1
|
Yang W, Chen H, Chen Y, Chen A, Feng X, Zhao B, Zheng F, Fang H, Zhang C, Zeng Z. Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress. Environ Microbiol 2023; 25:575-587. [PMID: 36495168 DOI: 10.1111/1462-2920.16301] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are unique archaeal membrane-spanning lipids with 0-8 cyclopentane rings on the biphytanyl chains. The cyclization pattern of GDGTs is affected by many environmental factors, such as temperature and pH, but the underlying molecular mechanism remains elusive. Here, we find that the expression regulation of GDGT ring synthase genes grsA and grsB in thermophilic archaeon Sulfolobus acidocaldarius is temperature- and pH-dependent. Moreover, the presence of functional GrsA protein, or more likely its products cyclic GDGTs rather than the accumulation of GrsA protein itself, is required to induce grsB expression, resulting in temporal regulation of grsA and grsB expression. Our findings establish a molecular model of GDGT cyclization regulated by environment factors in a thermophilic ecosystem, which could be also relevant to that in mesophilic marine archaea. Our study will help better understand the biological basis for GDGT-based paleoclimate proxies. Archaea inhabit a wide range of terrestrial and marine environments. In response to environment fluctuations, archaea modulate their unique membrane GDGTs lipid composition with different strategies, in particular GDGTs cyclization significantly alters membrane permeability. However, the regulation details of archaeal GDGTs cyclization in response to different environmental factor changes remain unknown. We demonstrated, for the first time, thermophilic archaea orchestrate the temporal expression of GDGT ring synthases, leading to delicate control of GDGTs cyclization to respond environmental temperature and acidity stress. Our study provides insight into the regulation of archaea membrane plasticity, and the survival strategy of archaea in fluctuating environments.
Collapse
Affiliation(s)
- Wei Yang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huahui Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yufei Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Aiping Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xi Feng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bo Zhao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Fengfeng Zheng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongwei Fang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhirui Zeng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
2
|
Salt Stress Response of Sulfolobus acidocaldarius Involves Complex Trehalose Metabolism Utilizing a Novel Trehalose-6-Phosphate Synthase (TPS)/Trehalose-6-Phosphate Phosphatase (TPP) Pathway. Appl Environ Microbiol 2020; 86:AEM.01565-20. [PMID: 33008820 PMCID: PMC7688234 DOI: 10.1128/aem.01565-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
The crenarchaeon Sulfolobus acidocaldarius has been described to synthesize trehalose via the maltooligosyltrehalose synthase (TreY) and maltooligosyltrehalose trehalohydrolase (TreZ) pathway, and the trehalose glycosyltransferring synthase (TreT) pathway has been predicted. Deletion mutant analysis of strains with single and double deletions of ΔtreY and ΔtreT in S. acidocaldarius revealed that in addition to these two pathways, a third, novel trehalose biosynthesis pathway is operative in vivo: the trehalose-6-phosphate (T6P) synthase/T6P phosphatase (TPS/TPP) pathway. In contrast to known TPS proteins, which belong to the GT20 family, the S. acidocaldarius TPS belongs to the GT4 family, establishing a new function within this group of enzymes. This novel GT4-like TPS was found to be present mainly in the Sulfolobales The ΔtreY ΔtreT Δtps triple mutant of S. acidocaldarius, which lacks the ability to synthesize trehalose, showed no altered phenotype under standard conditions or heat stress but was unable to grow under salt stress. Accordingly, in the wild-type strain, a significant increase of intracellular trehalose formation was observed under salt stress. Quantitative real-time PCR showed a salt stress-mediated induction of all three trehalose-synthesizing pathways. This demonstrates that in Archaea, trehalose plays an essential role for growth under high-salt conditions.IMPORTANCE The metabolism and function of trehalose as a compatible solute in Archaea was not well understood. This combined genetic and enzymatic approach at the interface of microbiology, physiology, and microbial ecology gives important insights into survival under stress, adaptation to extreme environments, and the role of compatible solutes in Archaea Here, we unraveled the complexity of trehalose metabolism, and we present a comprehensive study on trehalose function in stress response in S. acidocaldarius This sheds light on the general microbiology and the fascinating metabolic repertoire of Archaea, involving many novel biocatalysts, such as glycosyltransferases, with great potential in biotechnology.
Collapse
|
3
|
Abstract
To identify the translocation components in cells, and to understand how they function in protein transport and membrane insertion, a variety of techniques have been used such as genetics, biochemistry, structural biology and single molecule methods. In particular, site-directed crosslinking between the client proteins and components of the translocation machineries have contributed significantly in the past and will do so in the future. One advantage of this technology is that it can be applied in vivo as well as in vitro and a comparison of the two approaches can be made. Also, the in vivo techniques allow time-dependent protocols which are essential for studying cellular pathways. Protein purification and reconstitution into proteoliposomes are the gold standard for studying membrane-based transport and translocation systems. With these biochemically defined approaches the function of each component in protein transport can be addressed individually with a plethora of biophysical techniques. Recently, the use of nanodiscs for reconstitution has added another extension of this reductionistic approach. Fluorescence based studies, cryo-microscopy and NMR spectroscopy have significantly added to our understanding how proteins move into and across membranes and will do this also in future.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599, Stuttgart, Germany.
| |
Collapse
|
4
|
Orell A, Tripp V, Aliaga-Tobar V, Albers SV, Maracaja-Coutinho V, Randau L. A regulatory RNA is involved in RNA duplex formation and biofilm regulation in Sulfolobus acidocaldarius. Nucleic Acids Res 2019. [PMID: 29529252 PMCID: PMC5961385 DOI: 10.1093/nar/gky144] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Non-coding RNAs (ncRNA) are involved in essential biological processes in all three domains of life. The regulatory potential of ncRNAs in Archaea is, however, not fully explored. In this study, RNA-seq analyses identified a set of 29 ncRNA transcripts in the hyperthermophilic archaeon Sulfolobus acidocaldarius that were differentially expressed in response to biofilm formation. The most abundant ncRNA of this set was found to be resistant to RNase R treatment (RNase R resistant RNA, RrrR(+)) due to duplex formation with a reverse complementary RNA (RrrR(−)). The deletion of the RrrR(+) gene resulted in significantly impaired biofilm formation, while its overproduction increased biofilm yield. RrrR(+) was found to act as an antisense RNA against the mRNA of a hypothetical membrane protein. The RrrR(+) transcript was shown to be stabilized by the presence of the RrrR(−) strand in S. acidocaldarius cell extracts. The accumulation of these RrrR duplexes correlates with an apparent absence of dsRNA degrading RNase III domains in archaeal proteins.
Collapse
Affiliation(s)
- Alvaro Orell
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg 35043, Germany.,Centro de Genómica y Bioinformática, Facultad de Ciencias, UniversidadMayor, Santiago, Chile
| | - Vanessa Tripp
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg 35043, Germany
| | - Victor Aliaga-Tobar
- 3Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación,Universidad Mayor, Santiago, Chile
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University Freiburg, Germany
| | - Vinicius Maracaja-Coutinho
- Centro de Genómica y Bioinformática, Facultad de Ciencias, UniversidadMayor, Santiago, Chile.,Departamento de Bioquímica y Biología Molecular,Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg 35043, Germany
| |
Collapse
|
5
|
Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway. Appl Environ Microbiol 2018; 84:AEM.01273-17. [PMID: 29150511 DOI: 10.1128/aem.01273-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/12/2017] [Indexed: 12/15/2022] Open
Abstract
Sulfolobus spp. possess a great metabolic versatility and grow heterotrophically on various carbon sources, such as different sugars and peptides. Known sugar transporters in Archaea predominantly belong to ABC transport systems. Although several ABC transporters for sugar uptake have been characterized in the crenarchaeon Sulfolobus solfataricus, only one homologue of these transporters, the maltose/maltooligomer transporter, could be identified in the closely related Sulfolobus acidocaldarius Comparison of the transcriptome of S. acidocaldarius MW001 grown on peptides alone and peptides in the presence of d-xylose allowed for the identification of the ABC transporter for d-xylose and l-arabinose transport and the gaining of deeper insights into pentose catabolism under the respective growth conditions. The d-xylose/l-arabinose substrate binding protein (SBP) (Saci_2122) of the ABC transporter is unique in Archaea and shares more similarity to bacterial SBPs of the carbohydrate uptake transporter-2 (CUT2) family than to any characterized archaeal one. The identified pentose transporter is the first CUT2 family ABC transporter analyzed in the domain of Archaea Single-gene deletion mutants of the ABC transporter subunits exemplified the importance of the transport system for d-xylose and l-arabinose uptake. Next to the transporter operon, enzymes of the aldolase-independent pentose catabolism branch were found to be upregulated in N-Z-Amine and d-xylose medium. The α-ketoglutarate semialdehyde dehydrogenase (KGSADH; Saci_1938) seemed not to be essential for growth on pentoses. However, the deletion mutant of the 2-keto-3-deoxyarabinoate/xylonate dehydratase (KDXD [also known as KDAD]; Saci_1939) was no longer able to catabolize d-xylose or l-arabinose, suggesting the absence of the aldolase-dependent branch in S. acidocaldarius IMPORTANCE Thermoacidophilic microorganisms are emerging model organisms for biotechnological applications, as their optimal growth conditions resemble conditions used in certain biotechnologies such as industrial plant waste degradation. Because of its high genome stability, Sulfolobus acidocaldarius is especially suited as a platform organism for such applications. For use in (ligno)cellulose degradation, it was important to understand pentose uptake and metabolism in S. acidocaldarius This study revealed that only the aldolase-independent Weimberg pathway is required for growth of S. acidocaldarius MW001 on d-xylose and l-arabinose. Moreover, S. acidocaldarius employs a CUT2 ABC transporter for pentose uptake, which is more similar to bacterial than to archaeal ABC transporters. The identification of pentose-inducible promoters will expedite the metabolic engineering of S. acidocaldarius for its development into a platform organism for (ligno)cellulose degradation.
Collapse
|
6
|
Nishiyama KI, Tokuda H. Novel translocation intermediate allows re-evaluation of roles of ATP, proton motive force and SecG at the late stage of preprotein translocation. Genes Cells 2016; 21:1353-1364. [PMID: 27813233 DOI: 10.1111/gtc.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/05/2016] [Indexed: 11/30/2022]
Abstract
Presecretory proteins such as pOmpA are translocated across the inner membrane of Escherichia coli by Sec translocase powered by ATP and proton motive force (PMF). Translocation activity has been determined by protease protection assaying in vitro. We identified a new translocation intermediate at a late stage, which was protected by proteinase K (PK), but became PK sensitive upon urea extraction. At a late stage of pOmpA translocation driven by PMF in the presence of a nonhydrolyzable ATP analogue, the PK-protected materials arose, but were pulled back upon urea extraction, indicating that completion of translocation requires ATP hydrolysis. When inverted membrane vesicles prepared from secG-null strain (ΔSecG IMV) were used in the absence of PMF, the translocation intermediate was accumulated. When the ATP concentration was low in the absence of PMF, the translocation intermediate was also accumulated. Imposition of PMF in the presence of a low ATP concentration caused recovery of pOmpA translocation and resistance to urea extraction for SecG+ IMV, but not for ΔSecG IMV. Thus, analysis of the late translocation intermediate showed that two of three constituents, physiological concentration of ATP, PMF and SecG, are required for the catalytic cycle of preprotein translocation, that is, completion and subsequent initiation of translocation.
Collapse
Affiliation(s)
- Ken-Ichi Nishiyama
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.,Department of Biological Chemistry and Food Science, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Hajime Tokuda
- Faculty of Nutritional Sciences, The University of Morioka, Takizawa, 020-0694, Japan
| |
Collapse
|
7
|
Prabudiansyah I, Driessen AJM. The Canonical and Accessory Sec System of Gram-positive Bacteria. Curr Top Microbiol Immunol 2016; 404:45-67. [DOI: 10.1007/82_2016_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Rao C V S, De Waelheyns E, Economou A, Anné J. Antibiotic targeting of the bacterial secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1762-83. [PMID: 24534745 DOI: 10.1016/j.bbamcr.2014.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/27/2014] [Accepted: 02/06/2014] [Indexed: 02/06/2023]
Abstract
Finding new, effective antibiotics is a challenging research area driven by novel approaches required to tackle unconventional targets. In this review we focus on the bacterial protein secretion pathway as a target for eliminating or disarming pathogens. We discuss the latest developments in targeting the Sec-pathway for novel antibiotics focusing on two key components: SecA, the ATP-driven motor protein responsible for driving preproteins across the cytoplasmic membrane and the Type I signal peptidase that is responsible for the removal of the signal peptide allowing the release of the mature protein from the membrane. We take a bird's-eye view of other potential targets in the Sec-pathway as well as other Sec-dependent or Sec-independent protein secretion pathways as targets for the development of novel antibiotics. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Smitha Rao C V
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| | - Evelien De Waelheyns
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium; Institute of Molecular Biology and Biotechnology, FORTH, University of Crete, P.O. Box 1385, GR-711 10 Iraklio, Crete, Greece; Department of Biology, University of Crete, P.O. Box 1385, GR-71110 Iraklio, Crete, Greece.
| | - Jozef Anné
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, O&N1, 6th floor, Herestraat 49, P.O. Box 1037, B-3000 Leuven, Belgium.
| |
Collapse
|
9
|
Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol 2013; 11:e1001735. [PMID: 24358019 PMCID: PMC3866087 DOI: 10.1371/journal.pbio.1001735] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial heat shock transcription factor, σ32, maintains proper protein homeostasis only after it is targeted to the inner membrane by the signal recognition particle (SRP), thereby enabling integration of protein folding information from both the cytoplasm and cell membrane. All cells must adapt to rapidly changing conditions. The heat shock response (HSR) is an intracellular signaling pathway that maintains proteostasis (protein folding homeostasis), a process critical for survival in all organisms exposed to heat stress or other conditions that alter the folding of the proteome. Yet despite decades of study, the circuitry described for responding to altered protein status in the best-studied bacterium, E. coli, does not faithfully recapitulate the range of cellular responses in response to this stress. Here, we report the discovery of the missing link. Surprisingly, we found that σ32, the central transcription factor driving the HSR, must be localized to the membrane rather than dispersed in the cytoplasm as previously assumed. Genetic analyses indicate that σ32 localization results from a protein targeting reaction facilitated by the signal recognition particle (SRP) and its receptor (SR), which together comprise a conserved protein targeting machine and mediate the cotranslational targeting of inner membrane proteins to the membrane. SRP interacts with σ32 directly and transports it to the inner membrane. Our results show that σ32 must be membrane-associated to be properly regulated in response to the protein folding status in the cell, explaining how the HSR integrates information from both the cytoplasm and bacterial cell membrane. All cells have to adjust to frequent changes in their environmental conditions. The heat shock response is a signaling pathway critical for survival of all organisms exposed to elevated temperatures. Under such conditions, the heat shock response maintains enzymes and other proteins in a properly folded state. The mechanisms for sensing temperature and the subsequent induction of the appropriate transcriptional response have been extensively studied. Prior to this work, however, the circuitry described in the best studied bacterium E. coli could not fully explain the range of cellular responses that are observed following heat shock. We report the discovery of this missing link. Surprisingly, we find that σ32, a transcription factor that induces gene expression during heat shock, needs to be localized to the membrane, rather than being active as a soluble cytoplasmic protein as previously thought. We show that, equally surprisingly, σ32 is targeted to the membrane by the signal recognition particle (SRP) and its receptor (SR). SRP and SR constitute a conserved protein targeting machine that normally only operates on membrane and periplasmic proteins that contain identifiable signal sequences. Intriguingly, σ32 does not have any canonical signal sequence for export or membrane-integration. Our results indicate that membrane-associated σ32, not soluble cytoplasmic σ32, is the preferred target of regulatory control in response to heat shock. Our new model thus explains how protein folding status from both the cytoplasm and bacterial cell membrane can be integrated to control the heat shock response.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - Ryoji Miyazaki
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Saskia Neher
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Deborah A. Siegele
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Peter Walter
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Takashi Yura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California, United States
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| |
Collapse
|
10
|
Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl Environ Microbiol 2013; 80:1072-81. [PMID: 24271181 DOI: 10.1128/aem.03050-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the regulator MalR (Saci_1161) of the TrmB family from Sulfolobus acidocaldarius was identified and was shown to be involved in transcriptional control of the maltose regulon (Saci_1660 to Saci_1666), including the ABC transporter (malEFGK), α-amylase (amyA), and α-glycosidase (malA). The ΔmalR deletion mutant exhibited a significantly decreased growth rate on maltose and dextrin but not on sucrose. The expression of the genes organized in the maltose regulon was induced only in the presence of MalR and maltose in the growth medium, indicating that MalR, in contrast to its TrmB and TrmB-like homologues, is an activator of the maltose gene cluster. Electrophoretic mobility shift assays revealed that the binding of MalR to malE was independent of sugars. Here we report the identification of the archaeal maltose regulator protein MalR, which acts as an activator and controls the expression of genes involved in maltose transport and metabolic conversion in S. acidocaldarius, and its use for improvement of the S. acidocaldarius expression system under the control of an optimized maltose binding protein (malE) promoter by promoter mutagenesis.
Collapse
|
11
|
Reimann J, Esser D, Orell A, Amman F, Pham TK, Noirel J, Lindås AC, Bernander R, Wright PC, Siebers B, Albers SV. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Mol Cell Proteomics 2013; 12:3908-23. [PMID: 24078887 PMCID: PMC3861733 DOI: 10.1074/mcp.m113.027375] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.
Collapse
Affiliation(s)
- Julia Reimann
- Molecular Biology of Archaea, Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch Straβe 10, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Solov'eva TF, Novikova OD, Portnyagina OY. Biogenesis of β-barrel integral proteins of bacterial outer membrane. BIOCHEMISTRY (MOSCOW) 2013; 77:1221-36. [PMID: 23240560 DOI: 10.1134/s0006297912110016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gram-negative bacteria are enveloped by two membranes, the inner (cytoplasmic) (CM) and the outer (OM). The majority of integral outer membrane proteins are arranged in β-barrels of cylindrical shape composed of amphipathic antiparallel β-strands. In bacteria, β-barrel proteins function as water-filled pores, active transporters, enzymes, receptors, and structural proteins. Proteins of bacterial OM are synthesized in the cytoplasm as unfolded polypeptides with an N-terminal sequence that marks them for transport across the CM. Precursors of membrane proteins move through the aqueous medium of the cytosol and periplasm under the protection of chaperones (SecB, Skp, SurA, and DegP), then cross the CM via the Sec system composed of a polypeptide-conducting channel (SecYEG) and ATPase (SecA), the latter providing the energy for the translocation of the pre-protein. Pre-protein folding and incorporation in the OM require the participation of the Bam-complex, probably without the use of energy. This review summarizes current data on the biogenesis of the β-barrel proteins of bacterial OM. Data on the structure of the proteins included in the multicomponent system for delivery of the OM proteins to their destination in the cell and on their complexes with partners, including pre-proteins, are presented. Molecular models constructed on the basis of structural, genetic, and biochemical studies that describe the mechanisms of β-barrel protein assembly by this molecular transport machinery are also considered.
Collapse
Affiliation(s)
- T F Solov'eva
- Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | | | | |
Collapse
|
13
|
Orell A, Peeters E, Vassen V, Jachlewski S, Schalles S, Siebers B, Albers SV. Lrs14 transcriptional regulators influence biofilm formation and cell motility of Crenarchaea. ISME JOURNAL 2013; 7:1886-98. [PMID: 23657363 DOI: 10.1038/ismej.2013.68] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 11/09/2022]
Abstract
Like bacteria, archaea predominately exist as biofilms in nature. However, the environmental cues and the molecular mechanisms driving archaeal biofilm development are not characterized. Here we provide data suggesting that the transcriptional regulators belonging to the Lrs14-like protein family constitute a key regulatory factor during Sulfolobus biofilm development. Among the six lrs14-like genes encoded by Sulfolobus acidocaldarius, the deletion of three led to markedly altered biofilm phenotypes. Although Δsaci1223 and Δsaci1242 deletion mutants were impaired in biofilm formation, the Δsaci0446 deletion strain exhibited a highly increased extracellular polymeric substance (EPS) production, leading to a robust biofilm structure. Moreover, although the expression of the adhesive pili (aap) genes was upregulated, the genes of the motility structure, the archaellum (fla), were downregulated rendering the Δsaci0446 strain non-motile. Gel shift assays confirmed that Saci0446 bound to the promoter regions of fla and aap thus controlling the expression of both cell surface structures. In addition, genetic epistasis analysis using Δsaci0446 as background strain identified a gene cluster involved in the EPS biosynthetic pathway of S. acidocaldarius. These results provide insights into both the molecular mechanisms that govern biofilm formation in Crenarchaea and the functionality of the Lrs14-like proteins, an archaea-specific class of transcriptional regulators.
Collapse
Affiliation(s)
- Alvaro Orell
- Molecular Biology of Archaea, Max Planck Institute for terrestrial Microbiology, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The conserved general secretion (Sec) pathway carries out most protein export in bacteria and is powered by the essential ATPase SecA. Interestingly, mycobacteria and some Gram-positive bacteria possess two SecA proteins: SecA1 and SecA2. In these species, SecA1 is responsible for exporting most proteins, whereas SecA2 exports only a subset of substrates and is implicated in virulence. However, despite the impressive body of knowledge about the canonical SecA1, less is known concerning SecA2 function. Here, we review our current understanding of the different types of SecA2 systems and outline future directions for their study.
Collapse
Affiliation(s)
- Meghan E Feltcher
- Department of Microbiology and Immunology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-27290, USA
| | | |
Collapse
|
15
|
Lycklama A Nijeholt JA, Driessen AJM. The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 2012; 367:1016-28. [PMID: 22411975 DOI: 10.1098/rstb.2011.0201] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most bacterial secretory proteins pass across the cytoplasmic membrane via the translocase, which consists of a protein-conducting channel SecYEG and an ATP-dependent motor protein SecA. The ancillary SecDF membrane protein complex promotes the final stages of translocation. Recent years have seen a major advance in our understanding of the structural and biochemical basis of protein translocation, and this has led to a detailed model of the translocation mechanism.
Collapse
Affiliation(s)
- Jelger A Lycklama A Nijeholt
- Department of Molecular Microbiology, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands.
| | | |
Collapse
|
16
|
Wu ZC, de Keyzer J, Kedrov A, Driessen AJM. Competitive binding of the SecA ATPase and ribosomes to the SecYEG translocon. J Biol Chem 2012; 287:7885-95. [PMID: 22267723 DOI: 10.1074/jbc.m111.297911] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During co-translational membrane insertion of membrane proteins with large periplasmic domains, the bacterial SecYEG complex needs to interact both with the ribosome and the SecA ATPase. Although the binding sites for SecA and the ribosome overlap, it has been suggested that these ligands can interact simultaneously with SecYEG. We used surface plasmon resonance and fluorescence correlation spectroscopy to examine the interaction of SecA and ribosomes with the SecYEG complex present in membrane vesicles and the purified SecYEG complex present in a detergent-solubilized state or reconstituted into nanodiscs. Ribosome binding to the SecYEG complex is strongly stimulated when the ribosomes are charged with nascent chains of the monotopic membrane protein FtsQ. This binding is competed by an excess of SecA, indicating that binding of SecA and ribosomes to SecYEG is mutually exclusive.
Collapse
Affiliation(s)
- Zht Cheng Wu
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
17
|
Lassak K, Neiner T, Ghosh A, Klingl A, Wirth R, Albers SV. Molecular analysis of the crenarchaeal flagellum. Mol Microbiol 2011; 83:110-24. [DOI: 10.1111/j.1365-2958.2011.07916.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. ACTA ACUST UNITED AC 2011; 18:685-98. [PMID: 21700205 DOI: 10.1016/j.chembiol.2011.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/20/2022]
Abstract
The rapid rise of drug-resistant bacteria is one of the most serious unmet medical needs facing the world. Despite this increasing problem of antibiotic resistance, the number of different antibiotics available for the treatment of serious infections is dwindling. Therefore, there is an urgent need for new antibacterial drugs, preferably with novel modes of action to potentially avoid cross-resistance with existing antibacterial agents. In recent years, increasing attention has been paid to bacterial protein secretion as a potential antibacterial target. Among the different protein secretion pathways that are present in bacterial pathogens, the general protein secretory (Sec) pathway is widely considered as an attractive target for antibacterial therapy. One of the key components of the Sec pathway is the peripheral membrane ATPase SecA, which provides the energy for the translocation of preproteins across the bacterial cytoplasmic membrane. In this review, we will provide an overview of research efforts on the discovery and development of small-molecule SecA inhibitors. Furthermore, recent advances on the structure and function of SecA and their potential impact on antibacterial drug discovery will be discussed.
Collapse
|
19
|
A single copy of SecYEG is sufficient for preprotein translocation. EMBO J 2011; 30:4387-97. [PMID: 21897368 DOI: 10.1038/emboj.2011.314] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/15/2011] [Indexed: 11/08/2022] Open
Abstract
The heterotrimeric SecYEG complex comprises a protein-conducting channel in the bacterial cytoplasmic membrane. SecYEG functions together with the motor protein SecA in preprotein translocation. Here, we have addressed the functional oligomeric state of SecYEG when actively engaged in preprotein translocation. We reconstituted functional SecYEG complexes labelled with fluorescent markers into giant unilamellar vesicles at a natively low density. Förster's resonance energy transfer and fluorescence (cross-) correlation spectroscopy with single-molecule sensitivity allowed for independent observations of the SecYEG and preprotein dynamics, as well as complex formation. In the presence of ATP and SecA up to 80% of the SecYEG complexes were loaded with a preprotein translocation intermediate. Neither the interaction with SecA nor preprotein translocation resulted in the formation of SecYEG oligomers, whereas such oligomers can be detected when enforced by crosslinking. These data imply that the SecYEG monomer is sufficient to form a functional translocon in the lipid membrane.
Collapse
|
20
|
Dalal K, Duong F. The SecY complex: conducting the orchestra of protein translocation. Trends Cell Biol 2011; 21:506-14. [DOI: 10.1016/j.tcb.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
21
|
Dünschede B, Bals T, Funke S, Schünemann D. Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J Biol Chem 2011; 286:35187-95. [PMID: 21832051 DOI: 10.1074/jbc.m111.250746] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Posttranslational targeting of the light-harvesting chlorophyll a,b-binding proteins depends on the function of the chloroplast signal recognition particle, its receptor cpFtsY, and the translocase Alb3. The thylakoid membrane protein Alb3 of Arabidopsis chloroplasts belongs to the evolutionarily conserved YidC/Oxa1/Alb3 protein family; the members of this family facilitate the insertion, folding, and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here, we analyzed the interaction sites of full-length Alb3 with the cpSRP pathway component cpSRP43 by using in vitro and in vivo studies. Bimolecular fluorescence complementation and Alb3 proteoliposome studies showed that the interaction of cpSRP43 is dependent on a binding domain in the C terminus of Alb3 as well as an additional membrane-embedded binding site in the fifth transmembrane domain (TMD5) of Alb3. The C-terminal binding domain was mapped to residues 374-388, and the binding domain within TMD5 was mapped to residues 314-318 located close to the luminal end of TMD5. A direct binding between cpSRP43 and these binding motifs was shown by pepspot analysis. Further studies using blue-native gel electrophoresis revealed that full-length Alb3 is able to form dimers. This finding and the identification of a membrane-embedded cpSRP43 binding site in Alb3 support a model in which cpSRP43 inserts into a dimeric Alb3 translocation pore during cpSRP-dependent delivery of light-harvesting chlorophyll a,b-binding proteins.
Collapse
Affiliation(s)
- Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
22
|
SecA, a remarkable nanomachine. Cell Mol Life Sci 2011; 68:2053-66. [PMID: 21479870 PMCID: PMC3101351 DOI: 10.1007/s00018-011-0681-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 01/03/2023]
Abstract
Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data.
Collapse
|
23
|
Das S, Oliver DB. Mapping of the SecA·SecY and SecA·SecG interfaces by site-directed in vivo photocross-linking. J Biol Chem 2011; 286:12371-80. [PMID: 21317284 DOI: 10.1074/jbc.m110.182931] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two major components of the Eubacteria Sec-dependent protein translocation system are the heterotrimeric channel-forming component SecYEG and its binding partner, the SecA ATPase nanomotor. Once bound to SecYEG, the preprotein substrate, and ATP, SecA undergoes ATP-hydrolytic cycles that drive the stepwise translocation of proteins. Although a previous site-directed in vivo photocross-linking study (Mori, H., and Ito, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16159-16164) elucidated residues of SecY needed for interaction with SecA, no reciprocal study for SecA protein has been reported to date. In the present study we mapped residues of SecA that interact with SecY or SecG utilizing this approach. Our results show that distinct domains of SecA on two halves of the molecule interact with two corresponding SecY partners as well as with the central cytoplasmic domain of SecG. Our data support the in vivo relevance of the Thermotoga maritima SecA·SecYEG crystal structure that visualized SecYEG interaction for only one-half of SecA as well as previous studies indicating that SecA normally binds two molecules of SecYEG.
Collapse
Affiliation(s)
- Sanchaita Das
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06457, USA
| | | |
Collapse
|
24
|
Abstract
Special codes are embedded in the primary sequence of newly synthesized proteins to determine their final destination. Protein translocation across biological membranes requires co-operation between the targeting and translocation machineries. A conserved membrane channel, the Sec61/SecY complex, mediates protein translocation across or integration into the endoplasmic reticulum membrane in eukaryotes and the plasma membrane in prokaryotes. A combination of recent biochemical and structural data provides novel insights into the mechanism of how the channel allows polypeptide movement into the exoplasmic space and the lipid bilayer.
Collapse
|
25
|
Mandon EC, Trueman SF, Gilmore R. Translocation of proteins through the Sec61 and SecYEG channels. Curr Opin Cell Biol 2009; 21:501-7. [PMID: 19450960 DOI: 10.1016/j.ceb.2009.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The Sec61 and SecYEG translocation channels mediate the selective transport of proteins across the endoplasmic reticulum and bacterial inner membrane, respectively. These channels are also responsible for the integration of membrane proteins. To accomplish these two critical events in protein expression, the transport channels undergo conformational changes to permit the export of lumenal domains and the integration of transmembrane spans. Novel insight into how these channels open during protein translocation has been provided by a combination of the analysis of new channel structures, biochemical characterization of translocation intermediates, molecular dynamics simulations, and in vivo and in vitro analysis of structure-based Sec61 and SecY mutants.
Collapse
Affiliation(s)
- Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
26
|
Karamanou S, Bariami V, Papanikou E, Kalodimos CG, Economou A. Assembly of the translocase motor onto the preprotein-conducting channel. Mol Microbiol 2008; 70:311-22. [PMID: 18761620 DOI: 10.1111/j.1365-2958.2008.06402.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial protein secretion is catalysed by the SecYEG protein-conducting channel complexed with the SecA ATPase motor. To gain insight into the SecA-SecYEG interaction we used peptide arrays, thermodynamic quantification, mutagenesis and functional assays. Our data reveal that: (i) SecA binds with low affinity on several, peripheral, exposed SecYEG sites. This largely electrostatic association is modulated by temperature and nucleotides. (ii) Binding sites cluster in five major binding 'regions': three that are exclusively cytoplasmic and two that reach the periplasm. (iii) Both the N-terminal and c-terminal regions of SecA participate in binding interactions and share some sites. (iv) Several of these sites are essential for translocase catalysis. Our data provide residue-level dissection of the SecYEG-SecA interaction. Two models of assembly of SecA on dimeric SecYEG are discussed.
Collapse
Affiliation(s)
- Spyridoula Karamanou
- Institute of Molecular Biology and Biotechnology-FoRTH, PO Box 1385, Iraklio, Crete, Greece
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Arnold J.M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| | - Nico Nouwen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751 NN, Haren, The Netherlands; ,
| |
Collapse
|
28
|
Abstract
Bacteria and archaea possess a protein complex in the plasma membrane that governs protein secretion and membrane protein insertion. Eukaryotes carry homologues in the endoplasmic reticulum (ER) where they direct the same reaction. A combination of experiments conducted on the systems found in all three domains of life has revealed a great deal about protein translocation. The channel provides a route for proteins to pass through the hydrophobic barrier of the membrane, assisted by various partner proteins which maintain an unfolded state of the substrate, target it to the channel and provide the energy and mechanical drive required for transport. In bacteria, the post-translational reaction utilizes an ATPase that couples the free energy of ATP binding and hydrolysis to move the substrate through the protein pore. This review will draw on genetic, biochemical and structural findings in an account of our current understanding of this mechanism.
Collapse
Affiliation(s)
- Vicki A M Gold
- Department of Biochemistry, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
29
|
|
30
|
Robson A, Booth AEG, Gold VAM, Clarke AR, Collinson I. A large conformational change couples the ATP binding site of SecA to the SecY protein channel. J Mol Biol 2007; 374:965-76. [PMID: 17964601 DOI: 10.1016/j.jmb.2007.09.086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/30/2022]
Abstract
In bacteria, the SecYEG protein translocation complex employs the cytosolic ATPase SecA to couple the energy of ATP binding and hydrolysis to the mechanical force required to push polypeptides through the membrane. The molecular basis of this energy transducing reaction is not well understood. A peptide-binding array has been employed to identify sites on SecYEG that interact with SecA. These results along with fluorescence spectroscopy have been exploited to characterise a long-distance conformational change that connects the nucleotide-binding fold of SecA to the transmembrane polypeptide channel in SecY. These movements are driven by binding of non-hydrolysable ATP analogues to a monomer of SecA in association with the SecYEG complex. We also determine that interaction with SecYEG simultaneously decreases the affinity of SecA for ATP and inhibitory magnesium, favouring a previously identified active state of the ATPase. Mutants of SecA capable of binding but not hydrolysing ATP do not elicit this conformationally active state, implicating residues of the Walker B motif in the early chain of events that couple ATP binding to the mobility of the channel.
Collapse
Affiliation(s)
- Alice Robson
- Department of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | |
Collapse
|
31
|
Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1735-56. [PMID: 17935691 DOI: 10.1016/j.bbamem.2007.07.015] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/20/2022]
Abstract
In bacteria, two major pathways exist to secrete proteins across the cytoplasmic membrane. The general Secretion route, termed Sec-pathway, catalyzes the transmembrane translocation of proteins in their unfolded conformation, whereupon they fold into their native structure at the trans-side of the membrane. The Twin-arginine translocation pathway, termed Tat-pathway, catalyses the translocation of secretory proteins in their folded state. Although the targeting signals that direct secretory proteins to these pathways show a high degree of similarity, the translocation mechanisms and translocases involved are vastly different.
Collapse
|
32
|
de Keyzer J, Regeling A, Driessen AJM. Arginine 357 of SecY is needed for SecA-dependent initiation of preprotein translocation. FEBS Lett 2007; 581:1859-64. [PMID: 17433305 DOI: 10.1016/j.febslet.2007.03.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 11/23/2022]
Abstract
The Escherichia coli SecYEG complex forms a transmembrane channel for both protein export and membrane protein insertion. Secretory proteins and large periplasmic domains of membrane proteins require for translocation in addition the SecA ATPase. The conserved arginine 357 of SecY is essential for a yet unidentified step in the SecA catalytic cycle. To further dissect its role, we have analysed the requirement for R357 in membrane protein insertion. Although R357 substitutions abolish post-translational translocation, they allow the translocation of periplasmic domains targeted co-translationally by an N-terminal transmembrane segment. We propose that R357 is essential for the initiation of SecA-dependent translocation only.
Collapse
Affiliation(s)
- Jeanine de Keyzer
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
33
|
Alami M, Dalal K, Lelj-Garolla B, Sligar SG, Duong F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 2007; 26:1995-2004. [PMID: 17396152 PMCID: PMC1852787 DOI: 10.1038/sj.emboj.7601661] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 03/02/2007] [Indexed: 11/08/2022] Open
Abstract
The translocon is a membrane-embedded protein assembly that catalyzes protein movement across membranes. The core translocon, the SecYEG complex, forms oligomers, but the protein-conducting channel is at the center of the monomer. Defining the properties of the SecYEG protomer is thus crucial to understand the underlying function of oligomerization. We report here the reconstitution of a single SecYEG complex into nano-scale lipid bilayers, termed Nanodiscs. These water-soluble particles allow one to probe the interactions of the SecYEG complex with its cytosolic partner, the SecA dimer, in a membrane-like environment. The results show that the SecYEG complex triggers dissociation of the SecA dimer, associates only with the SecA monomer and suffices to (pre)-activate the SecA ATPase. Acidic lipids surrounding the SecYEG complex also contribute to the binding affinity and activation of SecA, whereas mutations in the largest cytosolic loop of the SecY subunit, known to abolish the translocation reaction, disrupt both the binding and activation of SecA. Altogether, the results define the fundamental contribution of the SecYEG protomer in the translocation subreactions and illustrate the power of nanoscale lipid bilayers in analyzing the dynamics occurring at the membrane.
Collapse
Affiliation(s)
- Meriem Alami
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Kush Dalal
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Barbara Lelj-Garolla
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Franck Duong
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Faculty of Medicine, University of British Columbia, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3. Tel.: +1 604 822 5975; Fax: +1 604 822 5227; E-mail:
| |
Collapse
|
34
|
Mitra K, Frank J, Driessen A. Co- and post-translational translocation through the protein-conducting channel: analogous mechanisms at work? Nat Struct Mol Biol 2007; 13:957-64. [PMID: 17082791 DOI: 10.1038/nsmb1166] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many proteins are translocated across, or integrated into, membranes. Both functions are fulfilled by the 'translocon/translocase', which contains a membrane-embedded protein-conducting channel (PCC) and associated soluble factors that drive translocation and insertion reactions using nucleotide triphosphates as fuel. This perspective focuses on reinterpreting existing experimental data in light of a recently proposed PCC model comprising a front-to-front dimer of SecY or Sec61 heterotrimeric complexes. In this new framework, we propose (i) a revised model for SRP-SR-mediated docking of the ribosome-nascent polypeptide to the PCC; (ii) that the dynamic interplay between protein substrate, soluble factors and PCC controls the opening and closing of a transmembrane channel across, and/or a lateral gate into, the membrane; and (iii) that co- and post-translational translocation, involving the ribosome and SecA, respectively, not only converge at the PCC but also use analogous mechanisms for coordinating protein translocation.
Collapse
|
35
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Mori H, Ito K. Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking. Proc Natl Acad Sci U S A 2006; 103:16159-64. [PMID: 17060619 PMCID: PMC1621050 DOI: 10.1073/pnas.0606390103] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the SecA ATPase drives protein translocation across the bacterial cytoplasmic membrane by interacting with the SecYEG translocon, molecular details of SecA-SecY interaction remain poorly understood. Here, we studied SecY-SecA interaction by using an in vivo site-directed cross-linking technique developed by Schultz and coworkers [Chin, J. W., Martin, A. B., King, D. S., Wang, L., Schultz, P. G. (2002) Proc. Natl. Acad. Sci. USA 99:11020-11024 and Chin, J. W., Schultz, P. G. (2002) ChemBioChem 3:1135-1137]. Benzoyl-phenylalanine introduced into specific SecY positions at the second, fourth, fifth, and sixth cytoplasmic domains allowed UV cross-linking with SecA. Cross-linked products exhibited two distinct electrophoretic mobilities. SecA cross-linking at the most C-terminal cytoplasmic region (C6) was specifically enhanced in the presence of NaN(3), which arrests the ATPase cycle, and this enhancement was canceled by cis placement of some secY mutations that affect SecY-SecA cooperation. In vitro experiments showed directly that SecA approaches C6 when it is engaging in ATP-dependent preprotein translocation. On the basis of these findings, we propose that the C6 tail of SecY interacts with the working form of SecA, whereas C4-C5 loops may offer constitutive SecA-binding sites.
Collapse
Affiliation(s)
- Hiroyuki Mori
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Koreaki Ito
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|