1
|
Establishing an In Vitro System to Assess How Specific Antibodies Drive the Evolution of Foot-and-Mouth Disease Virus. Viruses 2022; 14:v14081820. [PMID: 36016442 PMCID: PMC9412381 DOI: 10.3390/v14081820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses can evolve to respond to immune pressures conferred by specific antibodies generated after vaccination and/or infection. In this study, an in vitro system was developed to investigate the impact of serum-neutralising antibodies upon the evolution of a foot-and-mouth disease virus (FMDV) isolate. The presence of sub-neutralising dilutions of specific antisera delayed the onset of virus-induced cytopathic effect (CPE) by up to 44 h compared to the untreated control cultures. Continued virus passage with sub-neutralising dilutions of these sera resulted in a decrease in time to complete CPE, suggesting that FMDV in these cultures adapted to escape immune pressure. These phenotypic changes were associated with three separate consensus-level non-synonymous mutations that accrued in the viral RNA-encoding amino acids at positions VP266, VP280 and VP1155, corresponding to known epitope sites. High-throughput sequencing also identified further nucleotide substitutions within the regions encoding the leader (Lpro), VP4, VP2 and VP3 proteins. While association of the later mutations with the adaptation to immune pressure must be further verified, these results highlight the multiple routes by which FMDV populations can escape neutralising antibodies and support the application of a simple in vitro approach to assess the impact of the humoral immune system on the evolution of FMDV and potentially other viruses.
Collapse
|
2
|
Computational based design and tracking of synthetic variants of Porcine circovirus reveal relations between silent genomic information and viral fitness. Sci Rep 2021; 11:10620. [PMID: 34012100 PMCID: PMC8134455 DOI: 10.1038/s41598-021-89918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Viral genomes not only code the protein content, but also include silent, overlapping codes which are important to the regulation of the viral life cycle and affect its evolution. Due to the high density of these codes, their non-modular nature and the complex intracellular processes they encode, the ability of current approaches to decipher them is very limited. We describe the first computational-experimental pipeline for studying the effects of viral silent and non-silent information on its fitness. The pipeline was implemented to study the Porcine Circovirus type 2 (PCV2), the shortest known eukaryotic virus, and includes the following steps: (1) Based on the analyses of 2100 variants of PCV, suspected silent codes were inferred. (2) Five hundred variants of the PCV2 were designed to include various ‘smart’ silent mutations. (3) Using state of the art synthetic biology approaches, the genomes of these five hundred variants were generated. (4) Competition experiments between the variants were performed in Porcine kidney-15 (PK15) cell-lines. (5) The variant titers were analyzed based on novel next-generation sequencing (NGS) experiments. (6) The features related to the titer of the variants were inferred and their analyses enabled detection of various novel silent functional sequence and structural motifs. Furthermore, we demonstrate that 50 of the silent variants exhibit higher fitness than the wildtype in the analyzed conditions.
Collapse
|
3
|
Correa-Fiz F, Franzo G, Llorens A, Huerta E, Sibila M, Kekarainen T, Segalés J. Porcine circovirus 2 (PCV2) population study in experimentally infected pigs developing PCV2-systemic disease or a subclinical infection. Sci Rep 2020; 10:17747. [PMID: 33082419 PMCID: PMC7576782 DOI: 10.1038/s41598-020-74627-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is a single stranded DNA virus with one of the highest mutation rates among DNA viruses. This ability allows it to generate a cloud of mutants constantly providing new opportunities to adapt and evade the immune system. This pig pathogen is associated to many diseases, globally called porcine circovirus diseases (PCVD) and has been a threat to pig industry since its discovery in the early 90's. Although 11 ORFs have been predicted from its genome, only two main proteins have been deeply characterized, i.e. Rep and Cap. The structural Cap protein possesses the majority of the epitopic determinants of this non-enveloped virus. The evolution of PCV2 is affected by both natural and vaccine-induced immune responses, which enhances the genetic variability, especially in the most immunogenic Cap region. Intra-host variability has been also demonstrated in infected animals where long-lasting infections can take place. However, the association between this intra-host variability and pathogenesis has never been studied for this virus. Here, the within-host PCV2 variability was monitored over time by next generation sequencing during an experimental infection, demonstrating the presence of large heterogeneity. Remarkably, the level of quasispecies diversity, affecting particularly the Cap coding region, was statistically different depending on viremia levels and clinical signs detected after infection. Moreover, we proved the existence of hyper mutant subjects harboring a remarkably higher number of genetic variants. Altogether, these results suggest an interaction between genetic diversity, host immune system and disease severity.
Collapse
Affiliation(s)
- Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain. .,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Legnaro, PD, Italy
| | - Anna Llorens
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Eva Huerta
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Tuija Kekarainen
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,Kuopio Center for Gene and Cell Therapy, Microkatu 1, Kuopio, Finland
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), IRTA, Bellaterra, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Spain
| |
Collapse
|
4
|
Domingo E. Virus population dynamics examined with experimental model systems. VIRUS AS POPULATIONS 2020. [PMCID: PMC7153323 DOI: 10.1016/b978-0-12-816331-3.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimens. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
5
|
Abstract
Experimental evolution permits exploring the effect of controlled environmental variables in virus evolution. Several designs in cell culture and in vivo have established basic concepts that can assist in the interpretation of evolutionary events in the field. Important information has come from cytolytic and persistent infections in cell culture that have unveiled the power of virus-cell coevolution in virus and cell diversification. Equally informative are comparisons of the response of viral populations when subjected to different passage régimes. In particular, plaque-to-plaque transfers in cell culture have revealed unusual genotypes and phenotypes that populate minority layers of viral quasispecies. Some of these viruses display properties that contradict features established in virology textbooks. Several hypotheses and principles of population genetics have found experimental confirmation in experimental designs with viruses. The possibilities of using experimental evolution to understand virus behavior are still largely unexploited.
Collapse
|
6
|
Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S, Johnson S, Lee I, Akahata W, Nabel GJ, Richter MKS, Smit JM, Fremont DH, Pierson TC, Heise MT, Diamond MS. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog 2013; 9:e1003312. [PMID: 23637602 PMCID: PMC3630103 DOI: 10.1371/journal.ppat.1003312] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/04/2013] [Indexed: 11/29/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans. Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes outbreaks of polyarthritis in humans, and is currently a threat to spread to the United States due to the presence of its mosquito vector, Aedes albopictus. At present, there is no licensed human vaccine or therapeutic available to protect against CHIKV infection. The primary goal of this study was to develop an antibody-based therapeutic agent against CHIKV. To do this, we developed a panel of 230 new mouse anti-CHIKV MAbs and tested them for their ability to neutralize infection of different CHIKV strains in cell culture. We identified 36 MAbs with broad neutralizing activity, and then tested several of these for their ability to protect immunocompromised Ifnar−/− mice against lethal CHIKV infection. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs limited the development of resistance and protected Ifnar−/− mice against disease even when given just 24 to 36 hours before CHIKV-induced death. Analogous protection against CHIKV-induced arthritis was seen in a disease model in wild type mice. Our data suggest that pairs of highly neutralizing MAbs may be a therapeutic option against CHIKV infection.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
8
|
Domingo E, Grande-Pérez A, Martín V. Future prospects for the treatment of rapidly evolving viral pathogens: insights from evolutionary biology. Expert Opin Biol Ther 2008; 8:1455-60. [DOI: 10.1517/14712598.8.10.1455] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
The role of viral mutation in the pathogenesis of chronic viral hepatitis. Virol Sin 2008. [DOI: 10.1007/s12250-008-2944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Martín V, Domingo E. Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol Biol Evol 2008; 25:1544-54. [PMID: 18436553 DOI: 10.1093/molbev/msn099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA viruses replicate as complex mutant distributions termed viral quasispecies. Despite this, studies on virus populations subjected to positive selection have generally been performed and analyzed as if the viral population consisted of a defined genomic nucleotide sequence; such a simplification may not reflect accurately the molecular events underlying the selection process. In the present study, we have reconstructed a foot-and-mouth disease virus quasispecies with multiple, low-frequency, genetically distinguishable mutants that can escape neutralization by a monoclonal antibody. Some of the mutants included an amino acid substitution that affected an integrin recognition motif that overlaps with the antibody-binding site, whereas other mutants included an amino acid substitution that affected antibody binding but not integrin recognition. We have monitored consensus and clonal nucleotide sequences of populations passaged either in the absence or the presence of the neutralizing antibody. In both cases, the populations focused toward a specific mutant that was surrounded by a cloud of mutants with different antigenic and cell recognition specificities. In the absence of antibody selection, an antigenic variant that maintained integrin recognition became dominant, but the mutant cloud included as one of its minority components a variant with altered integrin recognition. Conversely, in the presence of antibody selection, a variant with altered integrin recognition motif became dominant, but it was surrounded by a cloud of antigenic variants that maintained integrin recognition. The results have documented that a mutant spectrum can exert an influence on a viral population subjected to a sustained positive selection pressure and have unveiled a mechanism of antigenic flexibility in viral populations, consisting in the presence in the selected quasispecies of mutants with different antigenic and cell recognition specificities.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
11
|
Hepatitis A virus mutant spectra under the selective pressure of monoclonal antibodies: codon usage constraints limit capsid variability. J Virol 2007; 82:1688-700. [PMID: 18057242 DOI: 10.1128/jvi.01842-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Severe structural constraints in the hepatitis A virus (HAV) capsid have been suggested as the reason for the lack of emergence of new serotypes in spite of the occurrence of complex distributions of mutants or quasispecies. Analysis of the HAV mutant spectra under immune pressure by the monoclonal antibodies (MAbs) K34C8 (immunodominant site) and H7C27 (glycophorin binding site) has revealed different evolutionary dynamics. Populations composed of complex ensembles of mutants with very low fitness or single dominant mutants with high fitness permit the acquisition of resistance to each of the MAbs, respectively. Deletion mutants were detected as components of the mutant spectra: up to 61 residues, with an average of 19, and up to 83 residues, with an average of 45, in VP3 and VP1 proteins, respectively. A clear negative selection of those replacements affecting the residues encoded by rare codons of the capsid surface has been detected through the present quasispecies analysis, confirming a certain beneficial role of such clusters. Since these clusters are located near or at the epitope regions, the need to maintain such clusters might prevent the emergence of new serotypes.
Collapse
|
12
|
Domingo E, Gomez J. Quasispecies and its impact on viral hepatitis. Virus Res 2007; 127:131-50. [PMID: 17349710 PMCID: PMC7125676 DOI: 10.1016/j.virusres.2007.02.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/11/2007] [Accepted: 02/03/2007] [Indexed: 12/17/2022]
Abstract
Quasispecies dynamics mediates adaptability of RNA viruses through a number of mechanisms reviewed in the present article, with emphasis on the medical implications for the hepatitis viruses. We discuss replicative and non-replicative molecular mechanisms of genome variation, modulating effects of mutant spectra, and several modes of viral evolution that can affect viral pathogenesis. Relevant evolutionary events include the generation of minority virus variants with altered functional properties, and alterations of mutant spectrum complexity that can affect disease progression or response to treatment. The widespread occurrence of resistance to antiviral drugs encourages new strategies to control hepatic viral disease such as combination therapies and lethal mutagenesis. In particular, ribavirin may be exerting in some cases its antiviral activity with participation of its mutagenic action. Despite many unanswered questions, here we document that quasispecies dynamics has provided an interpretation of the adaptability of the hepatitis viruses, with features conceptually similar to those observed with other RNA viruses, a reflection of the common underlying Darwinian principles.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | |
Collapse
|