1
|
Jiang M, Zhao D, Huang L, Zeng Y, Liu J, Xiang H, Zheng Y. The Role of Glutamine Synthetase in Regulating Ammonium Assimilation and Iron-Only Nitrogenase Expression in a Photosynthetic Diazotroph. Microbiol Spectr 2023:e0495322. [PMID: 36971559 PMCID: PMC10100968 DOI: 10.1128/spectrum.04953-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The photosynthetic diazotrophs, such as
Rhodopseudomonas palustris
, can utilize light energy to drive the conversion of carbon dioxide (CO
2
) to a much more powerful greenhouse gas methane (CH
4
) by Fe-only nitrogenase, which is strictly regulated in response to the ammonium, a substrate of glutamine synthetase for the biosynthesis of glutamine. However, the primary glutamine synthetase for ammonium assimilation and its role in nitrogenase regulation remain unclear in
R. palustris
.
Collapse
|
2
|
Huang P, Chen S, Chiang W, Ho M, Wu K. Structural basis for the helical filament formation of Escherichia coli glutamine synthetase. Protein Sci 2022; 31:e4304. [PMID: 35481643 PMCID: PMC8996467 DOI: 10.1002/pro.4304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023]
Abstract
Escherichia coli glutamine synthetase (EcGS) spontaneously forms a dodecamer that catalytically converts glutamate to glutamine. EcGS stacks with other dodecamers to create a filament-like polymer visible under transmission electron microscopy. Filamentous EcGS is induced by environmental metal ions. We used cryo-electron microscopy (cryo-EM) to decipher the structure of metal ion (nickel)-induced EcGS helical filament at a sub-3Å resolution. EcGS filament formation involves stacking of native dodecamers by chelating nickel ions to residues His5 and His13 in the first N-terminal helix (H1). His5 and His13 from paired parallel H1 helices provide salt bridges and hydrogen bonds to tightly stack two dodecamers. One subunit of the EcGS filament hosts two nickel ions, whereas the dodecameric interface and the ATP/Mg-binding site both host a nickel ion each. We reveal that upon adding glutamate or ATP for catalytic reactions, nickel-induced EcGS filament reverts to individual dodecamers. Such tunable filament formation is often associated with stress responses. Our results provide detailed structural information on the mechanism underlying reversible and tunable EcGS filament formation.
Collapse
Affiliation(s)
- Pei‐Chi Huang
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
- Department of ChemistryNational Taiwan Normal UniversityTaipeiTaiwan
| | - Shao‐Kang Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Wei‐Hung Chiang
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Meng‐Ru Ho
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Kuen‐Phon Wu
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
- Institute of Biochemical ScienceCollege of Life Science, National Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Kumar V, Yadav S, Soumya N, Kumar R, Babu NK, Singh S. Biochemical and inhibition studies of glutamine synthetase from Leishmania donovani. Microb Pathog 2017; 107:164-174. [DOI: 10.1016/j.micpath.2017.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/27/2022]
|
4
|
Eid T, Gruenbaum SE, Dhaher R, Lee TSW, Zhou Y, Danbolt NC. The Glutamate-Glutamine Cycle in Epilepsy. ADVANCES IN NEUROBIOLOGY 2016; 13:351-400. [PMID: 27885637 DOI: 10.1007/978-3-319-45096-4_14] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epilepsy is a complex, multifactorial disease characterized by spontaneous recurrent seizures and an increased incidence of comorbid conditions such as anxiety, depression, cognitive dysfunction, and sudden unexpected death. About 70 million people worldwide are estimated to suffer from epilepsy, and up to one-third of all people with epilepsy are expected to be refractory to current medications. Development of more effective and specific antiepileptic interventions is therefore requisite. Perturbations in the brain's glutamate-glutamine cycle, such as increased extracellular levels of glutamate, loss of astroglial glutamine synthetase, and changes in glutaminase and glutamate dehydrogenase, are frequently encountered in patients with epilepsy. Hence, manipulations of discrete glutamate-glutamine cycle components may represent novel approaches to treat the disease. The goal of his review is to discuss some of the glutamate-glutamine cycle components that are altered in epilepsy, particularly neurotransmitters and metabolites, enzymes, amino acid transporters, and glutamate receptors. We will also review approaches that potentially could be used in humans to target the glutamate-glutamine cycle. Examples of such approaches are treatment with glutamate receptor blockers, glutamate scavenging, dietary intervention, and hypothermia.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA.
| | - Shaun E Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA
| | - Tih-Shih W Lee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yun Zhou
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Ehrlichia chaffeensis proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degradation induced by proline and glutamine uptake. mBio 2014; 5:e02141. [PMID: 25425236 PMCID: PMC4251998 DOI: 10.1128/mbio.02141-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
How the obligatory intracellular bacterium Ehrlichia chaffeensis begins to replicate upon entry into human monocytes is poorly understood. Here, we examined the potential role of amino acids in initiating intracellular replication. PutA converts proline to glutamate, and GlnA converts glutamate to glutamine. E. chaffeensis PutA and GlnA complemented Escherichia coli putA and glnA mutants. Methionine sulfoximine, a glutamine synthetase inhibitor, inhibited E. chaffeensis GlnA activity and E. chaffeensis infection of human cells. Incubation of E. chaffeensis with human cells rapidly induced putA and glnA expression that peaked at 24 h postincubation. E. chaffeensis took up proline and glutamine but not glutamate. Pretreatment of E. chaffeensis with a proline transporter inhibitor (protamine), a glutamine transporter inhibitor (histidine), or proline analogs inhibited E. chaffeensis infection, whereas pretreatment with proline or glutamine enhanced infection and upregulated putA and glnA faster than no treatment or glutamate pretreatment. The temporal response of putA and glnA expression was similar to that of NtrY and NtrX, a two-component system, and electrophoretic mobility shift assays showed specific binding of recombinant E. chaffeensis NtrX (rNtrX) to the promoter regions of E. chaffeensis putA and glnA. Furthermore, rNtrX transactivated E. chaffeensis putA and glnA promoter-lacZ fusions in E. coli. Growth-promoting activities of proline and glutamine were also accompanied by rapid degradation of the DNA-binding protein CtrA. Our results suggest that proline and glutamine uptake regulates putA and glnA expression through NtrY/NtrX and facilitates degradation of CtrA to initiate a new cycle of E. chaffeensis growth. Human monocytic ehrlichiosis (HME) is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. HME is caused by infection with E. chaffeensis, an obligatory intracellular bacterium in the order Rickettsiales, which includes several category B/C pathogens, such as those causing Rocky Mountain spotted fever and epidemic typhus. The limited understanding of the mechanisms that control bacterial growth within eukaryotic cells continues to impede the identification of new therapeutic targets against rickettsial diseases. Extracellular rickettsia cannot replicate, but rickettsial replication ensues upon entry into eukaryotic host cells. Our findings will provide insights into a novel mechanism of the two-component system that regulates E. chaffeensis growth initiation in human monocytes. The result is also important because little is known about the NtrY/NtrX two-component system in any bacteria, let alone obligatory intracellular bacteria. Our findings will advance the field’s current conceptual paradigm on regulation of obligatory intracellular nutrition, metabolism, and growth.
Collapse
|
6
|
Pinto A, Sánchez F, Alamo L, Padrón R. The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion. J Struct Biol 2012; 180:469-78. [PMID: 22982253 DOI: 10.1016/j.jsb.2012.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/26/2022]
Abstract
Electron microscopy (EM) studies of 2D crystals of smooth muscle myosin molecules have shown that in the inactive state the two heads of a myosin molecule interact asymmetrically forming a myosin interacting-heads motif. This suggested that inactivation of the two heads occurs by blocking of the actin-binding site of one (free head) and the ATP hydrolysis site of the other (blocked head). This motif has been found by EM of isolated negatively stained myosin molecules of unregulated (vertebrate skeletal and cardiac muscle) and regulated (invertebrate striated and vertebrate smooth muscle) myosins, and nonmuscle myosin. The same motif has also been found in 3D-reconstructions of frozen-hydrated (tarantula, Limulus, scallop) and negatively stained (scallop, vertebrate cardiac) isolated thick filaments. We are carrying out studies of isolated thick filaments from other species to assess how general this myosin interacting-heads motif is. Here, using EM, we have visualized isolated, negatively stained thick filaments from scorpion striated muscle. We modified the iterative helical real space reconstruction (IHRSR) method to include filament tilt, and band-pass filtered the aligned segments before averaging, achieving a 3.3 nm resolution 3D-reconstruction. This reconstruction revealed the presence of the myosin interacting-heads motif (adding to evidence that is widely spread), together with 12 subfilaments in the filament backbone. This demonstrates that conventional negative staining and imaging can be used to detect the presence of the myosin interacting-heads motif in helically ordered thick filaments from different species and muscle types, thus avoiding the use of less accessible cryo-EM and low electron-dose procedures.
Collapse
Affiliation(s)
- Antonio Pinto
- Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas-IVIC, Apdo. 20632, Caracas 1020A, Venezuela.
| | | | | | | |
Collapse
|
7
|
Crystal Structure of Type III Glutamine Synthetase: Surprising Reversal of the Inter-Ring Interface. Structure 2011; 19:471-83. [DOI: 10.1016/j.str.2011.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/31/2011] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
|
8
|
van Rooyen J, Belrhali H, Abratt V, Sewell BT. Proteolysis of the type III glutamine synthetase from Bacteroides fragilis causes expedient crystal-packing rearrangements. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:358-63. [PMID: 21393843 PMCID: PMC3053163 DOI: 10.1107/s1744309110053893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/22/2010] [Indexed: 11/10/2022]
Abstract
This work details the intentional modifications that led to the first structure of a type III glutamine synthetase enzyme (GSIII). This approach followed the serendipitous discovery of digestion caused by an extracellular protease from a contaminating bacterium, Pseudomonas fluorescens. The protease only cleaves the GSIII protein at a single site, leaving the oligomer intact but allowing the protein to crystallize in a different space group. This transition from space group P1 to space group C222(1) is accompanied by improved growth characteristics, more reproducible diffraction and enhanced mechanical stability. The crystallographic analyses presented here provide the structural basis of the altered molecular packing in the full-length and digested crystal forms and suggest modifications for future structural studies.
Collapse
Affiliation(s)
- Jason van Rooyen
- Electron Microscope Unit, Department of Molecular and Cell Biology, University of Cape Town, South Africa.
| | | | | | | |
Collapse
|
9
|
van Rooyen J, Abratt V, Belrhali H, Sewell B. Crystallization of recombinant Bacteroides fragilis glutamine synthetase (GlnN) isolated using a novel and rapid purification protocol. Protein Expr Purif 2010; 74:211-6. [DOI: 10.1016/j.pep.2010.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/04/2010] [Accepted: 06/17/2010] [Indexed: 11/15/2022]
|
10
|
Seabra AR, Carvalho H, Pereira PJB. Crystallization and preliminary crystallographic characterization of glutamine synthetase from Medicago truncatula. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1309-12. [PMID: 20054137 PMCID: PMC2802889 DOI: 10.1107/s1744309109047381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/09/2009] [Indexed: 11/11/2022]
Abstract
The condensation of ammonium and glutamate into glutamine catalyzed by glutamine synthetase (GS) is a fundamental step in nitrogen metabolism in all kingdoms of life. In plants, this is preceded by the reduction of inorganic nitrogen to an ammonium ion and therefore effectively articulates nitrogen fixation and metabolism. Although the three-dimensional structure of the dodecameric bacterial GS was determined quite some time ago, the quaternary architecture of the plant enzyme has long been assumed to be octameric, mostly on the basis of low-resolution electron-microscopy studies. Recently, the crystallographic structure of a monocotyledonous plant GS was reported that revealed a homodecameric organization. In order to unambiguously establish the quaternary architecture of GS from dicotyledonous plants, GS1a from the model legume Medicago truncatula was overexpressed, purified and crystallized. The collection of synchrotron diffraction data to 2.35 A resolution allowed the determination of the three-dimensional structure of this enzyme by molecular replacement.
Collapse
Affiliation(s)
- Ana Rita Seabra
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Helena Carvalho
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | |
Collapse
|
11
|
He YX, Gui L, Liu YZ, Du Y, Zhou Y, Li P, Zhou CZ. Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly. Proteins 2009; 76:249-54. [PMID: 19322816 DOI: 10.1002/prot.22403] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong-Xing He
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
12
|
Massover WH. On the experimental use of light metal salts for negative staining. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:126-137. [PMID: 18312717 DOI: 10.1017/s1431927608080033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/21/2007] [Indexed: 05/26/2023]
Abstract
All common negative stains are salts of heavy metals. To remedy several technical defects inherent in the use of heavy metal compounds, this study investigates whether salts of the light metals sodium, magnesium, and aluminum can function as negative stains. Screening criteria require aqueous solubility at pH 7.0, formation of a smooth amorphous layer upon drying, and transmission electron microscope imaging of the 87-A (8.7-nm) lattice periodicity in thin catalase crystals. Six of 23 salts evaluated pass all three screens; detection of the protein shell in ferritin macromolecules indicates that light metal salts also provide negative staining of single particle specimens. Appositional contrast is less than that given by heavy metal negative stains; image density can be raised by increasing electron phase contrast and by selecting salts with phosphate or sulfate anions, thereby adding strong scattering from P or S atoms. Low-dose electron diffraction of catalase crystals negatively stained with 200 mM magnesium sulfate shows Bragg spots extending out to 4.4 A. Future experimental use of sodium phosphate buffer and magnesium sulfate for negative staining is anticipated, particularly in designing new cocktail (multicomponent) negative stains able to support and protect protein structure to higher resolution levels than are currently achieved.
Collapse
Affiliation(s)
- William H Massover
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA.
| |
Collapse
|
13
|
Stutz HE, Quixley KWM, McMaster LD, Reid SJ. Co-regulation of the nitrogen-assimilatory gene cluster in Clostridium saccharobutylicum. MICROBIOLOGY-SGM 2007; 153:3081-3090. [PMID: 17768251 DOI: 10.1099/mic.0.2007/005371-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitrogen assimilation is important during solvent production by Clostridium saccharobutylicum NCP262, as acetone and butanol yields are significantly affected by the nitrogen source supplied. Growth of this bacterium was dependent on the concentration of organic nitrogen supplied and the expression of the assimilatory enzymes, glutamine synthetase (GS) and glutamate synthase (GOGAT), was shown to be induced in nitrogen-limiting conditions. The regions flanking the gene encoding GS, glnA, were isolated from C. saccharobutylicum genomic DNA, and DNA sequencing revealed that the structural genes encoding the GS (glnA) and GOGAT (gltA and gltB) enzymes were clustered together with the nitR gene in the order glnA-nitR-gltAB. RNA analysis showed that the glnA-nitR and the gltAB genes were co-transcribed on 2.3 and 6.2 kb RNA transcripts respectively, and that all four genes were induced under the same nitrogen-limiting conditions. Complementation of an Escherichia coli gltD mutant, lacking a GOGAT small subunit, was achieved only when both the C. saccharobutylicum gltA and gltB genes were expressed together under anaerobic conditions. This is believed to be the first functional analysis of a gene cluster encoding the key enzymes of nitrogen assimilation, GS and GOGAT. A similar gene arrangement is seen in Clostridium beijerinckii NCIMB 8052, and based on the common regulatory features of the promoter regions upstream of the glnA operons in both species, we suggest a model for their co-ordinated regulation by an antitermination mechanism as well as antisense RNA.
Collapse
Affiliation(s)
- Helen E Stutz
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Keith W M Quixley
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Lynn D McMaster
- Department of Food and Agricultural Sciences, Cape Technikon, Cape Town 8001, South Africa
| | - Sharon J Reid
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
14
|
Wyatt K, White HE, Wang L, Bateman OA, Slingsby C, Orlova EV, Wistow G. Lengsin is a survivor of an ancient family of class I glutamine synthetases re-engineered by evolution for a role in the vertebrate lens. Structure 2007; 14:1823-34. [PMID: 17161372 PMCID: PMC1868402 DOI: 10.1016/j.str.2006.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/11/2006] [Accepted: 10/26/2006] [Indexed: 02/01/2023]
Abstract
Lengsin is a major protein of the vertebrate eye lens. It belongs to the hitherto purely prokaryotic GS I branch of the glutamine synthetase (GS) superfamily, but has no enzyme activity. Like the taxon-specific crystallins, Lengsin is the result of the recruitment of an ancient enzyme to a noncatalytic role in the vertebrate lens. Cryo-EM and modeling studies of Lengsin show a dodecamer structure with important similarities and differences with prokaryotic GS I structures. GS homology regions of Lengsin are well conserved, but the N-terminal domain shows evidence of dynamic evolutionary changes. Compared with birds and fish, most mammals have an additional exon corresponding to part of the N-terminal domain; however, in human, this is a nonfunctional pseudoexon. Genes related to Lengsin are also present in the sea urchin, suggesting that this branch of the GS I family, supplanted by GS II enzymes in vertebrates, has an ancient role in metazoans.
Collapse
Affiliation(s)
- Keith Wyatt
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|