1
|
Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov 2024; 10:427. [PMID: 39366930 PMCID: PMC11452504 DOI: 10.1038/s41420-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (HNRNPs) represent a large family of RNA-binding proteins consisting of more than 20 members and have attracted great attention with their distinctive roles in cancer progression by regulating RNA splicing, transcription, and translation. Nevertheless, the cancer-specific modulation of HNRNPs has not been fully elucidated. The research of LC-MS/MS technology has documented that HNRNPs were widely and significantly targeted by different post-translational modifications (PTMs), which have emerged as core regulators in shaping protein functions and are involved in multiple physiological processes. Accumulating studies have highlighted that several PTMs are involved in the mechanisms of HNRNPs regulation in cancer and may be suitable therapeutic targets. In this review, we summarize the existing evidence describing how PTMs modulate HNRNPs functions on gene regulation and the involvement of their dysregulation in cancer, which will help shed insights on their clinical impacts as well as possible therapeutic tools targeting PTMs on HNRNPs.
Collapse
Affiliation(s)
- Bohao Li
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yangmiao Duan
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Fuentes Y, Olguín V, López-Ulloa B, Mendonça D, Ramos H, Abdalla A, Guajardo-Contreras G, Niu M, Rojas-Araya B, Mouland A, López-Lastra M. Heterogeneous nuclear ribonucleoprotein K promotes cap-independent translation initiation of retroviral mRNAs. Nucleic Acids Res 2024; 52:2625-2647. [PMID: 38165048 PMCID: PMC10954487 DOI: 10.1093/nar/gkad1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
Translation initiation of the human immunodeficiency virus-type 1 (HIV-1) genomic mRNA (vRNA) is cap-dependent or mediated by an internal ribosome entry site (IRES). The HIV-1 IRES requires IRES-transacting factors (ITAFs) for function. In this study, we evaluated the role of the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a potential ITAF for the HIV-1 IRES. In HIV-1-expressing cells, the depletion of hnRNPK reduced HIV-1 vRNA translation. Furthermore, both the depletion and overexpression of hnRNPK modulated HIV-1 IRES activity. Phosphorylations and protein arginine methyltransferase 1 (PRMT1)-induced asymmetrical dimethylation (aDMA) of hnRNPK strongly impacted the protein's ability to promote the activity of the HIV-1 IRES. We also show that hnRNPK acts as an ITAF for the human T cell lymphotropic virus-type 1 (HTLV-1) IRES, present in the 5'UTR of the viral sense mRNA, but not for the IRES present in the antisense spliced transcript encoding the HTLV-1 basic leucine zipper protein (sHBZ). This study provides evidence for a novel role of the host hnRNPK as an ITAF that stimulates IRES-mediated translation initiation for the retroviruses HIV-1 and HTLV-1.
Collapse
Affiliation(s)
- Yazmín Fuentes
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Brenda López-Ulloa
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Dafne Mendonça
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Barbara Rojas-Araya
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
3
|
Han BY, Liu Z, Hu X, Ling H. HNRNPU promotes the progression of triple-negative breast cancer via RNA transcription and alternative splicing mechanisms. Cell Death Dis 2022; 13:940. [PMID: 36347834 PMCID: PMC9643420 DOI: 10.1038/s41419-022-05376-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Triple-negative breast cancer (TNBC) is a great detriment to women's health due to the lack of effective therapeutic targets. In this study, we employed an integrated genetic screen to identify a pivotal oncogenic factor, heterogeneous nuclear ribonucleoprotein U (HNRNPU), which is required for the progression of TNBC. We elucidated the pro-oncogenic role of HNRNPU, which can induce the proliferation and migration of TNBC cells via its association with DEAD box helicase 5 (DDX5) protein. Elevated levels of the HNRNPU-DDX5 complex prohibited the intron retention of minichromosome maintenance protein 10 (MCM10) pre-mRNA, decreased nonsense-mediated mRNA decay, and activated Wnt/β-catenin signalling; on the other hand, HNRNPU-DDX5 is located in the transcriptional start sites (TSS) of LIM domain only protein 4 (LMO4) and its upregulation promoted the transcription of LMO4, consequently activating PI3K-Akt-mTOR signalling. Our data highlight the synergetic effects of HNRNPU in RNA transcription and splicing in regulating cancer progression and suggest that HNRNPU may act as a potential molecular target in the treatment of TNBC.
Collapse
Affiliation(s)
- Bo-yue Han
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhebin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hong Ling
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
4
|
Han J, Nie M, Chen C, Cheng X, Guo T, Huangfu L, Li X, Du H, Xing X, Ji J. SDCBP‐AS1 destabilizes β‐catenin by regulating ubiquitination and SUMOylation of hnRNP K to suppress gastric tumorigenicity and metastasis. Cancer Commun (Lond) 2022; 42:1141-1161. [DOI: 10.1002/cac2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/24/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jing Han
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Menglin Nie
- Department of Radiation Oncology Beijing Tiantan Hospital Capital Medical University Beijing 100070 P. R. China
| | - Cong Chen
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Xiaojing Cheng
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Ting Guo
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Longtao Huangfu
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Xiaomei Li
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Hong Du
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Xiaofang Xing
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Translational Research Laboratory Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
- Department of Gastrointestinal Surgery Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) Peking University Cancer Hospital Beijing Institute for Cancer Research Beijing 100142 P. R. China
| |
Collapse
|
5
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Raguraman R, Shanmugarama S, Mehta M, Elle Peterson J, Zhao YD, Munshi A, Ramesh R. Drug delivery approaches for HuR-targeted therapy for lung cancer. Adv Drug Deliv Rev 2022; 180:114068. [PMID: 34822926 PMCID: PMC8724414 DOI: 10.1016/j.addr.2021.114068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is often diagnosed at an advanced stage and conventional treatments for disease management have limitations associated with them. Novel therapeutic targets are thus avidly sought for the effective management of LC. RNA binding proteins (RBPs) have been convincingly established as key players in tumorigenesis, and their dysregulation is linked to multiple cancers, including LC. In this context, we review the role of Human antigen R (HuR), an RBP that is overexpressed in LC, and further associated with various aspects of LC tumor growth and response to therapy. Herein, we describe the role of HuR in LC progression and outline the evidences supporting various pharmacologic and biologic approaches for inhibiting HuR expression and function. These approaches, including use of small molecule inhibitors, siRNAs and shRNAs, have demonstrated favorable results in reducing tumor cell growth, invasion and migration, angiogenesis and metastasis. Hence, HuR has significant potential as a key therapeutic target in LC. Use of siRNA-based approaches, however, have certain limitations that prevent their maximal exploitation as cancer therapies. To address this, in the conclusion of this review, we provide a list of nanomedicine-based HuR targeting approaches currently being employed for siRNA and shRNA delivery, and provide a rationale for the immense potential therapeutic benefits offered by nanocarrier-based HuR targeting and its promise for treating patients with LC.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Meghna Mehta
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jo Elle Peterson
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yan D Zhao
- Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anupama Munshi
- Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
7
|
Naarmann-de Vries IS, Senatore R, Moritz B, Marx G, Urlaub H, Niessing D, Ostareck DH, Ostareck-Lederer A. Methylated HNRNPK acts on RPS19 to regulate ALOX15 synthesis in erythropoiesis. Nucleic Acids Res 2021; 49:3507-3523. [PMID: 33660773 PMCID: PMC8034617 DOI: 10.1093/nar/gkab116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control is essential to safeguard structural and metabolic changes in enucleated reticulocytes during their terminal maturation to functional erythrocytes. The timely synthesis of arachidonate 15-lipoxygenase (ALOX15), which initiates mitochondria degradation at the final stage of reticulocyte maturation is regulated by the multifunctional protein HNRNPK. It constitutes a silencing complex at the ALOX15 mRNA 3′ untranslated region that inhibits translation initiation at the AUG by impeding the joining of ribosomal 60S subunits to 40S subunits. To elucidate how HNRNPK interferes with 80S ribosome assembly, three independent screens were applied. They consistently demonstrated a differential interaction of HNRNPK with RPS19, which is localized at the head of the 40S subunit and extends into its functional center. During induced erythroid maturation of K562 cells, decreasing arginine dimethylation of HNRNPK is linked to a reduced interaction with RPS19 in vitro and in vivo. Dimethylation of residues R256, R258 and R268 in HNRNPK affects its interaction with RPS19. In noninduced K562 cells, RPS19 depletion results in the induction of ALOX15 synthesis and mitochondria degradation. Interestingly, residue W52 in RPS19, which is frequently mutated in Diamond-Blackfan Anemia (DBA), participates in specific HNRNPK binding and is an integral part of a putative aromatic cage.
Collapse
Affiliation(s)
| | - Roberta Senatore
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Bodo Moritz
- Institute of Pharmacy, Faculty of Natural Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| |
Collapse
|
8
|
Velázquez-Cruz A, Baños-Jaime B, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. Post-translational Control of RNA-Binding Proteins and Disease-Related Dysregulation. Front Mol Biosci 2021; 8:658852. [PMID: 33987205 PMCID: PMC8111222 DOI: 10.3389/fmolb.2021.658852] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Cell signaling mechanisms modulate gene expression in response to internal and external stimuli. Cellular adaptation requires a precise and coordinated regulation of the transcription and translation processes. The post-transcriptional control of mRNA metabolism is mediated by the so-called RNA-binding proteins (RBPs), which assemble with specific transcripts forming messenger ribonucleoprotein particles of highly dynamic composition. RBPs constitute a class of trans-acting regulatory proteins with affinity for certain consensus elements present in mRNA molecules. However, these regulators are subjected to post-translational modifications (PTMs) that constantly adjust their activity to maintain cell homeostasis. PTMs can dramatically change the subcellular localization, the binding affinity for RNA and protein partners, and the turnover rate of RBPs. Moreover, the ability of many RBPs to undergo phase transition and/or their recruitment to previously formed membrane-less organelles, such as stress granules, is also regulated by specific PTMs. Interestingly, the dysregulation of PTMs in RBPs has been associated with the pathophysiology of many different diseases. Abnormal PTM patterns can lead to the distortion of the physiological role of RBPs due to mislocalization, loss or gain of function, and/or accelerated or disrupted degradation. This Mini Review offers a broad overview of the post-translational regulation of selected RBPs and the involvement of their dysregulation in neurodegenerative disorders, cancer and other pathologies.
Collapse
Affiliation(s)
- Alejandro Velázquez-Cruz
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Blanca Baños-Jaime
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
9
|
RNA-Binding Proteins in Acute Leukemias. Int J Mol Sci 2020; 21:ijms21103409. [PMID: 32408494 PMCID: PMC7279408 DOI: 10.3390/ijms21103409] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Collapse
|
10
|
RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2020; 117:11624-11635. [PMID: 32385154 DOI: 10.1073/pnas.1921115117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is the key enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) to generate antibody memory. Previously, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was shown to be required for AID-dependent DNA breaks. Here, we defined the function of major RNA-binding motifs of hnRNP K, GXXGs and RGGs in the K-homology (KH) and the K-protein-interaction (KI) domains, respectively. Mutation of GXXG, RGG, or both impaired CSR, SHM, and cMyc/IgH translocation equally, showing that these motifs were necessary for AID-dependent DNA breaks. AID-hnRNP K interaction is dependent on RNA; hence, mutation of these RNA-binding motifs abolished the interaction with AID, as expected. Some of the polypyrimidine sequence-carrying prototypical hnRNP K-binding RNAs, which participate in DNA breaks or repair bound to hnRNP K in a GXXG and RGG motif-dependent manner. Mutation of the GXXG and RGG motifs decreased nuclear retention of hnRNP K. Together with the previous finding that nuclear localization of AID is necessary for its function, lower nuclear retention of these mutants may worsen their functional deficiency, which is also caused by their decreased RNA-binding capacity. In summary, hnRNP K contributed to AID-dependent DNA breaks with all of its major RNA-binding motifs.
Collapse
|
11
|
Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H. Post-translational modification control of RNA-binding protein hnRNPK function. Open Biol 2020; 9:180239. [PMID: 30836866 PMCID: PMC6451366 DOI: 10.1098/rsob.180239] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK), a ubiquitously occurring RNA-binding protein (RBP), can interact with numerous nucleic acids and various proteins and is involved in a number of cellular functions including transcription, translation, splicing, chromatin remodelling, etc. Through its abundant biological functions, hnRNPK has been implicated in cellular events including proliferation, differentiation, apoptosis, DNA damage repair and the stress and immune responses. Thus, it is critical to understand the mechanism of hnRNPK regulation and its downstream effects on cancer and other diseases. A number of recent studies have highlighted that several post-translational modifications (PTMs) possibly play an important role in modulating hnRNPK function. Phosphorylation is the most widely occurring PTM in hnRNPK. For example, in vivo analyses of sites such as S116 and S284 illustrate the purpose of PTM of hnRNPK in altering its subcellular localization and its ability to bind target nucleic acids or proteins. Other PTMs such as methylation, ubiquitination, sumoylation, glycosylation and proteolytic cleavage are increasingly implicated in the regulation of DNA repair, cellular stresses and tumour growth. In this review, we describe the PTMs that impact upon hnRNPK function on gene expression programmes and different disease states. This knowledge is key in allowing us to better understand the mechanism of hnRNPK regulation.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Wei Wu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Qiu Han
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Cencen Li
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University , Xinyang 464000 , People's Republic of China
| |
Collapse
|
12
|
hnRNPK S379 phosphorylation participates in migration regulation of triple negative MDA-MB-231 cells. Sci Rep 2019; 9:7611. [PMID: 31110205 PMCID: PMC6527834 DOI: 10.1038/s41598-019-44063-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
We have previously identified a novel Aurora-A-mediated Serine 379 (S379) phosphorylation of a poly(C)-binding protein, hnRNPK, the overexpression of which is frequently observed in various cancers. It is known that the oncogenic Aurora-A kinase promotes the malignancy of cancer cells. This study aims to investigate the unexplored functions of hnRNPK S379 phosphorylation using MDA-MB-231 cells, a triple negative breast cancer cell that has amplification of the Aurora-A kinase gene. Accordingly, we established two cell lines in which the endogenous hnRNPK was replaced with either S379D or S379A hnRNPK respectively. Notably, we found that a phosphorylation-mimic S379D mutant of hnRNPK suppressed cell migration and, conversely, a phosphorylation-defective S379A mutant promoted migration. Moreover, Twist was downregulated upon hnRNPK S379 phosphorylation, whereas β-catenin and MMP12 were increased when there was loss of hnRNPK S379 phosphorylation in MDA-MB-231 cells. Furthermore, S379A hnRNPK increases stability of β-catenin in MDA-MB-231 cells. In conclusion, our results suggest that hnRNPK S379 phosphorylation regulates migration via the EMT signaling pathway.
Collapse
|
13
|
Ostareck DH, Ostareck-Lederer A. RNA-Binding Proteins in the Control of LPS-Induced Macrophage Response. Front Genet 2019; 10:31. [PMID: 30778370 PMCID: PMC6369361 DOI: 10.3389/fgene.2019.00031] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Innate immune response is triggered by pathogen components, like lipopolysaccharides (LPS) of gram-negative bacteria. LPS initiates Toll-like receptor 4 (TLR4) signaling, which involves mitogen activated protein kinases (MAPK) and nuclear factor kappa B (NFκB) in different pathway branches and ultimately induces inflammatory cytokine and chemokine expression, macrophage migration and phagocytosis. Timely gene transcription and post-transcriptional control of gene expression confer the adequate synthesis of signaling molecules. As trans-acting factors RNA binding proteins (RBPs) contribute significantly to the surveillance of gene expression. RBPs are involved in the regulation of mRNA processing, localization, stability and translation. Thereby they enable rapid cellular responses to inflammatory mediators and facilitate a coordinated systemic immune response. Specific RBP binding to conserved sequence motifs in their target mRNAs is mediated by RNA binding domains, like Zink-finger domains, RNA recognition motifs (RRM), and hnRNP K homology domains (KH), often arranged in modular arrays. In this review, we focus on RBPs Tristetraprolin (TTP), human antigen R (HUR), T-cell intracellular antigen 1 related protein (TIAR), and heterogeneous ribonuclear protein K (hnRNP K) in LPS induced macrophages as primary responding immune cells. We discuss recent experiments employing RNA immunoprecipitation and microarray analysis (RIP-Chip) and newly developed individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP), photoactivatable ribonucleoside-enhanced crosslinking (PAR-iCLIP) and RNA sequencing techniques (RNA-Seq). The global mRNA interaction profile analysis of TTP, HUR, TIAR, and hnRNP K exhibited valuable information about the post-transcriptional control of inflammation related gene expression with a broad impact on intracellular signaling and temporal cytokine expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | |
Collapse
|
14
|
Naarmann-de Vries IS, Brendle A, Bähr-Ivacevic T, Benes V, Ostareck DH, Ostareck-Lederer A. Translational control mediated by hnRNP K links NMHC IIA to erythroid enucleation. J Cell Sci 2016; 129:1141-54. [PMID: 26823606 DOI: 10.1242/jcs.174995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/20/2016] [Indexed: 12/20/2022] Open
Abstract
Post-transcriptional regulation is crucial for structural and functional alterations in erythropoiesis. Enucleation of erythroid progenitors precedes reticulocyte release into circulation. In enucleated cells, reticulocyte 15-lipoxygenase (r15-LOX, also known as ALOX15) initiates mitochondria degradation. Regulation of r15-LOX mRNA translation by hnRNP K determines timely r15-LOX synthesis in terminal maturation. K562 cells induced for erythroid maturation recapitulate enucleation and mitochondria degradation. HnRNP K depletion from maturing K562 cells results in enhanced enucleation, which even occurs independently of maturation. We performed RIP-Chip analysis to identify hnRNP K-interacting RNAs comprehensively. Non-muscle myosin heavy chain (NMHC) IIA (also known as MYH9) mRNA co-purified with hnRNP K from non-induced K562 cells, but not from mature cells. NMHC IIA protein increase in erythroid maturation at constant NMHC IIA mRNA levels indicates post-transcriptional regulation. We demonstrate that binding of hnRNP K KH domain 3 to a specific sequence element in the NMHC IIA mRNA 3'UTR mediates translation regulation in vitro Importantly, elevated NMHC IIA expression results in erythroid-maturation-independent enucleation as shown for hnRNP K depletion. Our data provide evidence that hnRNP-K-mediated regulation of NMHC IIA mRNA translation contributes to the control of enucleation in erythropoiesis.
Collapse
Affiliation(s)
- Isabel S Naarmann-de Vries
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Annika Brendle
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Tomi Bähr-Ivacevic
- Genomics Core Facility, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL, Meyerhofstraße 1, Heidelberg 69117, Germany
| | - Dirk H Ostareck
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care and Intermediate Care, Experimental Research Unit, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany
| |
Collapse
|
15
|
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573:1-32. [PMID: 26216303 PMCID: PMC6728142 DOI: 10.1016/j.gene.2015.07.073] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, eucarya) and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 has extensively been characterized and its biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its implication in cellular physiology and in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
16
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
17
|
Yang JH, Chiou YY, Fu SL, Shih IY, Weng TH, Lin WJ, Lin CH. Arginine methylation of hnRNPK negatively modulates apoptosis upon DNA damage through local regulation of phosphorylation. Nucleic Acids Res 2014; 42:9908-24. [PMID: 25104022 PMCID: PMC4150800 DOI: 10.1093/nar/gku705] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA-binding protein involved in chromatin remodeling, RNA processing and the DNA damage response. In addition, increased hnRNPK expression has been associated with tumor development and progression. A variety of post-translational modifications of hnRNPK have been identified and shown to regulate hnRNPK function, including phosphorylation, ubiquitination, sumoylation and methylation. However, the functional significance of hnRNPK arginine methylation remains unclear. In the present study, we demonstrated that the methylation of two essential arginines, Arg296 and Arg299, on hnRNPK inhibited a nearby Ser302 phosphorylation that was mediated through the pro-apoptotic kinase PKCδ. Notably, the engineered U2OS cells carrying an Arg296/Arg299 methylation-defective hnRNPK mutant exhibited increased apoptosis upon DNA damage. While such elevated apoptosis can be diminished through addition with wild-type hnRNPK, we further demonstrated that this increased apoptosis occurred through both intrinsic and extrinsic pathways and was p53 independent, at least in part. Here, we provide the first evidence that the arginine methylation of hnRNPK negatively regulates cell apoptosis through PKCδ-mediated signaling during DNA damage, which is essential for the anti-apoptotic role of hnRNPK in apoptosis and the evasion of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Jen-Hao Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Yi-Ying Chiou
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Yun Shih
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Tsai-Hsuan Weng
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Wey-Jinq Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei 11221, Taiwan Institute of Biopharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan Proteomics Research Center, National Yang Ming University, Taipei 11221, Taiwan
| |
Collapse
|
18
|
Liepelt A, Mossanen JC, Denecke B, Heymann F, De Santis R, Tacke F, Marx G, Ostareck DH, Ostareck-Lederer A. Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation. RNA (NEW YORK, N.Y.) 2014; 20:899-911. [PMID: 24751651 PMCID: PMC4024643 DOI: 10.1261/rna.042788.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/14/2014] [Indexed: 05/22/2023]
Abstract
Macrophage activation by bacterial lipopolysaccharides (LPS) is induced through Toll-like receptor 4 (TLR4). The synthesis and activity of TLR4 downstream signaling molecules modulates the expression of pro- and anti-inflammatory cytokines. To address the impact of post-transcriptional regulation on that process, we performed RIP-Chip analysis. Differential association of mRNAs with heterogeneous nuclear ribonucleoprotein K (hnRNP K), an mRNA-specific translational regulator in differentiating hematopoietic cells, was studied in noninduced and LPS-activated macrophages. Analysis of interactions affected by LPS revealed several mRNAs encoding TLR4 downstream kinases and their modulators. We focused on transforming growth factor-β-activated kinase 1 (TAK1) a central player in TLR4 signaling. HnRNP K interacts specifically with a sequence in the TAK1 mRNA 3' UTR in vitro. Silencing of hnRNP K does not affect TAK1 mRNA synthesis or stability but enhances TAK1 mRNA translation, resulting in elevated TNF-α, IL-1β, and IL-10 mRNA expression. Our data suggest that the hnRNP K-3' UTR complex inhibits TAK1 mRNA translation in noninduced macrophages. LPS-dependent TLR4 activation abrogates translational repression and newly synthesized TAK1 boosts macrophage inflammatory response.
Collapse
Affiliation(s)
- Anke Liepelt
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Jana C. Mossanen
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Bernd Denecke
- Chip Facility, IZKF Aachen, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Felix Heymann
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Rebecca De Santis
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Dirk H. Ostareck
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Corresponding authorsE-mail E-mail
| | - Antje Ostareck-Lederer
- Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Corresponding authorsE-mail E-mail
| |
Collapse
|
19
|
Tahir TA, Singh H, Brindle NPJ. The RNA binding protein hnRNP-K mediates post-transcriptional regulation of uncoupling protein-2 by angiopoietin-1. Cell Signal 2014; 26:1379-84. [PMID: 24642125 PMCID: PMC4039131 DOI: 10.1016/j.cellsig.2014.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 12/01/2022]
Abstract
Angiopoietin-1 (Ang1) is a ligand for the receptor tyrosine kinase Tie2 and has key roles in the development of the vascular system and vascular protection. In a screen to define signalling pathways regulated by Ang1 in endothelial cells we found the RNA-binding protein hnRNP-K to be phosphorylated in response to Ang1. The ligand stimulated both tyrosine phosphorylation of hnRNP-K and recruitment of the tyrosine kinase Src to the RNA-binding protein. In endothelial cells hnRNP-K was found bound to mRNA encoding the mitochondrial protein uncoupling protein-2 (UCP2). Ang1 stimulation of cells resulted in the release of UCP2 mRNA from hnRNP-K. Using in vitro assays we confirmed direct binding between hnRNP-K and UCP2 mRNA. Furthermore Src induced phosphorylation of purified hnRNP-K and prevented UCP2 mRNA binding. Tyrosine 458 in the RNA-binding protein was found to be required for suppression of UCP2 mRNA binding by Src phosphorylation. In addition to releasing UCP2 mRNA from hnRNP-K, Ang1 induced an increase in UCP2 protein expression in endothelial cells without affecting total UCP2 mRNA levels. Consistent with the known effects of UCP2 to suppress generation of reactive oxygen species, Ang1 limited ROS production in endothelium stimulated with tumour necrosis factor-α. Taken together these data suggest that UCP2 mRNA is present in endothelial cells bound to hnRNP-K, which holds it in a translationally inactive state, and that Ang1 stimulates Src interaction with hnRNP-K, phosphorylation of the RNA-binding protein, release of these transcripts and upregulation of UCP2 protein expression. This study demonstrates a new mechanism for post-transcriptional regulation of UCP2 by the vascular protective ligand Ang1. The ability to rapidly upregulate UCP2 protein expression may be important in protecting endothelial cells from excessive generation of potentially damaging reactive oxygen species.
Collapse
Affiliation(s)
- Tariq A Tahir
- Departments of Cardiovascular Sciences and Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Harprit Singh
- Departments of Cardiovascular Sciences and Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Nicholas P J Brindle
- Departments of Cardiovascular Sciences and Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
20
|
c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism. J Neurosci 2013; 33:14666-80. [PMID: 24027268 DOI: 10.1523/jneurosci.4821-12.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) mediates cell signaling essential for axon outgrowth, but the associated substrates and underlying mechanisms are poorly understood. We identified in Xenopus laevis embryos a novel posttranscriptional mechanism whereby JNK regulates axonogenesis by phosphorylating a specific site on heterogeneous nuclear ribonucleoprotein K (hnRNP K). Both JNK inhibition and hnRNP K knockdown inhibited axon outgrowth and translation of hnRNP K-regulated cytoskeletal RNAs (tau and neurofilament medium), effects that were alleviated by expressing phosphomimetic, but not phosphodeficient, forms of hnRNP K. Immunohistochemical and biochemical analyses indicated that JNK phosphorylation of hnRNP K occurred within the cytoplasm and was necessary for the translational initiation of hnRNP K-targeted RNAs but not for hnRNP K intracellular localization or RNA binding. Thus, in addition to its known roles in transcription and cytoskeletal organization, JNK acts posttranscriptionally through hnRNP K to regulate translation of proteins crucial for axonogenesis.
Collapse
|
21
|
Abstract
Post-transcriptional control of gene expression is crucial for the control of cellular differentiation. Erythroid precursor cells loose their organelles in a timely controlled manner during terminal maturation to functional erythrocytes. Extrusion of the nucleus precedes the release of young reticulocytes into the blood stream. The degradation of mitochondria is initiated by reticulocyte 15-lipoxygenase (r15-LOX) in mature reticulocytes. At that terminal stage the release of r15-LOX mRNA from its translational silenced state induces the synthesis of r15-LOX. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator of r15-LOX mRNA translation. HnRNP K that binds to the differentiation control element (DICE) in the 3′ untranslated region (UTR) inhibits r15-LOX mRNA translation initiation. During erythroid cell maturation, activation of r15-LOX mRNA translation is mediated by post-translational modifications of hnRNP K and a decrease of the hnRNP K level. To further elucidate its function in the post-transcriptional control of gene expression, we investigated hnRNP K degradation employing an inducible erythroid cell system that recapitulates both nuclear extrusion and the timely controlled degradation of mitochondria, mediated by the activation of r15-LOX synthesis. Interestingly, we detected a specific N-terminal cleavage intermediate of hnRNP K lacking DICE-binding activity that appeared during erythroid differentiation and puromycin-induced apoptosis. Employing mass spectrometry and enzymatic analyses, we identified Caspase-3 as the enzyme that cleaves hnRNP K specifically. In vitro studies revealed that cleavage by Caspase-3 at amino acids (aa) D334-G335 removes the C-terminal hnRNP K homology (KH) domain 3 that confers binding of hnRNP K to the DICE. Our data suggest that the processing of hnRNP K by Caspase-3 provides a save-lock mechanism for its timely release from the r15-LOX mRNA silencing complex and activation of r15-LOX mRNA synthesis in erythroid cell differentiation.
Collapse
|
22
|
de Vries S, Naarmann-de Vries IS, Urlaub H, Lue H, Bernhagen J, Ostareck DH, Ostareck-Lederer A. Identification of DEAD-box RNA helicase 6 (DDX6) as a cellular modulator of vascular endothelial growth factor expression under hypoxia. J Biol Chem 2013; 288:5815-27. [PMID: 23293030 DOI: 10.1074/jbc.m112.420711] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) is a crucial proangiogenic factor, which regulates blood vessel supply under physiologic and pathologic conditions. The VEGF mRNA 5'-untranslated region (5'-UTR) bears internal ribosome entry sites (IRES), which confer sustained VEGF mRNA translation under hypoxia when 5'-cap-dependent mRNA translation is inhibited. VEGF IRES-mediated initiation of translation requires the modulated interaction of trans-acting factors. To identify trans-acting factors that control VEGF mRNA translation under hypoxic conditions we established an in vitro translation system based on human adenocarcinoma cells (MCF-7). Cytoplasmic extracts of MCF-7 cells grown under hypoxia (1% oxygen) recapitulate VEGF IRES-mediated reporter mRNA translation. Employing the VEGF mRNA 5'-UTR and 3'-UTR in an RNA affinity approach we isolated interacting proteins from translational active MCF-7 extract prepared from cells grown under normoxia or hypoxia. Interestingly, mass spectrometry analysis identified the DEAD-box RNA helicase 6 (DDX6) that interacts with the VEGF mRNA 5'-UTR. Recombinant DDX6 inhibits VEGF IRES-mediated translation in normoxic MCF-7 extract. Under hypoxia the level of DDX6 declines, and its interaction with VEGF mRNA is diminished in vivo. Depletion of DDX6 by RNAi further promotes VEGF expression in MCF-7 cells. Increased secretion of VEGF from DDX6 knockdown cells positively affects vascular tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. Our results indicate that the decrease of DDX6 under hypoxia contributes to the activation of VEGF expression and promotes its proangiogenic function.
Collapse
Affiliation(s)
- Sebastian de Vries
- Experimental Research Unit, Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 2012; 9:563-76. [PMID: 22614827 DOI: 10.4161/rna.20231] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The untranslated regions (UTRs) at the 3'end of mRNA transcripts contain important sequences that influence the fate of mRNA and thus proteosynthesis. In this review, we summarize the information known to date about 3'end processing, sequence characteristics including related binding proteins and the role of 3'UTRs in several selected signaling pathways to delineate their importance in the regulatory processes in mammalian cells. In addition to reviewing recent advances in the more well known aspects, such as cleavage and polyadenylation processes that influence mRNA stability and location, we concentrate on some newly emerging concepts of the role of the 3'UTR, including alternative polyadenylation sites in relation to proliferation and differentiation and the recognition of the multi-functional properties of non-coding RNAs, including miRNAs that commonly target the 3'UTR. The emerging picture is of a highly complex set of regulatory systems that include autoregulation, cooperativity and competition to fine tune proteosynthesis in context-dependent manners.
Collapse
|
24
|
Proepper C, Steinestel K, Schmeisser MJ, Heinrich J, Steinestel J, Bockmann J, Liebau S, Boeckers TM. Heterogeneous nuclear ribonucleoprotein k interacts with Abi-1 at postsynaptic sites and modulates dendritic spine morphology. PLoS One 2011; 6:e27045. [PMID: 22102872 PMCID: PMC3216941 DOI: 10.1371/journal.pone.0027045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/09/2011] [Indexed: 12/31/2022] Open
Abstract
Background Abelson-interacting protein 1 (Abi-1) plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD) and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex. Principal Findings We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI) domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons. Conclusions Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons.
Collapse
Affiliation(s)
| | - Konrad Steinestel
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Department of Pathology, BWK Hospital Ulm, Ulm, Germany
| | | | - Jutta Heinrich
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Julie Steinestel
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Juergen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Stefan Liebau
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- * E-mail: (TMB); (SL)
| | - Tobias M. Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- * E-mail: (TMB); (SL)
| |
Collapse
|
25
|
Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch. J Biol Inorg Chem 2011; 16:1155-68. [PMID: 21706253 DOI: 10.1007/s00775-011-0804-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 06/07/2011] [Indexed: 11/27/2022]
Abstract
Cytochrome c (Cc) is a key protein in cell life (respiration) and cell death (apoptosis). On the one hand, it serves as a mitochondrial redox carrier, transferring electrons between the membrane-embedded complexes III and IV. On the other hand, it acts as a cytoplasmic apoptosis-triggering agent, forming the apoptosome with apoptosis protease-activating factor-1 (Apaf-1) and activating the caspase cascade. The two functions of cytochrome c are finely tuned by the phosphorylation of tyrosines and, in particular, those located at positions 48 and 97. However, the specific cytochrome c-phosphorylating kinase is still unknown. To study the structural and functional changes induced by tyrosine phosphorylation in cytochrome c, we studied the two phosphomimetic mutants Y48E and Y97E, in which each tyrosine residue is replaced by glutamate. Such substitutions alter both the physicochemical features and the function of each mutant compared with the native protein. Y97E is significantly less stable than the WT species, whereas Y48E not only exhibits lower values for the alkaline transition pK (a) and the midpoint redox potential, but it also impairs Apaf-1-mediated caspase activation. Altogether, these findings suggest that the specific phosphorylation of Tyr48 makes cytochrome c act as an anti-apoptotic switch.
Collapse
|
26
|
Laursen LS, Chan CW, Ffrench-Constant C. Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP-K. ACTA ACUST UNITED AC 2011; 192:797-811. [PMID: 21357748 PMCID: PMC3051817 DOI: 10.1083/jcb.201007014] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
α6β1-integrin interacts with hnRNP-K, an mRNA-binding protein, during oligodendrocyte differentiation to promote translation of MBP mRNA and myelin synthesis. Myelination in the central nervous system provides a unique example of how cells establish asymmetry. The myelinating cell, the oligodendrocyte, extends processes to and wraps multiple axons of different diameter, keeping the number of wraps proportional to the axon diameter. Local regulation of protein synthesis represents one mechanism used to control the different requirements for myelin sheath at each axo–glia interaction. Prior work has established that β1-integrins are involved in the axoglial interactions that initiate myelination. Here, we show that integrin activation regulates translation of a key sheath protein, myelin basic protein (MBP), by reversing the inhibitory effect of the mRNA 3′UTR. During oligodendrocyte differentiation and myelination α6β1-integrin interacts with hnRNP-K, an mRNA-binding protein, which binds to MBP mRNA and translocates from the nucleus to the myelin sheath. Furthermore, knockdown of hnRNP-K inhibits MBP protein synthesis during myelination. Together, these results identify a novel pathway by which axoglial adhesion molecules coordinate MBP synthesis with myelin sheath formation.
Collapse
Affiliation(s)
- Lisbeth S Laursen
- MRC Centre for Regenerative Medicine and MS Society Translational Research Centre, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK.
| | | | | |
Collapse
|
27
|
Identification of the methylation preference region in heterogeneous nuclear ribonucleoprotein K by protein arginine methyltransferase 1 and its implication in regulating nuclear/cytoplasmic distribution. Biochem Biophys Res Commun 2011; 404:865-9. [DOI: 10.1016/j.bbrc.2010.12.076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 11/20/2022]
|
28
|
|
29
|
Roy L, Laboissière S, Abdou E, Thibault G, Hamel N, Taheri M, Boismenu D, Lanoix J, Kearney RE, Paiement J. Proteomic analysis of the transitional endoplasmic reticulum in hepatocellular carcinoma: an organelle perspective on cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1869-81. [PMID: 20576523 DOI: 10.1016/j.bbapap.2010.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/05/2010] [Accepted: 05/18/2010] [Indexed: 02/06/2023]
Abstract
The transitional endoplasmic reticulum (tER) is composed of both rough and smooth ER membranes and thus participates in functions attributed to both these two subcellular compartments. In this paper we have compared the protein composition of tER isolated from dissected liver tumor nodules of aflatoxin B1-treated rats with that of tER from control liver. Tandem mass spectrometry (MS), peptide counts and immunoblot validation were used to identify and determine the relative expression level of proteins. Inhibitors of apoptosis (i.e. PGRMC1, tripeptidyl peptidase II), proteins involved in ribosome biogenesis (i.e. nucleophosmin, nucleolin), proteins involved in translation (i.e. eEF-2, and subunits of eIF-3), proteins involved in ubiquitin metabolism (i.e. proteasome subunits, USP10) and proteins involved in membrane traffic (i.e. SEC13-like 1, SEC23B, dynactin 1) were found overexpressed in tumor tER. Transcription factors (i.e. Pur-beta, BTF3) and molecular targets for C-Myc and NF-kappa B were observed overexpressed in tER from tumor nodules. Down-regulated proteins included cytochrome P450 proteins and enzymes involved in fatty acid metabolism and in steroid metabolism. Unexpectedly expression of the protein folding machinery (i.e. calreticulin) and proteins of the MHC class I peptide-loading complex did not change. Proteins of unknown function were detected in association with the tER and the novel proteins showing differential expression are potential new tumor markers. In many cases differential expression of proteins in tumor tER was comparable to that of corresponding genes reported in the Oncomine human database. Thus the molecular profile of tumor tER is different and this may confer survival advantage to tumor cells in cancer.
Collapse
Affiliation(s)
- Line Roy
- McGill University and Genome Quebec Innovation Centre, Proteomics Services, Genome Quebec, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tandem phosphorylation of serines 221 and 318 by protein kinase Cdelta coordinates mRNA binding and nucleocytoplasmic shuttling of HuR. Mol Cell Biol 2010; 30:1397-410. [PMID: 20086103 DOI: 10.1128/mcb.01373-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Stabilization of mRNA by the ubiquitous RNA binding protein human antigen R (HuR), a member of the embryonic lethal abnormal vision (ELAV) protein family, requires canonical binding to AU-rich element (ARE)-bearing target mRNA and export of nuclear HuR-mRNA complexes to the cytoplasm. In human mesangial cells (HMC) both processes are induced by angiotensin II (AngII) via protein kinase Cdelta (PKCdelta)-triggered serine phosphorylation of HuR. By testing different point-mutated Flag-tagged HuR proteins, we found that Ser 318 within RNA recognition motif 3 (RRM3) is essential for AngII-induced binding to ARE-bearing mRNA but irrelevant for nucleocytoplasmic HuR shuttling. Conversely, mutation at Ser 221 within the HuR hinge region prevents AngII-triggered HuR export without affecting mRNA binding of HuR. Using phosphorylation state-specific antibodies, we found a transient increase in HuR phosphorylation at both serines by AngII. Functionally, PKCdelta mediates the AngII-induced stabilization of prominent HuR target mRNAs, including those of cyclin A, cyclin D(1), and cyclooxygenase-2 (COX-2), and is indispensable for AngII-triggered migration and wound healing of HMC. Our data suggest a regulatory paradigm wherein a simultaneous phosphorylation at different domains by PKCdelta coordinates mRNA binding and nucleocytoplasmic shuttling of HuR, both of which events are essentially involved in the stabilization of HuR target mRNAs and relevant cell functions.
Collapse
|
31
|
Liu N, Han H, Lasko P. Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3' UTR. Genes Dev 2009; 23:2742-52. [PMID: 19952109 DOI: 10.1101/gad.1820709] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vasa (Vas) is a DEAD-box RNA-binding protein required in Drosophila at several steps of oogenesis and for primordial germ cell (PGC) specification. Vas associates with eukaryotic initiation factor 5B (eIF5B), and this interaction has been implicated in translational activation of gurken mRNA in the oocyte. Vas is expressed in all ovarian germline cells, and aspects of the vas-null phenotype suggest a function in regulating the balance between germline stem cells (GSCs) and their fate-restricted descendants. We used a biochemical approach to recover Vas-associated mRNAs and obtained mei-P26, whose product represses microRNA activity and promotes GSC differentiation. We found that vas and mei-P26 mutants interact, and that mei-P26 translation is substantially reduced in vas mutant cells. In vitro, Vas protein bound specifically to a (U)-rich motif in the mei-P26 3' untranslated region (UTR), and Vas-dependent regulation of GFP-mei-P26 transgenes in vivo was dependent on the same (U)-rich 3' UTR domain. The ability of Vas to activate mei-P26 expression in vivo was abrogated by a mutation that greatly reduces its interaction with eIF5B. Taken together, our data support the conclusion that Vas promotes germ cell differentiation by directly activating mei-P26 translation in early-stage committed cells.
Collapse
Affiliation(s)
- Niankun Liu
- Department of Biology, Developmental Biology Research Initiative, and Goodman Cancer Centre, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | | | |
Collapse
|
32
|
Vavassori S, Covey LR. Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol 2009; 6:259-65. [PMID: 19395873 DOI: 10.4161/rna.6.3.8581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The control of mRNA decay is emerging as an important control point and a major contributor to gene expression in both immune and non-immune cells. The identification of protein factors and cis-acting elements responsible for transcript degradation has illuminated a comprehensive picture of precisely orchestrated events required to both regulate and establish the decay process. One gene that is highly regulated at the post-transcriptional level is CD40 ligand (CD154 or CD40L). CD154 on CD4(+) T cells is tightly controlled by an interacting network of transcriptional and post-transcriptional processes that result in precise surface levels of protein throughout an extended time course of antigen stimulation. The activation-induced stabilization of the CD154 transcript by a polypyrimidine tract-binding protein (PTB)-complex is a key event that corresponds to the temporal expression of CD154. In this review, we discuss known and potential roles of major mRNA decay pathways in lymphocytes and focus on the unique post-transcriptional mechanisms leading to CD154 expression by activated CD4(+) T cells.
Collapse
Affiliation(s)
- Stefano Vavassori
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
33
|
Git A, Allison R, Perdiguero E, Nebreda AR, Houliston E, Standart N. Vg1RBP phosphorylation by Erk2 MAP kinase correlates with the cortical release of Vg1 mRNA during meiotic maturation of Xenopus oocytes. RNA (NEW YORK, N.Y.) 2009; 15:1121-1133. [PMID: 19376927 PMCID: PMC2685525 DOI: 10.1261/rna.1195709] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 02/23/2009] [Indexed: 05/27/2023]
Abstract
Xenopus Vg1RBP is a member of the highly conserved IMP family of four KH-domain RNA binding proteins, with roles in RNA localization, translational control, RNA stability, and cell motility. Vg1RBP has been implicated in localizing Vg1 mRNAs to the vegetal cortex during oogenesis, in a process mediated by microtubules and microfilaments, and in migration of neural crest cells in embryos. Using c-mos morpholino, kinase inhibitors, and constitutely active recombinant kinases we show that Vg1RBP undergoes regulated phosphorylation by Erk2 MAPK during meiotic maturation, on a single residue, S402, located between the KH2 and KH3 domains. Phosphorylation temporally correlates with the release of Vg1 mRNA from its tight cortical association, assayed in lysates in physiological salt buffers, but does not affect RNA binding, nor self-association of Vg1RBP. U0126, a MAP kinase inhibitor, prevents Vg1RBP cortical release and Vg1 mRNA solubilization in meiotically maturing eggs, while injection of MKK6-DD, a constitutively activated MAP kinase kinase, promotes the release of both Vg1RBP and Vg1 mRNA from insoluble cortical structures. We propose that Erk2 MAP kinase phosphorylation of Vg1RBP regulates the protein:protein-mediated association of Vg1 mRNP with the cytoskeleton and/or ER. Since the MAP kinase site in Vg1RBP is conserved in several IMP homologs, this modification also has important implications for the regulation of IMP proteins in somatic cells.
Collapse
Affiliation(s)
- Anna Git
- Department of Biochemistry, University of Cambridge, Cambridge CB21GA, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Díaz-Moreno I, Hollingworth D, Frenkiel TA, Kelly G, Martin S, Howell S, García-Mayoral M, Gherzi R, Briata P, Ramos A. Phosphorylation-mediated unfolding of a KH domain regulates KSRP localization via 14-3-3 binding. Nat Struct Mol Biol 2009; 16:238-46. [PMID: 19198587 PMCID: PMC2858377 DOI: 10.1038/nsmb.1558] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 01/13/2009] [Indexed: 12/20/2022]
Abstract
The AU-rich element (ARE)-mediated mRNA-degradation activity of the RNA binding K-homology splicing regulator protein (KSRP) is regulated by phosphorylation of a serine within its N-terminal KH domain (KH1). In the cell, phosphorylation promotes the interaction of KSRP and 14-3-3zeta protein and impairs the ability of KSRP to promote the degradation of its RNA targets. Here we examine the molecular details of this mechanism. We report that phosphorylation leads to the unfolding of the structurally atypical and unstable KH1, creating a site for 14-3-3zeta binding. Using this site, 14-3-3zeta discriminates between phosphorylated and unphosphorylated KH1, driving the nuclear localization of KSRP. 14-3-3zeta -KH1 interaction regulates the mRNA-decay activity of KSRP by sequestering the protein in a separate functional pool. This study demonstrates how an mRNA-degradation pathway is connected to extracellular signaling networks through the reversible unfolding of a protein domain.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Molecular Structure Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fred RG, Welsh N. The importance of RNA binding proteins in preproinsulin mRNA stability. Mol Cell Endocrinol 2009; 297:28-33. [PMID: 18621093 DOI: 10.1016/j.mce.2008.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
A dynamic production of insulin is necessary for proper glucose homeostasis. In order to generate enough insulin available for exocytosis in response to the demands of the organism, the level of preproinsulin mRNA in the pancreatic beta-cell needs to fluctuate. In animal models for type 2 diabetes the contents of preproinsulin mRNA are lowered, which might suggest that an impaired metabolism of preproinsulin mRNA contributes to the development of glucose intolerance and diabetes. Thus, it is of importance to understand the mechanisms by which preproinsulin mRNA levels are regulated. Although extensively studied, there are aspects of the regulation of insulin gene expression that still remain enigmatic. Our understanding of insulin gene transcription has improved considerably the last 20 years, but less effort has been invested into the control of preproinsulin mRNA stability. The preproinsulin mRNA has a long half-life and changes in preproinsulin mRNA stability, induced by glucose, are likely to be regulated through specific mechanisms. Recent findings indicate that the polypyrimidine tract-binding protein (PTB), also named hnRNP I, by binding to the 3'-UTR (untranslated region) of the preproinsulin mRNA molecule, stabilizes the messenger, thereby participating in the glucose-induced increase in preproinsulin mRNA. This review will focus both on recent findings pertinent to PTB function in general, and on the specific role of PTB on the production of insulin in beta-cells. We will also discuss the putative co-operativity between PTB and other proteins in the control of preproinsulin mRNA stability, and review beta-cell signaling events that may control the mRNA stabilizing effect of PTB.
Collapse
Affiliation(s)
- Rikard G Fred
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
36
|
Differential phosphorylation of calreticulin affects AT1 receptor mRNA stability in VSMC. Biochem Biophys Res Commun 2008; 370:669-74. [DOI: 10.1016/j.bbrc.2008.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 04/04/2008] [Indexed: 11/22/2022]
|
37
|
Naarmann IS, Harnisch C, Flach N, Kremmer E, Kühn H, Ostareck DH, Ostareck-Lederer A. mRNA silencing in human erythroid cell maturation: heterogeneous nuclear ribonucleoprotein K controls the expression of its regulator c-Src. J Biol Chem 2008; 283:18461-72. [PMID: 18441016 DOI: 10.1074/jbc.m710328200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Erythroid precursor cells undergo nuclear extrusion and degradation of mitochondria when they mature to erythrocytes. It has been suggested before that the reticulocyte 15-lipoxygenase (r15-LOX) plays an important role in initiating the breakdown of mitochondria in rabbit reticulocytes. The expression of rabbit r15-LOX is regulated by the heterogeneous nuclear ribonucleoproteins (hnRNP) K and E1 at the translational level. However, this mechanism has never been confirmed in human erythropoiesis. Based on K562 cells we have set up an inducible human erythroid cell system. We show that, during induction, K562 cells exhibit changes in morphology and protein expression that are characteristic for terminal erythroid maturation: nuclear exclusion, expression of endogenous human r15-LOX regulated by hnRNP K and hnRNP E1, and loss of mitochondria. Importantly, induction of terminal erythroid maturation in primary human CD34(+) cells recapitulated the results obtained in K562 cells. Employing the physiologically relevant K562 cell system we uncovered a new mechanism of interdependent post-transcriptional regulation of gene expression. The timely expression of the tyrosine kinase c-Src, which phosphorylates hnRNP K in later stages, is controlled by hnRNP K in early stages of erythroid maturation. hnRNP K binds to the 3'-untranslated region of the c-Src mRNA and inhibits its translation by blocking 80 S ribosome formation. In premature erythroid cells, small interfering RNA-mediated knockdown of hnRNP K, but not of hnRNP E1, leads to the de-repression of c-Src synthesis.
Collapse
Affiliation(s)
- Isabel S Naarmann
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
RNA-binding proteins regulate every aspect of RNA metabolism, including pre-mRNA splicing, mRNA trafficking, stability, and translation. This review summarizes the available information on molecular mechanisms of translational repression by RNA-binding proteins. By using a specific set of well-defined examples, we also describe how regulation can be reversed.
Collapse
Affiliation(s)
- Irina Abaza
- Centre de Regulació Genòmica, Gene Regulation Programme, 08003 Barcelona, Spain
| | | |
Collapse
|
39
|
Fukuda T, Naiki T, Saito M, Irie K. hnRNP K interacts with RNA binding motif protein 42 and functions in the maintenance of cellular ATP level during stress conditions. Genes Cells 2008; 14:113-28. [PMID: 19170760 DOI: 10.1111/j.1365-2443.2008.01256.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a conserved RNA-binding protein that is involved in multiple processes of gene expression, including chromatin remodeling, transcription, RNA splicing, mRNA stability and translation, together with diverse groups of molecular partners. Here we identified a previously uncharacterized protein RNA binding motif protein 42 (RBM42) as hnRNP K-binding protein. RBM42 directly bound to hnRNP K in vivo and in vitro. RBM42 also directly bound to the 3' untranslated region of p21 mRNA, one of the target mRNAs for hnRNP K. RBM42 predominantly localized within the nucleus and co-localized with hnRNP K there. When cells were treated with agents, puromycin, sorbitol or arsenite, which induced the formation of stress granules (SGs), cytoplasmic aggregates of stalled translational pre-initiation complexes, both hnRNP K and RBM42 localized at SGs. Depletion of hnRNP K by RNA interference decreased cellular ATP level following release from stress conditions. Simultaneous depletion of RBM42 with hnRNP K enhanced the effect of the hnRNP K depletion. Our results indicate that hnRNP K and RBM42 are components of SGs and suggest that hnRNP K and RBM42 have a role in the maintenance of cellular ATP level in the stress conditions possibly through protecting their target mRNAs.
Collapse
Affiliation(s)
- Toshiyuki Fukuda
- Department of Molecular Cell Biology, University of Tsukuba, Japan
| | | | | | | |
Collapse
|
40
|
Establishment of a novel in vivo sex-specific splicing assay system to identify a trans-acting factor that negatively regulates splicing of Bombyx mori dsx female exons. Mol Cell Biol 2007; 28:333-43. [PMID: 17967886 DOI: 10.1128/mcb.01528-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bombyx mori homolog of doublesex, Bmdsx, plays an essential role in silkworm sexual development. Exons 3 and 4 of Bmdsx pre-mRNA are specifically excluded in males. To explore how this occurs, we developed a novel in vivo sex-specific splicing assay system using sexually differentiated cultured cells. A series of mutation analyses using a Bmdsx minigene with this in vivo splicing assay system identified three distinct sequences (CE1, CE2, and CE3) positioned in exon 4 as exonic splicing silencers responsible for male-specific splicing. Gel shift analysis showed that CE1 binds to a nuclear protein from male cells but not that from female cells. Mutation of UAA repeats within CE1 inhibited the binding of the nuclear protein to the RNA and caused female-specific splicing in male cells. We have identified BmPSI, a Bombyx homolog of P-element somatic inhibitor (PSI), as the nuclear factor that specifically binds CE1. Down-regulation of endogenous BmPSI by RNA interference significantly increased female-specific splicing in male cells. This is the first report of a PSI homolog implicated in the regulated sex-specific splicing of dsx pre-mRNA.
Collapse
|
41
|
Adolph D, Flach N, Mueller K, Ostareck DH, Ostareck-Lederer A. Deciphering the cross talk between hnRNP K and c-Src: the c-Src activation domain in hnRNP K is distinct from a second interaction site. Mol Cell Biol 2007; 27:1758-70. [PMID: 17178840 PMCID: PMC1820454 DOI: 10.1128/mcb.02014-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 12/04/2006] [Indexed: 11/20/2022] Open
Abstract
The protein tyrosine kinase c-Src is regulated by two intramolecular interactions. The repressed state is achieved through the interaction of the Src homology 2 (SH2) domain with the phosphorylated C-terminal tail and the association of the SH3 domain with a polyproline type II helix formed by the linker region between SH2 and the kinase domain. hnRNP K, the founding member of the KH domain protein family, is involved in chromatin remodeling, regulation of transcription, and translation of specific mRNAs and is a target in different signal transduction pathways. In particular, it functions as a specific activator and a substrate of the tyrosine kinase c-Src. Here we address the question how hnRNP K interacts with and activates c-Src. We define the proline residues in hnRNP K in the proline-rich motifs P2 (amino acids [aa] 285 to 297) and P3 (aa 303 to 318), which are necessary and sufficient for the specific activation of c-Src, and we dissect the amino acid sequence (aa 216 to 226) of hnRNP K that mediates a second interaction with c-Src. Our findings indicate that the interaction with c-Src and the activation of the kinase are separable functions of hnRNP K. hnRNP K acts as a scaffold protein that integrates signaling cascades by facilitating the cross talk between kinases and factors that mediate nucleic acid-directed processes.
Collapse
Affiliation(s)
- Dörte Adolph
- Institute of Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|