenine. The enzyme responsible for the transribosylation was partially purified from Agromyces sp. MM-1 cells through a six-step separation procedure, and identified as a nucleoside hydrolase family enzyme termed AgNH. AgNH was a bi-functional enzyme catalyzing both hydrolysis towards 2'-OMe-NRs and transribosylation between 2'-OMe-UR and various nucleobases as well as adenine. In the hydrolysis reaction, AgNH preferred guanosine analogues as its substrates. In the transribosylation reaction, AgNH showed strong activity towards 6-chloroguanine, with 25-fold relative activity when adenine was used as the acceptor substrate. The transribosylation reaction product from 2'-OMe-UR and 6-chloroguanine was determined to 2'-O-methyl-6-chloroguanosine (2'-OMe-6ClGR). Under the optimal conditions, the maximum molar yield of 2'-OMe-6ClGR reached 2.3% in a 293-h reaction, corresponding to 440 mg/L.
Collapse
|
8
|
Karami M, Jalali C, Mirzaie S. Combined virtual screening, MMPBSA, molecular docking and dynamics studies against deadly anthrax: An in silico effort to inhibit Bacillus anthracis nucleoside hydrolase. J Theor Biol 2017; 420:180-189. [DOI: 10.1016/j.jtbi.2017.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
|
9
|
Singh RK, Steyaert J, Versées W. Structural and biochemical characterization of the nucleoside hydrolase from C. elegans reveals the role of two active site cysteine residues in catalysis. Protein Sci 2017; 26:985-996. [PMID: 28218438 DOI: 10.1002/pro.3141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/28/2022]
Abstract
Nucleoside hydrolases (NHs) catalyze the hydrolysis of the N-glycoside bond in ribonucleosides and are found in all three domains of life. Although in parasitic protozoa a role in purine salvage has been well established, their precise function in bacteria and higher eukaryotes is still largely unknown. NHs have been classified into three homology groups based on the conservation of active site residues. While many structures are available of representatives of group I and II, structural information for group III NHs is lacking. Here, we report the first crystal structure of a purine-specific nucleoside hydrolase belonging to homology group III from the nematode Caenorhabditis elegans (CeNH) to 1.65Å resolution. In contrast to dimeric purine-specific NHs from group II, CeNH is a homotetramer. A cysteine residue that characterizes group III NHs (Cys253) structurally aligns with the catalytic histidine and tryptophan residues of group I and group II enzymes, respectively. Moreover, a second cysteine (Cys42) points into the active site of CeNH. Substrate docking shows that both cysteine residues are appropriately positioned to interact with the purine ring. Site-directed mutagenesis and kinetic analysis proposes a catalytic role for both cysteines residues, with Cys253 playing the most prominent role in leaving group activation.
Collapse
Affiliation(s)
- Ranjan Kumar Singh
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium.,VIB-VUB Center for Structural Biology, Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
10
|
Chen N, Zhao Y, Lu J, Wu R, Cao Z. Mechanistic Insights into the Rate-Limiting Step in Purine-Specific Nucleoside Hydrolase. J Chem Theory Comput 2015; 11:3180-8. [DOI: 10.1021/acs.jctc.5b00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Yuan Zhao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| | - Jianing Lu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People’s Republic of China
| | - Zexing Cao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 360015, People’s Republic of China
| |
Collapse
|
11
|
Hernández D, Boto A. Nucleoside Analogues: Synthesis and Biological Properties of Azanucleoside Derivatives. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301731] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Giannese F, Berg M, Van der Veken P, Castagna V, Tornaghi P, Augustyns K, Degano M. Structures of purine nucleosidase from Trypanosoma brucei bound to isozyme-specific trypanocidals and a novel metalorganic inhibitor. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1553-66. [PMID: 23897478 DOI: 10.1107/s0907444913010792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/20/2013] [Indexed: 11/11/2022]
Abstract
Sleeping sickness is a deadly disease that primarily affects sub-Saharan Africa and is caused by protozoan parasites of the Trypanosoma genus. Trypanosomes are purine auxotrophs and their uptake pathway has long been appreciated as an attractive target for drug design. Recently, one tight-binding competitive inhibitor of the trypanosomal purine-specific nucleoside hydrolase (IAGNH) showed remarkable trypanocidal activity in a murine model of infection. Here, the enzymatic characterization of T. brucei brucei IAGNH is presented, together with its high-resolution structures in the unliganded form and in complexes with different inhibitors, including the trypanocidal compound UAMC-00363. A description of the crucial contacts that account for the high-affinity inhibition of IAGNH by iminoribitol-based compounds is provided and the molecular mechanism underlying the conformational change necessary for enzymatic catalysis is identified. It is demonstrated for the first time that metalorganic complexes can compete for binding at the active site of nucleoside hydrolase enzymes, mimicking the positively charged transition state of the enzymatic reaction. Moreover, we show that divalent metal ions can act as noncompetitive IAGNH inhibitors, stabilizing a nonproductive conformation of the catalytic loop. These results open a path for rational improvement of the potency and the selectivity of existing compounds and suggest new scaffolds that may be used as blueprints for the design of novel antitrypanosomal compounds.
Collapse
Affiliation(s)
- Francesca Giannese
- Biocrystallography Unit, Department of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Chen N, Ge H, Xu J, Cao Z, Wu R. Loop motion and base release in purine-specific nucleoside hydrolase: A molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1117-24. [DOI: 10.1016/j.bbapap.2013.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 11/25/2022]
|
14
|
Rennó MN, França TCC, Nico D, Palatnik-de-Sousa CB, Tinoco LW, Figueroa-Villar JD. Kinetics and docking studies of two potential new inhibitors of the nucleoside hydrolase from Leishmania donovani. Eur J Med Chem 2012; 56:301-7. [DOI: 10.1016/j.ejmech.2012.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 01/29/2023]
|
15
|
A flexible enantioselective approach to 3,4-dihydroxyprolinol derivatives by SmI2-mediated reductive coupling of chiral nitrone with ketones/aldehydes. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Minici C, Cacciapuoti G, De Leo E, Porcelli M, Degano M. New determinants in the catalytic mechanism of nucleoside hydrolases from the structures of two isozymes from Sulfolobus solfataricus. Biochemistry 2012; 51:4590-9. [PMID: 22551416 DOI: 10.1021/bi300209g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purine- and pyrimidine-specific nucleoside hydrolases (NHs) from the archaeon Sulfolobus solfataricus participate in the fundamental pathway of nucleotide catabolism and function to maintain adequate levels of free nitrogenous bases for cellular function. The two highly homologous isozymes display distinct specificities toward nucleoside substrates, and both lack the amino acids employed for activation of the leaving group in the hydrolytic reaction by the NHs characterized thus far. We determined the high-resolution crystal structures of the purine- and pyrimidine-specific NHs from S. solfataricus to reveal that both enzymes belong to NH structural homology group I, despite the different substrate specificities. A Na(+) ion is bound at the active site of the pyrimidine-specific NH instead of the prototypical Ca(2+), delineating a role of the metals in the catalytic mechanism of NHs in the substrate binding rather than nucleophile activation. A conserved His residue, which regulates product release in other homologous NHs, provides crucial interactions for leaving group activation in the archaeal isozymes. Modeling of the enzyme-substrate interactions suggests that steric exclusion and catalytic selection underlie the orthogonal base specificity of the two isozymes.
Collapse
Affiliation(s)
- Claudia Minici
- Biocrystallography Unit, Department of Immunology, Transplantation, and Infectious Diseases, Scientific Institute San Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | |
Collapse
|
17
|
Wu R, Gong W, Liu T, Zhang Y, Cao Z. QM/MM Molecular Dynamics Study of Purine-Specific Nucleoside Hydrolase. J Phys Chem B 2012; 116:1984-91. [DOI: 10.1021/jp211403j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruibo Wu
- School of
Pharmaceutical Sciences,
East Campus, Sun Yat-sen University, Guangzhou
510006, China
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Wengjin Gong
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Ting, Liu
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkai Zhang
- Department
of Chemistry, New York University, New
York, New York 10003, United
States
| | - Zexing Cao
- State Key
Laboratory of Physical
Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of
Theoretical and Computational Chemistry, College of Chemistry and
Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Guimarães AP, Oliveira AA, da Cunha EFF, Ramalho TC, França TCC. Analysis of Bacillus anthracis nucleoside hydrolase via in silico docking with inhibitors and molecular dynamics simulation. J Mol Model 2011; 17:2939-51. [DOI: 10.1007/s00894-011-0968-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
|
19
|
Guimarães AP, Oliveira AA, da Cunha EFF, Ramalho TC, França TCC. Design of New Chemotherapeutics Against the Deadly Anthrax Disease. Docking and Molecular Dynamics studies of Inhibitors Containing Pyrrolidine and Riboamidrazone Rings on Nucleoside Hydrolase fromBacillus anthracis. J Biomol Struct Dyn 2011; 28:455-69. [DOI: 10.1080/07391102.2011.10508588] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Stütz AE, Wrodnigg TM. Imino sugars and glycosyl hydrolases: historical context, current aspects, emerging trends. Adv Carbohydr Chem Biochem 2011; 66:187-298. [PMID: 22123190 DOI: 10.1016/b978-0-12-385518-3.00004-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forty years of discoveries and research on imino sugars, which are carbohydrate analogues having a basic nitrogen atom instead of oxygen in the sugar ring and, acting as potent glycosidase inhibitors, have made considerable impact on our contemporary understanding of glycosidases. Imino sugars have helped to elucidate the catalytic machinery of glycosidases and have refined our methods and concepts of utilizing them. A number of new aspects have emerged for employing imino sugars as pharmaceutical compounds, based on their profound effects on metabolic activities in which glycosidases are involved. From the digestion of starch to the fight against viral infections, from research into malignant diseases to potential improvements in hereditary storage disorders, glycosidase action and inhibition are essential issues. This account aims at combining general developments with a focus on some niches where imino sugars have become useful tools for glycochemistry and glycobiology.
Collapse
Affiliation(s)
- Arnold E Stütz
- Institut für Organische Chemie, Technische Universität Graz, Austria
| | | |
Collapse
|
21
|
Vandemeulebroucke A, Minici C, Bruno I, Muzzolini L, Tornaghi P, Parkin DW, Versées W, Steyaert J, Degano M. Structure and Mechanism of the 6-Oxopurine Nucleosidase from Trypanosoma brucei brucei,. Biochemistry 2010; 49:8999-9010. [DOI: 10.1021/bi100697d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- An Vandemeulebroucke
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Claudia Minici
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Ilaria Bruno
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Laura Muzzolini
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Paola Tornaghi
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - David W. Parkin
- Department of Chemistry, Adelphi University, Garden City, New York 11530-0701
| | - Wim Versées
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Jan Steyaert
- Department of Molecular and Cellular Interactions (VIB) and Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussel, Belgium
| | - Massimo Degano
- Division of Immunology, Transplantation and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| |
Collapse
|
22
|
Evaluation of nucleoside hydrolase inhibitors for treatment of African trypanosomiasis. Antimicrob Agents Chemother 2010; 54:1900-8. [PMID: 20194690 DOI: 10.1128/aac.01787-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this paper, we present the biochemical and biological evaluation of N-arylmethyl-substituted iminoribitol derivatives as potential chemotherapeutic agents against trypanosomiasis. Previously, a library of 52 compounds was designed and synthesized as potent and selective inhibitors of Trypanosoma vivax inosine-adenosine-guanosine nucleoside hydrolase (IAG-NH). However, when the compounds were tested against bloodstream-form Trypanosoma brucei brucei, only one inhibitor, N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (UAMC-00363), displayed significant activity (mean 50% inhibitory concentration [IC(50)] +/- standard error, 0.49 +/- 0.31 microM). Validation in an in vivo model of African trypanosomiasis showed promising results for this compound. Several experiments were performed to investigate why only UAMC-00363 showed antiparasitic activity. First, the compound library was screened against T. b. brucei IAG-NH and inosine-guanosine nucleoside hydrolase (IG-NH) to confirm the previously demonstrated inhibitory effects of the compounds on T. vivax IAG-NH. Second, to verify the uptake of these compounds by T. b. brucei, their affinities for the nucleoside P1 and nucleoside/nucleobase P2 transporters of T. b. brucei were tested. Only UAMC-00363 displayed significant affinity for the P2 transporter. It was also shown that UAMC-00363 is concentrated in the cell via at least one additional transporter, since P2 knockout mutants of T. b. brucei displayed no resistance to the compound. Consequently, no cross-resistance to the diamidine or the melaminophenyl arsenical classes of trypanocides is expected. Third, three enzymes of the purine salvage pathway of procyclic T. b. brucei (IAG-NH, IG-NH, and methylthioadenosine phosphorylase [MTAP]) were investigated using RNA interference. The findings from all these studies showed that it is probably not sufficient to target only the nucleoside hydrolase activity to block the purine salvage pathway of T. b. brucei and that, therefore, it is possible that UAMC-00363 acts on an additional target.
Collapse
|
23
|
Onega M, Domarkas J, Deng H, Schweiger LF, Smith TAD, Welch AE, Plisson C, Gee AD, O’Hagan D. An enzymatic route to 5-deoxy-5-[18F]fluoro-d-ribose, a [18F]-fluorinated sugar for PET imaging. Chem Commun (Camb) 2010; 46:139-41. [DOI: 10.1039/b919364b] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Millen AL, Wetmore SD. Glycosidic bond cleavage in deoxynucleotides — A density functional study. CAN J CHEM 2009. [DOI: 10.1139/v09-024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Density functional theory was used to study the glycosidic bond cleavage in deoxynucleotides with the main goal to determine the effects of the nucleobase, hydrogen bonding with the nucleobase, and the (bulk) environment on the reaction energetics. Since direct glycosidic bond cleavage is a high-energy process, two nucleophile models were considered (HCOO–···H2O and HO–), which represent different stages of activation of a water nucleophile. The glycosidic bond cleavage barriers were found to decrease, while the reaction exothermicity increases, with an increase in the nucleobase acidity. The gas-phase barriers and reaction energies for bond cleavage in all deoxynucleotides were found to be significantly affected by hydrogen-bonding interactions with the nucleobase (by up to 30 kJ mol–1 depending on the nucleophile). Although the barriers increase and reaction energies become less exothermic in enzymatic and aqueous environments, the effects of the bulk environment are similar in the presence and absence of small molecules bound to the nucleobase. Therefore, the effects of hydrogen bonding with the bases are approximately the same in all environments. Our results suggest that hydrogen bonding with the nucleobase may play an important role in the glycosidic bond cleavage in both pyrimidine and purine nucleotides in a variety of environments.
Collapse
Affiliation(s)
- Andrea L. Millen
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
25
|
Versées W, Goeminne A, Berg M, Vandemeulebroucke A, Haemers A, Augustyns K, Steyaert J. Crystal structures of T. vivax nucleoside hydrolase in complex with new potent and specific inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:953-60. [DOI: 10.1016/j.bbapap.2009.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/02/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
26
|
Barlow JN, Conrath K, Steyaert J. Substrate-dependent modulation of enzyme activity by allosteric effector antibodies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1259-68. [PMID: 19348968 DOI: 10.1016/j.bbapap.2009.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 01/26/2023]
Abstract
We investigate the kinetic effects of antibody variable domain fragments derived from heavy chain antibodies (VHH domains) that behave as allosteric effectors of the nucleoside hydrolase from Trypanosoma vivax (TvNH). Strikingly, these antibodies can stimulate or inhibit TvNH steady-state activity, depending on the substrate used. This effect was investigated in greater detail using steady-state and pre-steady-state kinetic experiments. The most potent allosteric effector, VHH 1589, inhibits certain steps on the TvNH catalytic pathway (e.g. N-glycosidic bond cleavage) but increases the rates of others (e.g. substrate and product release). For the natural nucleoside 7-methyl guanosine, where product ribose release is rate determining, the net effect of VHH 1589 binding is to increase k(cat). For the poor substrate pNPR, VHH 1589 causes chemistry (O-glycosidic bond cleavage) to become rate determining and both k(cat)/K(m) and k(cat) to decrease. Thus, the substrate-dependent effects of VHH 1589 binding are caused by differences in the relative rates of chemistry with respect to subsequent steps on the catalytic pathway for these two substrates. We discuss possible mechanisms for these kinetic effects and the implications for allosteric effector drug development.
Collapse
Affiliation(s)
- John N Barlow
- Structural Biology, Free University of Brussels, Brussels, Belgium.
| | | | | |
Collapse
|
27
|
Berg M, Bal G, Goeminne A, Van der Veken P, Versées W, Steyaert J, Haemers A, Augustyns K. Synthesis of BicyclicN-Arylmethyl-Substituted Iminoribitol Derivatives as Selective Nucleoside Hydrolase Inhibitors. ChemMedChem 2009; 4:249-60. [DOI: 10.1002/cmdc.200800231] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Biochemical characterization and homology modeling of a purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus: insights into mechanisms of protein stabilization. Arch Biochem Biophys 2008; 483:55-65. [PMID: 19121283 DOI: 10.1016/j.abb.2008.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 12/05/2008] [Accepted: 12/05/2008] [Indexed: 11/23/2022]
Abstract
We report the biochemical and structural characterization of the purine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus (SsIAG-NH). SsIAG-NH is a homodimer of 70kDa specific for adenosine, guanosine and inosine. SsIAG-NH is highly thermophilic and is characterized by extreme thermodynamic stability (T(m), 107 degrees C), kinetic stability and remarkable resistance to guanidinium chloride-induced unfolding. A disulfide bond that, on the basis of SDS-PAGE is positioned intersubunits, plays an important role in thermal stability. SsIAG-NH shares 43% sequence identity with the homologous pyrimidine-specific nucleoside hydrolase from S. solfataricus (SsCU-NH). The comparative sequence alignment of SsIAG-NH, SsCU-NH, purine non-specific nucleoside hydrolase from Crithidia fasciculata and purine-specific nucleoside hydrolase from Trypanosoma vivax shows that, only few changes in the base pocket are responsible for different substrate specificity of two S. solfataricus enzymes. The structure of SsIAG-NH predicted by homology modeling allows us to infer the role of specific residues in substrate specificity and thermostability.
Collapse
|
29
|
Vandemeulebroucke A, De Vos S, Van Holsbeke E, Steyaert J, Versées W. A Flexible Loop as a Functional Element in the Catalytic Mechanism of Nucleoside Hydrolase from Trypanosoma vivax. J Biol Chem 2008; 283:22272-82. [DOI: 10.1074/jbc.m803705200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Goeminne A, Berg M, McNaughton M, Bal G, Surpateanu G, Van der Veken P, De Prol S, Versées W, Steyaert J, Haemers A, Augustyns K. N-Arylmethyl substituted iminoribitol derivatives as inhibitors of a purine specific nucleoside hydrolase. Bioorg Med Chem 2008; 16:6752-63. [PMID: 18571422 DOI: 10.1016/j.bmc.2008.05.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/21/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
Abstract
A key enzyme within the purine salvage pathway of parasites, nucleoside hydrolase, is proposed as a good target for new antiparasitic drugs. We have developed N-arylmethyl-iminoribitol derivatives as a novel class of inhibitors against a purine specific nucleoside hydrolase from Trypanosoma vivax. Several of our inhibitors exhibited low nanomolar activity, with 1,4-dideoxy-1,4-imino-N-(8-quinolinyl)methyl-d-ribitol (UAMC-00115, K(i) 10.8nM), N-(9-deaza-adenin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (K(i) 4.1nM), and N-(9-deazahypoxanthin-9-yl)methyl-1,4-dideoxy-1,4-imino-d-ribitol (K(i) 4.4nM) being the three most active compounds. Docking studies of the most active inhibitors revealed several important interactions with the enzyme. Among these interactions are aromatic stacking of the nucleobase mimic with two Trp-residues, and hydrogen bonds between the hydroxyl groups of the inhibitors and amino acid residues in the active site. During the course of these docking studies we also identified a strong interaction between the Asp40 residue from the enzyme and the inhibitor. This is an interaction which has not previously been considered as being important.
Collapse
Affiliation(s)
- Annelies Goeminne
- Department of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, Antwerp B-2610, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Porcelli M, Concilio L, Peluso I, Marabotti A, Facchiano A, Cacciapuoti G. Pyrimidine-specific ribonucleoside hydrolase from the archaeon Sulfolobus solfataricus- biochemical characterization and homology modeling. FEBS J 2008; 275:1900-14. [DOI: 10.1111/j.1742-4658.2008.06348.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Ghanem M, Saen-oon S, Zhadin N, Wing C, Cahill SM, Schwartz SD, Callender R, Schramm VL. Tryptophan-free human PNP reveals catalytic site interactions. Biochemistry 2008; 47:3202-15. [PMID: 18269249 DOI: 10.1021/bi702491d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.
Collapse
Affiliation(s)
- Mahmoud Ghanem
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Goeminne A, McNaughton M, Bal G, Surpateanu G, Van Der Veken P, De Prol S, Versées W, Steyaert J, Haemers A, Augustyns K. Synthesis and biochemical evaluation of guanidino-alkyl-ribitol derivatives as nucleoside hydrolase inhibitors. Eur J Med Chem 2008; 43:315-26. [PMID: 17582660 DOI: 10.1016/j.ejmech.2007.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Nucleoside hydrolase (NH) is a key enzyme in the purine salvage pathway. The purine specificity of the IAG-NH from Trypanosoma vivax is at least in part due to cation-pi-stacking interactions. Guanidinium ions can be involved in cation-pi-stacking interactions, therefore a series of guanidino-alkyl-ribitol derivatives were synthesized in order to examine the binding affinity of these compounds towards the target enzyme. The compounds show moderate to good inhibiting activity towards the IAG-NH from T. vivax.
Collapse
Affiliation(s)
- A Goeminne
- Department of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Examination of the mechanism and energetic contribution of leaving group activation in the purine-specific nucleoside hydrolase from Trypanosoma vivax. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1451-61. [DOI: 10.1016/j.bbapap.2007.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/02/2007] [Accepted: 08/17/2007] [Indexed: 11/20/2022]
|
35
|
Millen AL, Archibald LAB, Hunter KC, Wetmore SD. A kinetic and thermodynamic study of the glycosidic bond cleavage in deoxyuridine. J Phys Chem B 2007; 111:3800-12. [PMID: 17388517 DOI: 10.1021/jp063841m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Density functional theory was used to study the thermodynamics and kinetics for the glycosidic bond cleavage in deoxyuridine. Two reaction pathways were characterized for the unimolecular decomposition in vacuo. However, these processes are associated with large reaction barriers and highly endothermic reaction energies, which is in agreement with experiments that suggest a (water) nucleophile is required for the nonenzymatic glycosidic bond cleavage. Two (S(N)1 and S(N)2) reaction pathways were characterized for direct hydrolysis of the glycosidic bond by a single water molecule; however, both pathways also involve very large barriers. Activation of the water nucleophile via partial proton abstraction steadily decreases the barrier and leads to a more exothermic reaction energy as the proton affinity of the molecule interacting with water increases. Indeed, our data suggests that the barrier heights and reaction energies range from that for hydrolysis by water to that for hydrolysis by the hydroxyl anion, which represents the extreme of (full) water activation (deprotonation). Hydrogen bonds between small molecules (hydrogen fluoride, water, or ammonia) and the nucleobase were found to further decrease the barrier and overall reaction energy but not to the extent that the same hydrogen-bonding interactions increase the acidity of the nucleobase. Our results suggest that the nature of the nucleophile plays a more important role in reducing the barrier to glycosidic bond cleavage than the nature of the small molecule bound, and models with more than one hydrogen fluoride molecule interacting with the nucleobase provide further support for this conclusion. Our results lead to a greater fundamental understanding of the effects of the nucleophile, activation of the nucleophile, and interactions with the nucleobase for this important biological reaction.
Collapse
Affiliation(s)
- Andrea L Millen
- Department of Chemistry, Mount Allison University, 63C York Street, Sackville, New Brunswick E4L 1G8, Canada
| | | | | | | |
Collapse
|
36
|
Goeminne A, McNaughton M, Bal G, Surpateanu G, Van der Veken P, De Prol S, Versées W, Steyaert J, Apers S, Haemers A, Augustyns K. 1,2,3-Triazolylalkylribitol derivatives as nucleoside hydrolase inhibitors. Bioorg Med Chem Lett 2007; 17:2523-6. [PMID: 17317181 DOI: 10.1016/j.bmcl.2007.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/02/2007] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
A range of novel 1,2,3-triazolylalkylribitol derivatives were synthesized and evaluated as nucleoside hydrolase inhibitors. The most active compound (11a) has low micromolar potency and is structurally diverse from previously reported nucleoside hydrolase inhibitors, which, along with the simplicity of the chemistry involved in its synthesis, makes it a good lead for the further development of novel nucleoside hydrolase inhibitors.
Collapse
Affiliation(s)
- A Goeminne
- Department of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|