1
|
Ferruz N, Lobos F, Lemm D, Toledo-Patino S, Farías-Rico JA, Schmidt S, Höcker B. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design. J Mol Biol 2020; 432:3898-3914. [PMID: 32330481 PMCID: PMC7322520 DOI: 10.1016/j.jmb.2020.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Natural evolution has generated an impressively diverse protein universe via duplication and recombination from a set of protein fragments that served as building blocks. The application of these concepts to the design of new proteins using subdomain-sized fragments from different folds has proven to be experimentally successful. To better understand how evolution has shaped our protein universe, we performed an all-against-all comparison of protein domains representing all naturally existing folds and identified conserved homologous protein fragments. Overall, we found more than 1000 protein fragments of various lengths among different folds through similarity network analysis. These fragments are present in very different protein environments and represent versatile building blocks for protein design. These data are available in our web server called F(old P)uzzle (fuzzle.uni-bayreuth.de), which allows to individually filter the dataset and create customized networks for folds of interest. We believe that our results serve as an invaluable resource for structural and evolutionary biologists and as raw material for the design of custom-made proteins.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Francisco Lobos
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dominik Lemm
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Saacnicteh Toledo-Patino
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Steffen Schmidt
- Max Planck Institute for Developmental Biology, Tübingen, Germany; Computational Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
2
|
βαβ Super-Secondary Motifs: Sequence, Structural Overview, and Pursuit of Potential Autonomously Folding βαβ Sequences from (β/α) 8/TIM Barrels. Methods Mol Biol 2019; 1958:221-236. [PMID: 30945221 DOI: 10.1007/978-1-4939-9161-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
βαβ super-secondary structures constitute the basic building blocks of (β/α)8 class of proteins. Despite the success in designing super-secondary structures, till date, there is not a single example of a natural βαβ sequence known to fold in isolation. In this chapter, to address the finding the "needles" in the haystack scenario, we have combined the sequence preferences and structural features of independent βαβ motifs, dictated by natural selection, with rationally derived parameters from a designed βαβ motif adopting stable fold in solution. Guided by this approach, a set of potential βαβ sequences from (β/α)8/TIM barrels are proposed as likely candidates for autonomously folding based on the assessment of their foldability.
Collapse
|
3
|
Highly active enzymes by automated combinatorial backbone assembly and sequence design. Nat Commun 2018; 9:2780. [PMID: 30018322 PMCID: PMC6050298 DOI: 10.1038/s41467-018-05205-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/13/2018] [Indexed: 12/05/2022] Open
Abstract
Automated design of enzymes with wild-type-like catalytic properties has been a long-standing but elusive goal. Here, we present a general, automated method for enzyme design through combinatorial backbone assembly. Starting from a set of homologous yet structurally diverse enzyme structures, the method assembles new backbone combinations and uses Rosetta to optimize the amino acid sequence, while conserving key catalytic residues. We apply this method to two unrelated enzyme families with TIM-barrel folds, glycoside hydrolase 10 (GH10) xylanases and phosphotriesterase-like lactonases (PLLs), designing 43 and 34 proteins, respectively. Twenty-one GH10 and seven PLL designs are active, including designs derived from templates with <25% sequence identity. Moreover, four designs are as active as natural enzymes in these families. Atomic accuracy in a high-activity GH10 design is further confirmed by crystallographic analysis. Thus, combinatorial-backbone assembly and design may be used to generate stable, active, and structurally diverse enzymes with altered selectivity or activity. Computationally designed enzymes often show lower activity or stability than their natural counterparts. Here, the authors present an evolution-inspired method for automated enzyme design, creating stable enzymes with accurate active site architectures and wild-type-like activities.
Collapse
|
4
|
Alva V, Lupas AN. From ancestral peptides to designed proteins. Curr Opin Struct Biol 2017; 48:103-109. [PMID: 29195087 DOI: 10.1016/j.sbi.2017.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
Abstract
The diversity of modern proteins arose through the combinatorial shuffling and differentiation of a limited number of autonomously folding domain prototypes, but the origin of these prototypes themselves has long remained poorly understood. In recent years, the proposal that they originated by repetition, accretion, and recombination from an ancestral set of peptides, which evolved as cofactors of RNA-based replication and catalysis, has gained wide acceptance, supported by the systematic identification of such ancestral peptides and the experimental recapitulation of the mechanisms by which they could have yielded the first folded proteins. Inspired by this evolutionary process, protein engineers have seized on design from pre-optimized peptide components as a powerful approach to generating proteins with novel topology and functionality.
Collapse
Affiliation(s)
- Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
Kirubakaran P, Pfeiferová L, Boušová K, Bednarova L, Obšilová V, Vondrášek J. Artificial proteins as allosteric modulators of PDZ3 and SH3 in two-domain constructs: A computational characterization of novel chimeric proteins. Proteins 2016; 84:1358-74. [DOI: 10.1002/prot.25082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Palani Kirubakaran
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Lucie Pfeiferová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Kristýna Boušová
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| | - Veronika Obšilová
- Institute of Physiology ASCR; v.v.i, Videnska 1083, 14220 Prague 4 Czech Republic
| | - Jiří Vondrášek
- Institute of Organic Chemistry and Biochemistry ASCR; v.v.i, Flemingovo náměstí 2, Prague 6, 166 10 Czech Republic
| |
Collapse
|
6
|
Bhargav SP, Vahokoski J, Kallio JP, Torda AE, Kursula P, Kursula I. Two independently folding units of Plasmodium profilin suggest evolution via gene fusion. Cell Mol Life Sci 2015; 72:4193-203. [PMID: 26012696 PMCID: PMC11113795 DOI: 10.1007/s00018-015-1932-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
Gene fusion is a common mechanism of protein evolution that has mainly been discussed in the context of multidomain or symmetric proteins. Less is known about fusion of ancestral genes to produce small single-domain proteins. Here, we show with a domain-swapped mutant Plasmodium profilin that this small, globular, apparently single-domain protein consists of two foldons. The separation of binding sites for different protein ligands in the two halves suggests evolution via an ancient gene fusion event, analogous to the formation of multidomain proteins. Finally, the two fragments can be assembled together after expression as two separate gene products. The possibility to engineer both domain-swapped dimers and half-profilins that can be assembled back to a full profilin provides perspectives for engineering of novel protein folds, e.g., with different scaffolding functions.
Collapse
Affiliation(s)
| | - Juha Vahokoski
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - Juha Pekka Kallio
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607, Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany
| | - Andrew E Torda
- Centre for Bioinformatics, University of Hamburg, Bundesstrasse 43, 20146, Hamburg, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607, Hamburg, Germany.
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607, Hamburg, Germany.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
7
|
Abstract
From the catalytic reactions that sustain the global oxygen, nitrogen, and carbon cycles to the stabilization of DNA processing proteins, transition metal ions and metallocofactors play key roles in biology. Although the exquisite interplay between metal ions and protein scaffolds has been studied extensively, the fact that the biological roles of the metals often stem from their placement in the interfaces between proteins and protein subunits is not always recognized. Interfacial metal ions stabilize permanent or transient protein-protein interactions, enable protein complexes involved in cellular signaling to adopt distinct conformations in response to environmental stimuli, and catalyze challenging chemical reactions that are uniquely performed by multisubunit protein complexes. This review provides a structural survey of transition metal ions and metallocofactors found in protein-protein interfaces, along with a series of selected examples that illustrate their diverse biological utility and significance.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; emails: , ,
| | | | | | | |
Collapse
|
8
|
Höcker B. Design of proteins from smaller fragments-learning from evolution. Curr Opin Struct Biol 2014; 27:56-62. [PMID: 24865156 DOI: 10.1016/j.sbi.2014.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Nature has generated an impressive set of proteins with diverse folds and functions. It has been able to do so using mechanisms such as duplication and fusion as well as recombination of smaller protein fragments that serve as building blocks. These evolutionary mechanisms provide a template for the rational design of new proteins from fragments of existing proteins. Design by duplication and fusion has been explored for a number of symmetric protein folds, while design by rational recombination has just emerged. First experiments in recombining fragments from the same and different folds are proving successful in building new proteins that harbor easily evolvable properties originating from the parents. Overall, duplication and recombination of smaller fragments shows much potential for future applications in the design of proteins.
Collapse
Affiliation(s)
- Birte Höcker
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Watanabe H, Yamasaki K, Honda S. Tracing primordial protein evolution through structurally guided stepwise segment elongation. J Biol Chem 2013; 289:3394-404. [PMID: 24356963 DOI: 10.1074/jbc.m113.530592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The understanding of how primordial proteins emerged has been a fundamental and longstanding issue in biology and biochemistry. For a better understanding of primordial protein evolution, we synthesized an artificial protein on the basis of an evolutionary hypothesis, segment-based elongation starting from an autonomously foldable short peptide. A 10-residue protein, chignolin, the smallest foldable polypeptide ever reported, was used as a structural support to facilitate higher structural organization and gain-of-function in the development of an artificial protein. Repetitive cycles of segment elongation and subsequent phage display selection successfully produced a 25-residue protein, termed AF.2A1, with nanomolar affinity against the Fc region of immunoglobulin G. AF.2A1 shows exquisite molecular recognition ability such that it can distinguish conformational differences of the same molecule. The structure determined by NMR measurements demonstrated that AF.2A1 forms a globular protein-like conformation with the chignolin-derived β-hairpin and a tryptophan-mediated hydrophobic core. Using sequence analysis and a mutation study, we discovered that the structural organization and gain-of-function emerged from the vicinity of the chignolin segment, revealing that the structural support served as the core in both structural and functional development. Here, we propose an evolutionary model for primordial proteins in which a foldable segment serves as the evolving core to facilitate structural and functional evolution. This study provides insights into primordial protein evolution and also presents a novel methodology for designing small sized proteins useful for industrial and pharmaceutical applications.
Collapse
Affiliation(s)
- Hideki Watanabe
- From the Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
10
|
Skorupka K, Han SK, Nam HJ, Kim S, Faham S. Protein design by fusion: implications for protein structure prediction and evolution. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2451-60. [PMID: 24311586 DOI: 10.1107/s0907444913022701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/12/2013] [Indexed: 01/21/2023]
Abstract
Domain fusion is a useful tool in protein design. Here, the structure of a fusion of the heterodimeric flagella-assembly proteins FliS and FliC is reported. Although the ability of the fusion protein to maintain the structure of the heterodimer may be apparent, threading-based structural predictions do not properly fuse the heterodimer. Additional examples of naturally occurring heterodimers that are homologous to full-length proteins were identified. These examples highlight that the designed protein was engineered by the same tools as used in the natural evolution of proteins and that heterodimeric structures contain a wealth of information, currently unused, that can improve structural predictions.
Collapse
Affiliation(s)
- Katarzyna Skorupka
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22093, USA
| | | | | | | | | |
Collapse
|
11
|
Baeriswyl V, Heinis C. Phage selection of cyclic peptide antagonists with increased stability toward intestinal proteases. Protein Eng Des Sel 2012; 26:81-9. [DOI: 10.1093/protein/gzs085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Artificial proteins from combinatorial approaches. Trends Biotechnol 2012; 30:512-20. [DOI: 10.1016/j.tibtech.2012.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 11/21/2022]
|
13
|
Evran S, Telefoncu A, Sterner R. Directed evolution of ( )8-barrel enzymes: establishing phosphoribosylanthranilate isomerisation activity on the scaffold of the tryptophan synthase -subunit. Protein Eng Des Sel 2012; 25:285-93. [DOI: 10.1093/protein/gzs015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
14
|
Milech N, Watt P. The construction of "phylomer" peptide libraries as a rich source of potent inhibitors of protein/protein interactions. Methods Mol Biol 2012; 899:43-60. [PMID: 22735945 DOI: 10.1007/978-1-61779-921-1_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phylomer libraries are made from random overlapping genome fragments of biodiverse bacteria and Archaea. They provide a rich source of high-affinity binders to protein interfaces, and can be used both for target-directed screening approaches and for phenotypic screens to discover new targets. Here, we describe methods used for the construction of a Phylomer library, illustrated by examples of construction in both a yeast two-hybrid vector and a phage display vector.
Collapse
Affiliation(s)
- Nadia Milech
- Telethon Institute for Child Heath Research and Centre for Child Health, University of Western Australia, Subiaco, WA, Australia.
| | | |
Collapse
|
15
|
Tarrío R, Ayala FJ, Rodríguez-Trelles F. The Vein Patterning 1 (VEP1) gene family laterally spread through an ecological network. PLoS One 2011; 6:e22279. [PMID: 21818306 PMCID: PMC3144213 DOI: 10.1371/journal.pone.0022279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/18/2011] [Indexed: 11/23/2022] Open
Abstract
Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic α-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments.
Collapse
Affiliation(s)
- Rosa Tarrío
- Universidad de Santiago de Compostela, CIBERER, Genome Medicine Group, Santiago de Compostela, Spain
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Francisco Rodríguez-Trelles
- Grup de Biologia Evolutiva, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Bhaskara RM, Srinivasan N. Stability of domain structures in multi-domain proteins. Sci Rep 2011; 1:40. [PMID: 22355559 PMCID: PMC3216527 DOI: 10.1038/srep00040] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/27/2011] [Indexed: 01/22/2023] Open
Abstract
Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR.
Collapse
|
17
|
Phenotypic screening of phylomer peptide libraries derived from genome fragments to identify and validate new targets and therapeutics. Future Med Chem 2011; 1:257-65. [PMID: 21425969 DOI: 10.4155/fmc.09.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Phenotypic screening of random peptide libraries has been hampered by very poor hit rates. This is probably due to the fact that random combinatorial peptide libraries contain an insufficiently large proportion of secondary and/or tertiary structures that are likely to interact in a stable manner with multiple classes of potential target proteins. Phylomer libraries, by contrast, are derived from sequences of genomes that have been through millions to billions of years of evolution and were therefore hypothesized to be more likely to encode appropriate structures, which have been selected to stably bind with high affinity to protein surfaces. This approach is analogous to small-molecule libraries constructed to provide a rich source of structures (often found in natural products) that are common to the pharmacophores of known drugs. DISCUSSION Phenotypic screens of phylomer libraries show very high hit rates for bioactive peptides, suggesting that they may be a useful tool for target discovery and validation. Biophysical evidence suggests that this high activity may be due to the high proportion of affinities of unmodified peptides in the low nanomolar range. CONCLUSION The high hit rates from phylomer libraries are sufficient to allow libraries composed of synthetic peptides to be synthesized and screened in parallel high-throughput screening formats. In addition to allowing the identification of new targets, the phylomer peptides themselves may be useful as structural probes to map epitopes of target vulnerability and as leads in therapeutic discovery.
Collapse
|
18
|
Eisenbeis S, Höcker B. Evolutionary mechanism as a template for protein engineering. J Pept Sci 2010; 16:538-44. [DOI: 10.1002/psc.1233] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Wu SJ, Luo J, O'Neil KT, Kang J, Lacy ER, Canziani G, Baker A, Huang M, Tang QM, Raju TS, Jacobs SA, Teplyakov A, Gilliland GL, Feng Y. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel 2010; 23:643-51. [PMID: 20543007 DOI: 10.1093/protein/gzq037] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein aggregation is of great concern to pharmaceutical formulations and has been implicated in several diseases. We engineered an anti-IL-13 monoclonal antibody CNTO607 for improved solubility. Three structure-based engineering approaches were employed in this study: (i) modifying the isoelectric point (pI), (ii) decreasing the overall surface hydrophobicity and (iii) re-introducing an N-linked carbohydrate moiety within a complementarity-determining region (CDR) sequence. A mutant was identified with a modified pI that had a 2-fold improvement in solubility while retaining the binding affinity to IL-13. Several mutants with decreased overall surface hydrophobicity also showed moderately improved solubility while maintaining a similar antigen affinity. Structural studies combined with mutagenesis data identified an aggregation 'hot spot' in heavy-chain CDR3 (H-CDR3) that contains three residues ((99)FHW(100a)). The same residues, however, were found to be essential for high affinity binding to IL-13. On the basis of the spatial proximity and germline sequence, we reintroduced the consensus N-glycosylation site in H-CDR2 which was found in the original antibody, anticipating that the carbohydrate moiety would shield the aggregation 'hot spot' in H-CDR3 while not interfering with antigen binding. Peptide mapping and mass spectrometric analysis revealed that the N-glycosylation site was generally occupied. This variant showed greatly improved solubility and bound to IL-13 with affinity similar to CNTO607 without the N-linked carbohydrate. All three engineering approaches led to improved solubility and adding an N-linked carbohydrate to the CDR was the most effective route for enhancing the solubility of CNTO607.
Collapse
Affiliation(s)
- Sheng-Jiun Wu
- Biologics Research, Centocor R&D, 145 King of Prussia Radnor, PA 19087-4557, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Metal coordination is a key structural and functional component of a large fraction of proteins. Given this dual role we considered the possibility that metal coordination may have played a templating role in the early evolution of protein folds and complexes. We describe here a rational design approach, Metal Templated Interface Redesign (MeTIR), that mimics the time course of a hypothetical evolutionary pathway for the formation of stable protein assemblies through an initial metal coordination event. Using a folded monomeric protein, cytochrome cb(562), as a building block we show that its non-self-associating surface can be made self-associating through a minimal number of mutations that enable Zn coordination. The protein interfaces in the resulting Zn-directed, D(2)-symmetrical tetramer are subsequently redesigned, yielding unique protein architectures that self-assemble in the presence or absence of metals. Aside from its evolutionary implications, MeTIR provides a route to engineer de novo protein interfaces and metal coordination environments that can be tuned through the extensive noncovalent bonding interactions in these interfaces.
Collapse
|
21
|
Tsuji T, Onimaru M, Doi N, Miyamoto-Sato E, Takashima H, Yanagawa H. In vitro selection of GTP-binding proteins by block shuffling of estrogen-receptor fragments. Biochem Biophys Res Commun 2009; 390:689-93. [DOI: 10.1016/j.bbrc.2009.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/07/2009] [Indexed: 11/26/2022]
|
22
|
Liu X, Zhao YP. Donut-shaped fingerprint in homologous polypeptide relationships--a topological feature related to pathogenic structural changes in conformational disease. J Theor Biol 2009; 258:294-301. [PMID: 19248793 PMCID: PMC7094133 DOI: 10.1016/j.jtbi.2009.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/06/2009] [Accepted: 02/11/2009] [Indexed: 02/05/2023]
Abstract
Features of homologous relationship of proteins can provide us a general picture of protein universe, assist protein design and analysis, and further our comprehension of the evolution of organisms. Here we carried out a study of the evolution of protein molecules by investigating homologous relationships among residue segments. The motive was to identify detailed topological features of homologous relationships for short residue segments in the whole protein universe. Based on the data of a large number of non-redundant proteins, the universe of non-membrane polypeptide was analyzed by considering both residue mutations and structural conservation. By connecting homologous segments with edges, we obtained a homologous relationship network of the whole universe of short residue segments, which we named the graph of polypeptide relationships (GPR). Since the network is extremely complicated for topological transitions, to obtain an in-depth understanding, only subgraphs composed of vital nodes of the GPR were analyzed. Such analysis of vital subgraphs of the GPR revealed a donut-shaped fingerprint. Utilization of this topological feature revealed the switch sites (where the beginning of exposure of previously hidden "hot spots" of fibril-forming happens, in consequence a further opportunity for protein aggregation is provided; 188-202) of the conformational conversion of the normal alpha-helix-rich prion protein PrP(C) to the beta-sheet-rich PrP(Sc) that is thought to be responsible for a group of fatal neurodegenerative diseases, transmissible spongiform encephalopathies. Efforts in analyzing other proteins related to various conformational diseases are also introduced.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
| | - Ya-Pu Zhao
- The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences. Beijing 100190, China
| |
Collapse
|
23
|
Establishing wild-type levels of catalytic activity on natural and artificial (beta alpha)8-barrel protein scaffolds. Proc Natl Acad Sci U S A 2009; 106:3704-9. [PMID: 19237570 DOI: 10.1073/pnas.0810342106] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The generation of high levels of new catalytic activities on natural and artificial protein scaffolds is a major goal of enzyme engineering. Here, we used random mutagenesis and selection in vivo to establish a sugar isomerisation reaction on both a natural (beta alpha)(8)-barrel enzyme and a catalytically inert chimeric (beta alpha)(8)-barrel scaffold, which was generated by the recombination of 2 (beta alpha)(4)-half barrels. The best evolved variants show turnover numbers and substrate affinities that are similar to those of wild-type enzymes catalyzing the same reaction. The determination of the crystal structure of the most proficient variant allowed us to model the substrate sugar in the novel active site and to elucidate the mechanistic basis of the newly established activity. The results demonstrate that natural and inert artificial protein scaffolds can be converted into highly proficient enzymes in the laboratory, and provide insights into the mechanisms of enzyme evolution.
Collapse
|
24
|
Risso VA, Primo ME, Ermácora MR. Re-engineering a β-lactamase using prototype peptides from a library of local structural motifs. Protein Sci 2009; 18:440-9. [PMID: 19165724 DOI: 10.1002/pro.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Valeria A Risso
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina
| | | | | |
Collapse
|
25
|
Experimental Evidence for the Existence of a Stable Half-Barrel Subdomain in the (β/α)8-Barrel Fold. J Mol Biol 2008; 382:458-66. [DOI: 10.1016/j.jmb.2008.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 11/16/2022]
|
26
|
A beta alpha-barrel built by the combination of fragments from different folds. Proc Natl Acad Sci U S A 2008; 105:9942-7. [PMID: 18632584 DOI: 10.1073/pnas.0802202105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Combinatorial assembly of protein domains plays an important role in the evolution of proteins. There is also evidence that protein domains have come together from stable subdomains. This concept of modular assembly could be used to construct new well folded proteins from stable protein fragments. Here, we report the construction of a chimeric protein from parts of a (betaalpha)(8)-barrel enzyme from histidine biosynthesis pathway (HisF) and a protein of the (betaalpha)(5)-flavodoxin-like fold (CheY) from Thermotoga maritima that share a high structural similarity. We expected this construct to fold into a full (betaalpha)(8)-barrel. Our results show that the chimeric protein is a stable monomer that unfolds with high cooperativity. Its three-dimensional structure, which was solved to 3.1 A resolution by x-ray crystallography, confirms a barrel-like fold in which the overall structures of the parent proteins are highly conserved. The structure further reveals a ninth strand in the barrel, which is formed by residues from the HisF C terminus and an attached tag. This strand invades between beta-strand 1 and 2 of the CheY part closing a gap in the structure that might be due to a suboptimal fit between the fragments. Thus, by a combination of parts from two different folds and a small arbitrary fragment, we created a well folded and stable protein.
Collapse
|
27
|
Batova I, Kowal C, May R, Scharff MD, Diamond B. Human recombinant Fab fragments with sub-nanomolar affinities for acetylated histones. J Immunol Methods 2007; 329:1-10. [PMID: 17976637 DOI: 10.1016/j.jim.2007.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 07/27/2007] [Accepted: 08/29/2007] [Indexed: 12/24/2022]
Abstract
Acetylation of lysines at different sites in the N-terminus of core histones is a common mode of chromatin modification; different combinations of such modifications are associated with distinct patterns of gene expression, replication and repair. Antibodies are usually used to identify and localize particular histone modifications and to correlate their presence with transcription or other cellular processes. This requires antibodies of sufficient specificity and affinity for each of the many modifications that have now been observed. In most instances, polyclonal antibodies have been used but monoclonal antibodies can also be effective. Here we report that a phage-displayed repertoire of rearranged antibody genes from splenic B cells from a patient with systemic lupus contain Fab fragments that can bind native acetylated lysine 8 histone H4. This finding represents the first selection of human antibodies specific for acetylated histone and suggests that lupus antibodies may contribute to dissection of the histone code.
Collapse
Affiliation(s)
- Iglika Batova
- Institute of Biology and Immunology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
28
|
Seitz T, Bocola M, Claren J, Sterner R. Stabilisation of a (betaalpha)8-barrel protein designed from identical half barrels. J Mol Biol 2007; 372:114-29. [PMID: 17631894 DOI: 10.1016/j.jmb.2007.06.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/05/2007] [Accepted: 06/13/2007] [Indexed: 11/26/2022]
Abstract
It has been suggested that the common (betaalpha)(8)-barrel enzyme fold has evolved by the duplication and fusion of identical (betaalpha)(4)-half barrels, followed by the optimisation of their interface. In our attempts to reconstruct these events in vitro we have previously linked in tandem two copies of the C-terminal half barrel HisF-C of imidazole glycerol phosphate synthase from Thermotoga maritima and subsequently reconstituted in the fusion construct HisF-CC a salt bridge cluster present in wild-type HisF. The resulting recombinant protein HisF-C*C, which was produced in an insoluble form and unfolded with low cooperativity at moderate urea concentrations has now been stabilised and solubilised by a combination of random mutagenesis and selection in vivo. For this purpose, Escherichia coli cells were transformed with a plasmid-based gene library encoding HisF-C*C variants fused to chloramphenicol acetyltransferase (CAT). Stable and soluble variants were identified by the survival of host cells on solid medium containing high concentrations of the antibiotic. The selected HisF-C*C proteins, which were characterised in vitro in the absence of CAT, contained eight different amino acid substitutions. One of the exchanges (Y143C) stabilised HisF-C*C by the formation of an intermolecular disulfide bond. Three of the substitutions (G245R, V248M, L250Q) were located in the long loop connecting the two HisF-C copies, whose subsequent truncation from 13 to 5 residues yielded the stabilised variant HisF-C*C Delta. From the remaining substitutions, Y143H and V234M were most beneficial, and molecular dynamics simulations suggest that they strengthen the interactions between the half barrels by establishing a hydrogen-bonding network and an extensive hydrophobic cluster, respectively. By combining the loop deletion of HisF-C*C Delta with the Y143H and V234M substitutions, the variant HisF-C**C was generated. Recombinant HisF-C**C is produced in soluble form, forms a pure monomer with its tryptophan residues shielded from solvent and unfolds with similar cooperativity as HisF. Our results show that, starting from two identical and fused half barrels, few amino acid exchanges are sufficient to generate a highly stable and compact (betaalpha)(8)-barrel protein with wild-type like structural properties.
Collapse
Affiliation(s)
- Tobias Seitz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
29
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|