1
|
Wu S, Edskes HK, Wickner RB. Human proteins curing yeast prions. Proc Natl Acad Sci U S A 2023; 120:e2314781120. [PMID: 37903258 PMCID: PMC10636303 DOI: 10.1073/pnas.2314781120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Recognition that common human amyloidoses are prion diseases makes the use of the Saccharomyces cerevisiae prion model systems to screen for possible anti-prion components of increasing importance. [PSI+] and [URE3] are amyloid-based prions of Sup35p and Ure2p, respectively. Yeast has at least six anti-prion systems that together cure nearly all [PSI+] and [URE3] prions arising in their absence. We made a GAL-promoted bank of 14,913 human open reading frames in a yeast shuttle plasmid and isolated 20 genes whose expression cures [PSI+] or [URE3]. PRPF19 is an E3 ubiquitin ligase that cures [URE3] if its U-box is intact. DNAJA1 is a J protein that cures [PSI+] unless its interaction with Hsp70s is defective. Human Bag5 efficiently cures [URE3] and [PSI+]. Bag family proteins share a 110 to 130 residue "BAG domain"; Bag 1, 2, 3, 4, and 6 each have one BAG domain while Bag5 has five BAG domains. Two BAG domains are necessary for curing [PSI+], but one can suffice to cure [URE3]. Although most Bag proteins affect autophagy in mammalian cells, mutations blocking autophagy in yeast do not affect Bag5 curing of [PSI+] or [URE3]. Curing by Bag proteins depends on their interaction with Hsp70s, impairing their role, with Hsp104 and Sis1, in the amyloid filament cleavage necessary for prion propagation. Since Bag5 curing is reduced by overproduction of Sis1, we propose that Bag5 cures prions by blocking Sis1 access to Hsp70s in its role with Hsp104 in filament cleavage.
Collapse
Affiliation(s)
- Songsong Wu
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| | - Herman K. Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| | - Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0830
| |
Collapse
|
2
|
Hall D. MIL-CELL: a tool for multi-scale simulation of yeast replication and prion transmission. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:673-704. [PMID: 37670150 PMCID: PMC10682183 DOI: 10.1007/s00249-023-01679-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
The single-celled baker's yeast, Saccharomyces cerevisiae, can sustain a number of amyloid-based prions, the three most prominent examples being [URE3], [PSI+], and [PIN+]. In the laboratory, haploid S. cerevisiae cells of a single mating type can acquire an amyloid prion in one of two ways (i) spontaneous nucleation of the prion within the yeast cell, and (ii) receipt via mother-to-daughter transmission during the cell division cycle. Similarly, prions can be lost due to (i) dissolution of the prion amyloid by its breakage into non-amyloid monomeric units, or (ii) preferential donation/retention of prions between the mother and daughter during cell division. Here we present a computational tool (Monitoring Induction and Loss of prions in Cells; MIL-CELL) for modelling these four general processes using a multiscale approach describing both spatial and kinetic aspects of the yeast life cycle and the amyloid-prion behavior. We describe the workings of the model, assumptions upon which it is based and some interesting simulation results pertaining to the wave-like spread of the epigenetic prion elements through the yeast population. MIL-CELL is provided as a stand-alone GUI executable program for free download with the paper. MIL-CELL is equipped with a relational database allowing all simulated properties to be searched, collated and graphed. Its ability to incorporate variation in heritable properties means MIL-CELL is also capable of simulating loss of the isogenic nature of a cell population over time. The capability to monitor both chronological and reproductive age also makes MIL-CELL potentially useful in studies of cell aging.
Collapse
Affiliation(s)
- Damien Hall
- WPI Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1164, Japan.
| |
Collapse
|
3
|
Nirwal S, Saravanan P, Bajpai A, Meshram VD, Raju G, Deeksha W, Prabusankar G, Patel BK. In Vitro Interaction of a C-Terminal Fragment of TDP-43 Protein with Human Serum Albumin Modulates Its Aggregation. J Phys Chem B 2022; 126:9137-9151. [PMID: 36326054 DOI: 10.1021/acs.jpcb.2c04469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An increased level of naturally occurring anti-TDP-43 antibodies was observed in the serum and cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis patients. Human serum albumin (HSA), the most abundant protein in blood plasma and CSF, is found to interact with pathological proteins like Aβ and α-synuclein. Therefore, we examined the effect on the in vitro aggregation of a C-terminal fragment of TDP-43 in the presence of HSA. We found that the lag phase in TDP-432C aggregation is abrogated in the presence of HSA, but there is an overall decreased aggregation as examined by thioflavin-T fluorescence spectroscopy and microscopy. An early onset of TDP-432C oligomer formation in the presence of HSA was observed using atomic force microscopy and transmission electron microscopy. Also, a known chemical inhibitor of TDP-432Caggregation, AIM4, abolishes the HSA-induced early formation of TDP-432C oligomers. Notably, the aggregates of TDP-432C formed in the presence of HSA are more stable against sarkosyl detergent. Using affinity copurification, we observed that HSA can bind to TDP-432C, and biolayer interferometry further supported their physical interaction and suggested the binding affinity to be in sub-micromolar range. Taken together, the data support that HSA can interact with TDP-432C in vitro and affect its aggregation.
Collapse
Affiliation(s)
- Sadhana Nirwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Preethi Saravanan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Vini D Meshram
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Gembali Raju
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi Sangareddy, Telangana 502284, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi Sangareddy, Telangana 502284, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
4
|
Sergeeva AV, Belashova TA, Bondarev SA, Velizhanina ME, Barbitoff YA, Matveenko AG, Valina AA, Simanova AL, Zhouravleva GA, Galkin AP. Direct proof of the amyloid nature of yeast prions [PSI+] and [PIN+] by the method of immunoprecipitation of native fibrils. FEMS Yeast Res 2021; 21:6360323. [PMID: 34463335 DOI: 10.1093/femsyr/foab046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Prions are proteins that can exist in several structurally and functionally distinct states, one or more of which is transmissible. Yeast proteins Sup35 and Rnq1 in prion state ([PSI+] and [PIN+], respectively) form oligomers and aggregates, which are transmitted from parents to offspring in a series of generations. Several pieces of indirect evidence indicate that these aggregates also possess amyloid properties, but their binding to amyloid-specific dyes has not been shown in vivo. Meanwhile, it is the specific binding to the Congo Red dye and birefringence in polarized light after such staining that is considered the gold standard for proving the amyloid properties of a protein. Here, we used immunoprecipitation to extract native fibrils of the Sup35 and Rnq1 proteins from yeast strains with different prion status. These fibrils are detected by electron microscopy, stained with Congo Red and exhibit yellow-green birefringence after such staining. All these data show that the Sup35 and Rnq1 proteins in prion state form amyloid fibrils in vivo. The technology of fibrils extraction in combination with standard cytological methods can be used to identify new pathological and functional amyloids in any organism and to analyze the structural features of native amyloid fibrils.
Collapse
Affiliation(s)
- Aleksandra V Sergeeva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Tatyana A Belashova
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation.,Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Marya E Velizhanina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation.,Laboratory of Signal Regulation, All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee, 3 , Pushkin, St. Petersburg, Russian Federation
| | - Yury A Barbitoff
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Anna A Valina
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Angelina L Simanova
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| | - Alexey P Galkin
- Department of Genetics and Biotechnology, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, Universitetskaya emb. 7/9, St. Petersburg, 199034, Russian Federation
| |
Collapse
|
5
|
Nirwal S, Bharathi V, Patel BK. Amyloid-like aggregation of bovine serum albumin at physiological temperature induced by cross-seeding effect of HEWL amyloid aggregates. Biophys Chem 2021; 278:106678. [PMID: 34492451 DOI: 10.1016/j.bpc.2021.106678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 01/16/2023]
Abstract
BSA can form amyloid-like aggregates in vitro at 65 °C. Heterologous amyloid can proposedly cross-seed other protein's aggregation, however, general mechanisms and driving conditions remain to be vividly elucidated. Here, we examined if pre-formed HEWL amyloid can cross-seed the aggregation of BSA at physiological temperature, 37 °C, and whether the efficacy depends on the BSA conformation. We find that at pH 3.0, 37 °C where BSA manifests exposure of abundant hydrophobic patches, HEWL amyloid efficiently drives BSA into ThT-positive, sarkosyl-resistant, β-sheet rich amyloid-like aggregates exhibiting fibrils in TEM. On the contrary, HEWL amyloid fails to cross-seed the BSA aggregation at pH 7.0, 37 °C where BSA has largely internalized hydrophobic patches. Strikingly, human lysozyme amyloid could also cross-seed human serum albumin aggregation at pH 3.0, 37 °C. Thus, heterologous amyloid cross-seeding can help overcome the energy-barrier for aggregation of other proteins that, for any reason, may have perturbed and promiscuous structural conformation at physiological temperatures.
Collapse
Affiliation(s)
- Sadhana Nirwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
| |
Collapse
|
6
|
Chen YR, Ziv I, Swaminathan K, Elias JE, Jarosz DF. Protein aggregation and the evolution of stress resistance in clinical yeast. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200127. [PMID: 33866806 DOI: 10.1098/rstb.2020.0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation, particularly in its prion-like form, has long been thought to be detrimental. However, recent studies have identified multiple instances where protein aggregation is important for normal physiological functions. Combining mass spectrometry and cell biological approaches, we developed a strategy for the identification of protein aggregates in cell lysates. We used this approach to characterize prion-based traits in pathogenic strains of the yeast Saccharomyces cerevisiae isolated from immunocompromised human patients. The proteins that we found, including the metabolic enzyme Cdc19, the translation elongation factor Yef3 and the fibrillarin homologue Nop1, are known to assemble under certain physiological conditions. Yet, such assemblies have not been reported to be stable or heritable. Our data suggest that some proteins which aggregate in response to stress have the capacity to acquire diverse assembled states, certain ones of which can be propagated across generations in a form of protein-based epigenetics. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Kavya Swaminathan
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Joshua E Elias
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Bharathi V, Girdhar A, Patel BK. Role of CNC1 gene in TDP-43 aggregation-induced oxidative stress-mediated cell death in S. cerevisiae model of ALS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118993. [PMID: 33647321 DOI: 10.1016/j.bbamcr.2021.118993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
TDP-43 protein is found deposited as inclusions in the amyotrophic lateral sclerosis (ALS) patient's brain. The mechanism of neuron death in ALS is not fully deciphered but several TDP-43 toxicity mechanisms such as mis-regulation of autophagy, mitochondrial impairment and generation of oxidative stress etc., have been implicated. A predominantly nuclear protein, Cyclin C, can regulate the oxidative stress response via transcription of stress response genes and also by translocation to the cytoplasm for the activation of mitochondrial fragmentation-dependent cell death pathway. Using the well-established yeast TDP-43 proteinopathy model, we examined here whether upon TDP-43 aggregation, cell survival depends on the CNC1 gene that encodes the Cyclin C protein or other genes which encode proteins that function in conjunction with Cyclin C, such as DNM1, FIS1 and MED13. We show that the TDP-43's toxicity is significantly reduced in yeast deleted for CNC1 or DNM1 genes and remains unaltered by deletions of genes, FIS1 and MED13. Importantly, this rescue is observed only in presence of functional mitochondria. Also, deletion of the YBH3 gene involved in the mitochondria-dependent apoptosis pathway reduced the TDP-43 toxicity. Deletion of the VPS1 gene involved in the peroxisomal fission pathway did not mitigate the TDP-43 toxicity. Strikingly, Cyclin C-YFP was observed to relocate to the cytoplasm in response to TDP-43's co-expression which was prevented by addition of an anti-oxidant molecule, N-acetyl cysteine. Overall, the Cyclin C, Dnm1 and Ybh3 proteins are found to be important players in the TDP-43-induced oxidative stress-mediated cell death in the S. cerevisiae model.
Collapse
Affiliation(s)
- Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Amandeep Girdhar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
| |
Collapse
|
8
|
Preethi S, Bharathi V, Patel BK. Zn 2+ modulates in vitro phase separation of TDP-43 2C and mutant TDP-43 2C-A315T C-terminal fragments of TDP-43 protein implicated in ALS and FTLD-TDP diseases. Int J Biol Macromol 2021; 176:186-200. [PMID: 33577819 DOI: 10.1016/j.ijbiomac.2021.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
TDP-43 proteinopathy is implicated in the neurodegenerative diseases, ALS and FTLD-TDP. Metal ion dyshomeostasis is observed in neurodegenerative diseases including ALS. Previously, mice expressing A315T familial ALS TDP-43 mutant showed elevated spinal cord Zn2+ levels. Recently, Zn2+ was observed to modulate the in vitro amyloid-like aggregation of the TDP-43's RRM12 domains. As a systematic knowledge of the TDP-43's interaction with Zn2+ is lacking, we in silico predicted potential Zn2+ binding sites in TDP-43 and estimated their relative solvent accessibilities. Zn2+ binding sites were predicted in the TDP-43's N-terminal domain, in the linker region between RRM1 and RRM2 domain, within RRM2 domain and at the junction of the RRM2 and C-terminal domain (CTD), but none in the 311-360 region of CTD. Furthermore, we found that Zn2+ promotes the in vitro thioflavin-T-positive aggregations of C-terminal fragments (CTFs) termed TDP-432C and TDP-432C-A315T that encompass the RRM2 and CTD domains. Also, while the Alexa-fluor fluorescently labelled TDP-432C and TDP-432C-A315T proteins manifested liquid-like spherical droplets, Zn2+ caused a solid-like phase separation that was not ameliorated even by carboxymethylation of the free cysteines thereby implicating the other Zn2+-binding residues. The observed Zn2+-promoted TDP-43 CTF's solid-like phase separation can be relevant to the Zn2+ dyshomeostasis in ALS and FTLD-TDP.
Collapse
Affiliation(s)
- S Preethi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
| |
Collapse
|
9
|
Kabani M. Extracellular Vesicles and the Propagation of Yeast Prions. Curr Top Microbiol Immunol 2021; 432:57-66. [DOI: 10.1007/978-3-030-83391-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Extracellular Vesicles-Encapsulated Yeast Prions and What They Can Tell Us about the Physical Nature of Propagons. Int J Mol Sci 2020; 22:ijms22010090. [PMID: 33374854 PMCID: PMC7794690 DOI: 10.3390/ijms22010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which generates small self-templating seeds, or propagons. The exact molecular nature of propagons and how they are faithfully transmitted from mother to daughter cells despite spatial protein quality control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies detectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+] do not fully correlate with the infectivity measured during growth by the mean of protein infection assays. We also discovered that significant amounts of infectious Sup35p particles are exported via extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner. In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable vehicle for their transmission to the bud.
Collapse
|
11
|
Mutations Outside the Ure2 Amyloid-Forming Region Disrupt [URE3] Prion Propagation and Alter Interactions with Protein Quality Control Factors. Mol Cell Biol 2020; 40:MCB.00294-20. [PMID: 32868289 DOI: 10.1128/mcb.00294-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
The yeast prion [URE3] propagates as a misfolded amyloid form of the Ure2 protein. Propagation of amyloid-based yeast prions requires protein quality control (PQC) factors, and altering PQC abundance or activity can cure cells of prions. Yeast antiprion systems composed of PQC factors act at normal abundance to restrict establishment of the majority of prion variants that arise de novo While these systems are well described, how they or other PQC factors interact with prion proteins remains unclear. To gain insight into such interactions, we identified mutations outside the Ure2 prion-determining region that destabilize [URE3]. Despite residing in the functional domain, 16 of 17 mutants retained Ure2 activity. Four characterized mutations caused rapid loss of [URE3] yet allowed [URE3] to propagate under prion-selecting conditions. Two sensitized [URE3] to Btn2, Cur1, and Hsp42, but in different ways. Two others reduced amyloid formation in vitro Of these, one impaired prion replication and the other apparently impaired transmission. Thus, widely dispersed sites outside a prion's amyloid-forming region can contribute to prion character, and altering such sites can disrupt prion propagation by altering interactions with PQC factors.
Collapse
|
12
|
Du Z, Valtierra S, Cardona LR, Dunne SF, Luan CH, Li L. Identifying Anti-prion Chemical Compounds Using a Newly Established Yeast High-Throughput Screening System. Cell Chem Biol 2019; 26:1664-1680.e4. [PMID: 31668517 DOI: 10.1016/j.chembiol.2019.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
Prion-like protein aggregation underlies the pathology of a group of fatal neurodegenerative diseases in humans, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and transmissible spongiform encephalopathy. At present, few high-throughput screening (HTS) systems are available for anti-prion small-molecule identification. Here we describe an innovative phenotypic HTS system in yeast that allows for efficient identification of chemical compounds that eliminate the yeast prion [SWI+]. We show that some identified anti-[SWI+] compounds can destabilize other non-[SWI+] prions, and their antagonizing effects can be prion- and/or variant specific. Intriguingly, among the identified hits are several previously identified anti-PrPSc compounds and a couple of US Food and Drug Administration-approved drugs for AD treatment, validating the efficacy of this HTS system. Moreover, a few hits can reduce proteotoxicity induced by expression of several pathogenic mammalian proteins. Thus, we have established a useful HTS system for identifying compounds that can potentially antagonize prionization and human proteinopathies.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Stephanie Valtierra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Luzivette Robles Cardona
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sara Fernandez Dunne
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Chicago, IL 60628, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Chicago, IL 60628, USA
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Manjrekar J, Shah H. Protein-based inheritance. Semin Cell Dev Biol 2019; 97:138-155. [PMID: 31344459 DOI: 10.1016/j.semcdb.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/08/2019] [Indexed: 01/17/2023]
Abstract
Epigenetic mechanisms of inheritance have come to occupy a prominent place in our understanding of living systems, primarily eukaryotes. There has been considerable and lively discussion of the possible evolutionary significance of transgenerational epigenetic inheritance. One particular type of epigenetic inheritance that has not figured much in general discussions is that based on conformational changes in proteins, where proteins with altered conformations can act as templates to propagate their own structure. An increasing number of such proteins - prions and prion-like - are being discovered. Phenotypes due to the structurally altered proteins are transmitted along with their structures. This review discusses the properties and implications of "classical" amyloid-forming prions, as well as the broader class of proteins with intrinsically disordered domains, which are proving to have fascinating properties that appear to play important roles in cell organisation and function, especially during stress responses.
Collapse
Affiliation(s)
- Johannes Manjrekar
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India.
| | - Hiral Shah
- Microbiology Department and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| |
Collapse
|
14
|
Serio TR. [PIN+]ing down the mechanism of prion appearance. FEMS Yeast Res 2019; 18:4923032. [PMID: 29718197 PMCID: PMC5889010 DOI: 10.1093/femsyr/foy026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/03/2018] [Indexed: 11/13/2022] Open
Abstract
Prions are conformationally flexible proteins capable of adopting a native state and a spectrum of alternative states associated with a change in the function of the protein. These alternative states are prone to assemble into amyloid aggregates, which provide a structure for self-replication and transmission of the underlying conformer and thereby the emergence of a new phenotype. Amyloid appearance is a rare event in vivo, regulated by both the aggregation propensity of prion proteins and their cellular environment. How these forces normally intersect to suppress amyloid appearance and the ways in which these restrictions can be bypassed to create protein-only phenotypes remain poorly understood. The most widely studied and perhaps most experimentally tractable system to explore the mechanisms regulating amyloid appearance is the [PIN+] prion of Saccharomyces cerevisiae. [PIN+] is required for the appearance of the amyloid state for both native yeast proteins and for human proteins expressed in yeast. These observations suggest that [PIN+] facilitates the bypass of amyloid regulatory mechanisms by other proteins in vivo. Several models of prion appearance are compatible with current observations, highlighting the complexity of the process and the questions that must be resolved to gain greater insight into the mechanisms regulating these events.
Collapse
Affiliation(s)
- Tricia R Serio
- The University of Massachusetts-Amherst, Department of Biochemistry and Molecular Biology, 240 Thatcher Rd, N360, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12:25. [PMID: 30837838 PMCID: PMC6382748 DOI: 10.3389/fnmol.2019.00025] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Hyper-phosphorylated and ubiquitinated TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). While the majority of ALS cases (90-95%) are sporadic (sALS), among familial ALS cases 5-10% involve the inheritance of mutations in the TARDBP gene and the remaining (90-95%) are due to mutations in other genes such as: C9ORF72, SOD1, FUS, and NEK1 etc. Strikingly however, the majority of sporadic ALS patients (up to 97%) also contain the TDP-43 protein deposited in the neuronal inclusions, which suggests of its pivotal role in the ALS pathology. Thus, unraveling the molecular mechanisms of the TDP-43 pathology seems central to the ALS therapeutics, hence, we comprehensively review the current understanding of the TDP-43's pathology in ALS. We discuss the roles of TDP-43's mutations, its cytoplasmic mis-localization and aberrant post-translational modifications in ALS. Also, we evaluate TDP-43's amyloid-like in vitro aggregation, its physiological vs. pathological oligomerization in vivo, liquid-liquid phase separation (LLPS), and potential prion-like propagation propensity of the TDP-43 inclusions. Finally, we describe the various evolving TDP-43-induced toxicity mechanisms, such as the impairment of endocytosis and mitotoxicity etc. and also discuss the emerging strategies toward TDP-43 disaggregation and ALS therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Basant K. Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
16
|
Brudar S, Hribar-Lee B. The Role of Buffers in Wild-Type HEWL Amyloid Fibril Formation Mechanism. Biomolecules 2019; 9:E65. [PMID: 30769878 PMCID: PMC6406783 DOI: 10.3390/biom9020065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023] Open
Abstract
Amyloid fibrils, highly ordered protein aggregates, play an important role in the onset of several neurological disorders. Many studies have assessed amyloid fibril formation under specific solution conditions, but they all lack an important phenomena in biological solutions-buffer specific effects. We have focused on the formation of hen egg-white lysozyme (HEWL) fibrils in aqueous solutions of different buffers in both acidic and basic pH range. By means of UV-Vis spectroscopy, fluorescence measurements and CD spectroscopy, we have managed to show that fibrillization of HEWL is affected by buffer identity (glycine, TRIS, phosphate, KCl-HCl, cacodylate, HEPES, acetate), solution pH, sample incubation (agitated vs. static) and added excipients (NaCl and PEG). HEWL only forms amyloid fibrils at pH = 2.0 under agitated conditions in glycine and KCl-HCl buffers of high enough ionic strength. Phosphate buffer on the other hand stabilizes the HEWL molecules. Similar stabilization effect was achieved by addition of PEG12000 molecules to the solution.
Collapse
Affiliation(s)
- Sandi Brudar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| | - Barbara Hribar-Lee
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Monahan ZT, Rhoads SN, Yee DS, Shewmaker FP. Yeast Models of Prion-Like Proteins That Cause Amyotrophic Lateral Sclerosis Reveal Pathogenic Mechanisms. Front Mol Neurosci 2018; 11:453. [PMID: 30618605 PMCID: PMC6297178 DOI: 10.3389/fnmol.2018.00453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Many proteins involved in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS) are remarkably similar to proteins that form prions in the yeast Saccharomyces cerevisiae. These ALS-associated proteins are not orthologs of yeast prion proteins, but are similar in having long, intrinsically disordered domains that are rich in hydrophilic amino acids. These so-called prion-like domains are particularly aggregation-prone and are hypothesized to participate in the mislocalization and misfolding processes that occur in the motor neurons of ALS patients. Methods developed for characterizing yeast prions have been adapted to studying ALS-linked proteins containing prion-like domains. These yeast models have yielded major discoveries, including identification of new ALS genetic risk factors, new ALS-causing gene mutations and insights into how disease mutations enhance protein aggregation.
Collapse
Affiliation(s)
| | | | | | - Frank P. Shewmaker
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
18
|
Son M, Wickner RB. Nonsense-mediated mRNA decay factors cure most [PSI+] prion variants. Proc Natl Acad Sci U S A 2018; 115:E1184-E1193. [PMID: 29358398 PMCID: PMC5819436 DOI: 10.1073/pnas.1717495115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The yeast prion [PSI+] is a self-propagating amyloid of Sup35p with a folded in-register parallel β-sheet architecture. In a genetic screen for antiprion genes, using the yeast knockout collection, UPF1/NAM7 and UPF3, encoding nonsense-mediated mRNA decay (NMD) factors, were frequently detected. Almost all [PSI+] variants arising in the absence of Upf proteins were eliminated by restored normal levels of these proteins, and [PSI+] arises more frequently in upf mutants. Upf1p, complexed with Upf2p and Upf3p, is a multifunctional protein with helicase, ATP-binding, and RNA-binding activities promoting efficient translation termination and degradation of mRNAs with premature nonsense codons. We find that the curing ability of Upf proteins is uncorrelated with these previously reported functions but does depend on their interaction with Sup35p and formation of the Upf1p-Upf2p-Upf3p complex (i.e., the Upf complex). Indeed, Sup35p amyloid formation in vitro is inhibited by substoichiometric Upf1p. Inhibition of [PSI+] prion generation and propagation by Upf proteins may be due to the monomeric Upf proteins and the Upf complex competing with Sup35p amyloid fibers for available Sup35p monomers. Alternatively, the association of the Upf complex with amyloid filaments may block the addition of new monomers. Our results suggest that maintenance of normal protein-protein interactions prevents prion formation and can even reverse the process.
Collapse
Affiliation(s)
- Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
19
|
Wisniewski BT, Sharma J, Legan ER, Paulson E, Merrill SJ, Manogaran AL. Toxicity and infectivity: insights from de novo prion formation. Curr Genet 2018; 64:117-123. [PMID: 28856415 PMCID: PMC5777878 DOI: 10.1007/s00294-017-0736-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Prions are infectious misfolded proteins that assemble into oligomers and large aggregates, and are associated with neurodegeneration. It is believed that the oligomers contribute to cytotoxicity, although genetic and environmental factors have also been shown to have additional roles. The study of the yeast prion [PSI +] has provided valuable insights into how prions form and why they are toxic. Our recent work suggests that SDS-resistant oligomers arise and remodel early during the prion formation process, and lysates containing these newly formed oligomers are infectious. Previous work shows that toxicity is associated with prion formation and this toxicity is exacerbated by deletion of the VPS5 gene. Here, we show that newly made oligomer formation and infectivity of vps5∆ lysates are similar to wild-type strains. However using green fluorescent protein fusions, we observe that the assembly of fluorescent cytoplasmic aggregates during prion formation is different in vps5∆ strains. Instead of large immobile aggregates, vps5∆ strains have an additional population of small mobile foci. We speculate that changes in the cellular milieu in vps5∆ strains may reduce the cell's ability to efficiently recruit and sequester newly formed prion particles into central deposition sites, resulting in toxicity.
Collapse
Affiliation(s)
- Brett T Wisniewski
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Jaya Sharma
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Emily R Legan
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Emily Paulson
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Stephen J Merrill
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA.
| |
Collapse
|
20
|
Harvey ZH, Chen Y, Jarosz DF. Protein-Based Inheritance: Epigenetics beyond the Chromosome. Mol Cell 2017; 69:195-202. [PMID: 29153393 DOI: 10.1016/j.molcel.2017.10.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/01/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Epigenetics refers to changes in phenotype that are not rooted in DNA sequence. This phenomenon has largely been studied in the context of chromatin modification. Yet many epigenetic traits are instead linked to self-perpetuating changes in the individual or collective activity of proteins. Most such proteins are prions (e.g., [PSI+], [URE3], [SWI+], [MOT3+], [MPH1+], [LSB+], and [GAR+]), which have the capacity to adopt at least one conformation that self-templates over long biological timescales. This allows them to serve as protein-based epigenetic elements that are readily broadcast through mitosis and meiosis. In some circumstances, self-templating can fuel disease, but it also permits access to multiple activity states from the same polypeptide and transmission of that information across generations. Ensuing phenotypic changes allow genetically identical cells to express diverse and frequently adaptive phenotypes. Although long thought to be rare, protein-based epigenetic inheritance has now been uncovered in all domains of life.
Collapse
Affiliation(s)
- Zachary H Harvey
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Yiwen Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Grizel AV, Rubel AA, Chernoff YO. Strain conformation controls the specificity of cross-species prion transmission in the yeast model. Prion 2017; 10:269-82. [PMID: 27565563 DOI: 10.1080/19336896.2016.1204060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.
Collapse
Affiliation(s)
- Anastasia V Grizel
- a Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg , Russia.,b Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia.,c Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Aleksandr A Rubel
- a Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg , Russia.,b Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia.,c Department of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Yury O Chernoff
- a Laboratory of Amyloid Biology, St. Petersburg State University , St. Petersburg , Russia.,b Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia.,d School of Biological Sciences, Georgia Institute of Technology , Atlanta , GA , USA
| |
Collapse
|
22
|
Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation. PLoS Genet 2017; 13:e1006708. [PMID: 28369054 PMCID: PMC5393896 DOI: 10.1371/journal.pgen.1006708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Mammalian and fungal prions arise de novo; however, the mechanism is poorly understood in molecular terms. One strong possibility is that oxidative damage to the non-prion form of a protein may be an important trigger influencing the formation of its heritable prion conformation. We have examined the oxidative stress-induced formation of the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We used tandem affinity purification (TAP) and mass spectrometry to identify the proteins which associate with Sup35 in a tsa1 tsa2 antioxidant mutant to address the mechanism by which Sup35 forms the [PSI+] prion during oxidative stress conditions. This analysis identified several components of the cortical actin cytoskeleton including the Abp1 actin nucleation promoting factor, and we show that deletion of the ABP1 gene abrogates oxidant-induced [PSI+] prion formation. The frequency of spontaneous [PSI+] prion formation can be increased by overexpression of Sup35 since the excess Sup35 increases the probability of forming prion seeds. In contrast to oxidant-induced [PSI+] prion formation, overexpression-induced [PSI+] prion formation was only modestly affected in an abp1 mutant. Furthermore, treating yeast cells with latrunculin A to disrupt the formation of actin cables and patches abrogated oxidant-induced, but not overexpression-induced [PSI+] prion formation, suggesting a mechanistic difference in prion formation. [PIN+], the prion form of Rnq1, localizes to the IPOD (insoluble protein deposit) and is thought to influence the aggregation of other proteins. We show Sup35 becomes oxidized and aggregates during oxidative stress conditions, but does not co-localize with Rnq1 in an abp1 mutant which may account for the reduced frequency of [PSI+] prion formation. Prions are infectious agents which are composed of misfolded proteins and have been implicated in progressive neurodegenerative diseases such as Creutzfeldt Jakob Disease (CJD). Most prion diseases occur sporadically and are then propagated in a protein-only mechanism via induced protein misfolding. Little is currently known regarding how normally soluble proteins spontaneously form their prion forms. Previous studies have implicated oxidative damage of the non-prion form of some proteins as an important trigger for the formation of their heritable prion conformation. Using a yeast prion model we found that the cortical actin cytoskeleton is required for the transition of an oxidized protein to its heritable infectious conformation. In mutants which disrupt the cortical actin cytoskeleton, the oxidized protein aggregates, but does not localize to its normal amyloid deposition site, termed the IPOD. The IPOD serves as a site where prion proteins undergo fragmentation and seeding and we show that preventing actin-mediated localization to this site prevents both spontaneous and oxidant-induced prion formation.
Collapse
|
23
|
Edskes HK, Kryndushkin D, Shewmaker F, Wickner RB. Prion Transfection of Yeast. Cold Spring Harb Protoc 2017; 2017:2017/2/pdb.prot089037. [PMID: 28148849 DOI: 10.1101/pdb.prot089037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transfection of yeast with amyloid filaments, made from recombinant protein or prepared from extracts of cells infected with a prion, has become an important method in characterizing yeast prions. Here, we describe a method for transmission of [URE3] with Ure2p amyloid that is based on a previously published protocol for transfection with Sup35p filaments to make cells [PSI+]. This method may be used for other prions by changing just the amyloid source, host strain, and plating medium.
Collapse
Affiliation(s)
- Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830
| | - Dmitry Kryndushkin
- Department of Pharmacology, Uniformed Services University for the Health Sciences, Bethesda, Maryland 20814
| | - Frank Shewmaker
- Department of Pharmacology, Uniformed Services University for the Health Sciences, Bethesda, Maryland 20814
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830;
| |
Collapse
|
24
|
Wild-type hen egg white lysozyme aggregation in vitro can form self-seeding amyloid conformational variants. Biophys Chem 2016; 219:28-37. [DOI: 10.1016/j.bpc.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022]
|
25
|
Sivalingam V, Patel BK. Familial mutations in fibrinogen Aα (FGA) chain identified in renal amyloidosis increase in vitro amyloidogenicity of FGA fragment. Biochimie 2016; 127:44-9. [DOI: 10.1016/j.biochi.2016.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
|
26
|
Abstract
Although prions were first discovered through their link to severe brain degenerative diseases in animals, the emergence of prions as regulators of the phenotype of the yeast Saccharomyces cerevisiae and the filamentous fungus Podospora anserina has revealed a new facet of prion biology. In most cases, fungal prions are carried without apparent detriment to the host cell, representing a novel form of epigenetic inheritance. This raises the question of whether or not yeast prions are beneficial survival factors or actually gives rise to a "disease state" that is selected against in nature. To date, most studies on the impact of fungal prions have focused on laboratory-cultivated "domesticated" strains of S. cerevisiae. At least eight prions have now been described in this species, each with the potential to impact on a wide range of cellular processes. The discovery of prions in nondomesticated strains of S. cerevisiae and P. anserina has confirmed that prions are not simply an artifact of "domestication" of this species. In this review, I describe what we currently know about the phenotypic impact of fungal prions. I then describe how the interplay between host genotype and the prion-mediated changes can generate a wide array of phenotypic diversity. How such prion-generated diversity may be of benefit to the host in survival in a fluctuating, often hazardous environment is then outlined. Prion research has now entered a new phase in which we must now consider their biological function and evolutionary significance in the natural world.
Collapse
Affiliation(s)
- Mick F Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| |
Collapse
|
27
|
[KIL-d] Protein Element Confers Antiviral Activity via Catastrophic Viral Mutagenesis. Mol Cell 2015; 60:651-60. [PMID: 26590718 DOI: 10.1016/j.molcel.2015.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/24/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023]
Abstract
Eukaryotic cells are targeted by pathogenic viruses and have developed cell defense mechanisms against viral infection. In yeast, the cellular extrachromosomal genetic element [KIL-d] alters killer activity of M double-stranded RNA killer virus and confers cell resistance against the killer virus. However, its underlying mechanism and the molecular nature of [KIL-d] are unknown. Here, we demonstrate that [KIL-d] is a proteinaceous prion-like aggregate with non-Mendelian cytoplasmic transmission. Deep sequencing analyses revealed that [KIL-d] selectively increases the rate of de novo mutation in the killer toxin gene of the viral genome, producing yeast harboring a defective mutant killer virus with a selective growth advantage over those with WT killer virus. These results suggest that a prion-like [KIL-d] element reprograms the viral replication machinery to induce mutagenesis and genomic inactivation via the long-hypothesized mechanism of "error catastrophe." The findings also support a role for prion-like protein aggregates in cellular defense and adaptation.
Collapse
|
28
|
Kabani M, Melki R. More than just trash bins? Potential roles for extracellular vesicles in the vertical and horizontal transmission of yeast prions. Curr Genet 2015; 62:265-70. [PMID: 26553335 PMCID: PMC4826420 DOI: 10.1007/s00294-015-0534-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 10/28/2015] [Accepted: 10/31/2015] [Indexed: 01/05/2023]
Abstract
In the yeast Saccharomyces cerevisiae, an ensemble of structurally and functionally diverse cytoplasmic proteins has the ability to form self-perpetuating protein aggregates (e.g. prions) which are the vectors of heritable non-Mendelian phenotypic traits. Whether harboring these prions is deleterious—akin to mammalian degenerative disorders—or beneficial—as epigenetic modifiers of gene expression—for yeasts has been intensely debated and strong arguments were made in support of both views. We recently reported that the yeast prion protein Sup35p is exported via extracellular vesicles (EV), both in its soluble and aggregated infectious states. Herein, we discuss the possible implications of this observation and propose several hypotheses regarding the roles of EV in both vertical and horizontal propagation of ‘good’ and ‘bad’ yeast prions.
Collapse
Affiliation(s)
- Mehdi Kabani
- Centre National de la Recherche Scientifique (CNRS), Paris-Saclay Institute of Neuroscience, Université Paris-Saclay, Bât. 32-33, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| | - Ronald Melki
- Centre National de la Recherche Scientifique (CNRS), Paris-Saclay Institute of Neuroscience, Université Paris-Saclay, Bât. 32-33, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
29
|
Sharma N, Sivalingam V, Maurya S, Prasad A, Khandelwal P, Yadav SC, Patel BK. New insights into in vitro amyloidogenic properties of human serum albumin suggest considerations for therapeutic precautions. FEBS Lett 2015; 589:4033-8. [DOI: 10.1016/j.febslet.2015.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/24/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
|
30
|
Doronina VA, Staniforth GL, Speldewinde SH, Tuite MF, Grant CM. Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion. Mol Microbiol 2015; 96:163-74. [PMID: 25601439 PMCID: PMC4407919 DOI: 10.1111/mmi.12930] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 01/09/2023]
Abstract
Prions are self‐perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals and heritable traits in yeast. The molecular basis of how yeast and mammalian prions form spontaneously into infectious amyloid‐like structures is poorly understood. We have explored the hypothesis that oxidative stress is a general trigger for prion formation using the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We show that the frequency of [PSI+] prion formation is elevated under conditions of oxidative stress and in mutants lacking key antioxidants. We detect increased oxidation of Sup35 methionine residues in antioxidant mutants and show that overexpression of methionine sulphoxide reductase abrogates both the oxidation of Sup35 and its conversion to the [PSI+] prion. [PSI+] prion formation is particularly elevated in a mutant lacking the Sod1 Cu,Zn‐superoxide dismutase. We have used fluorescence microscopy to show that the de novo appearance of [PSI+] is both rapid and increased in frequency in this mutant. Finally, electron microscopy analysis of native Sup35 reveals that similar fibrillar structures are formed in both the wild‐type and antioxidant mutants. Together, our data indicate that oxidative stress is a general trigger of [PSI+] formation, which can be alleviated by antioxidant defenses.
Collapse
Affiliation(s)
- Victoria A Doronina
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
31
|
Locating folds of the in-register parallel β-sheet of the Sup35p prion domain infectious amyloid. Proc Natl Acad Sci U S A 2014; 111:E4615-22. [PMID: 25313080 DOI: 10.1073/pnas.1417974111] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The [PSI+] prion is a self-propagating amyloid of the translation termination factor, Sup35p, of Saccharomyces cerevisiae. The N-terminal 253 residues (NM) of this 685-residue protein normally function in regulating mRNA turnover but spontaneously form infectious amyloid in vitro. We converted the three Ile residues in Sup35NM to Leu and then replaced 16 single residues with Ile, one by one, and prepared Ile-1-(13)C amyloid of each mutant, seeding with amyloid formed by the reference sequence Sup35NM. Using solid-state NMR, we showed that 10 of the residues examined, including six between residues 30 and 90, showed the ∼0.5-nm distance between labels diagnostic of the in-register parallel amyloid architecture. The five scattered N domain residues with wider spacing may be in turns or loops; one is a control at the C terminus of M. All mutants, except Q56I, showed little or no [PSI+] transmission barrier from the reference sequence, suggesting that they could assume a similar amyloid architecture in vitro when seeded with filaments of reference sequence Sup35NM. Infection of yeast cells expressing the reference SUP35 gene sequence with amyloid of several mutants produced [PSI+] transfectants with similar efficiency as did reference sequence Sup35NM amyloid. Our work provides a stringent demonstration that the Sup35 prion domain has the folded in-register parallel β-sheet architecture and suggests common locations of the folds. This architecture naturally suggests a mechanism of inheritance of conformation, the central mystery of prions.
Collapse
|
32
|
Kondrashkina AM, Antonets KS, Galkin AP, Nizhnikov AA. Prion-like determinant [NSI +] decreases the expression of the SUP45 gene in Saccharomyces cerevisiae. Mol Biol 2014. [DOI: 10.1134/s0026893314050069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Abstract
Multiple prion elements, which are transmitted as heritable protein conformations and often linked to distinct phenotypes, have been identified in the budding yeast, Saccharomyces cerevisiae. It has been shown that overproduction of a prion protein Swi1 can promote the de novo conversion of another yeast prion [PSI(+)] when Sup35 is co-overproduced. However, the mechanism underlying this Pin(+) ([PSI(+)] inducible) activity is not clear. Moreover, how the Swi1 prion ([SWI(+)]) interacts with other yeast prions is unknown. Here, we demonstrate that the Pin(+) activity associated with Swi1 overproduction is independent of Rnq1 expression or [PIN(+)] conversion. We also show that [SWI(+)] enhances the appearance of [PSI(+)] and [PIN(+)]. However, [SWI(+)] significantly compromises the Pin(+) activity of [PIN(+)] when they coexist. We further demonstrate that a single yeast cell can harbor three prions, [PSI(+)], [PIN(+)], and [SWI(+)], simultaneously. However, under this condition, [SWI(+)] is significantly destabilized. While the propensity to aggregate underlies prionogenesis, Swi1 and Rnq1 aggregates resulting from overproduction are usually nonheritable. Conversely, prion protein aggregates formed in nonoverexpressing conditions or induced by preexisting prion(s) are more prionogenic. For [PSI(+)] and [PIN(+)] de novo formation, heterologous "facilitators," such as preexisting [SWI(+)] aggregates, colocalize only with the newly formed ring-/rod-shaped Sup35 or Rnq1 aggregates, but not with the dot-shaped mature prion aggregates. Their colocalization frequency is coordinated with their prion inducibility, indicating that prion-prion interactions mainly occur at the early initiation stage. Our results provide supportive evidence for the cross-seeding model of prionogenesis and highlight a complex interaction network among prions in yeast.
Collapse
|
34
|
Westergard L, True HL. Extracellular environment modulates the formation and propagation of particular amyloid structures. Mol Microbiol 2014; 92:698-715. [PMID: 24628771 DOI: 10.1111/mmi.12579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 11/27/2022]
Abstract
Amyloidogenic proteins, including prions, assemble into multiple forms of structurally distinct fibres. The [PSI(+)] prion, endogenous to the yeast Saccharomyces cerevisiae, is a dominantly inherited, epigenetic modifier of phenotypes. [PSI(+)] formation relies on the coexistence of another prion, [RNQ(+)]. Here, in order to better define the role of amyloid diversity on cellular phenotypes, we investigated how physiological and environmental changes impact the generation and propagation of diverse protein conformations from a single polypeptide. Utilizing the yeast model system, we defined extracellular factors that influence the formation of a spectrum of alternative self-propagating amyloid structures of the Sup35 protein, called [PSI(+)] variants. Strikingly, exposure to specific stressful environments dramatically altered the variants of [PSI(+)] that formed de novo. Additionally, we found that stress also influenced the association between the [PSI(+)] and [RNQ(+)] prions in a way that it superceded their typical relationship. Furthermore, changing the growth environment modified both the biochemical properties and [PSI(+)]-inducing capabilities of the [RNQ(+)] template. These data suggest that the cellular environment contributes to both the generation and the selective propagation of specific amyloid structures, providing insight into a key feature that impacts phenotypic diversity in yeast and the cross-species transmission barriers characteristic of prion diseases.
Collapse
Affiliation(s)
- Laura Westergard
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
35
|
The BAG homology domain of Snl1 cures yeast prion [URE3] through regulation of Hsp70 chaperones. G3-GENES GENOMES GENETICS 2014; 4:461-70. [PMID: 24408033 PMCID: PMC3962485 DOI: 10.1534/g3.113.009993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The BAG family of proteins is evolutionarily conserved from yeast to humans and plants. In animals and plants, the BAG family possesses multiple members with overlapping and distinct functions that regulate many cellular processes, such as signaling, protein degradation, and stress response. The only BAG domain protein in Saccharomyces cerevisiae is Snl1, which is anchored to the endoplasmic reticulum through an amino-terminal transmembrane region. Snl1 is the only known membrane-associated nucleotide exchange factor for 70-kilodalton heat shock protein (Hsp70), and thus its role in regulating cytosolic Hsp70 functions is not clear. Here, we examine whether Snl1 regulates Hsp70 activity in the propagation of stable prion-like protein aggregates. We show that unlike other nucleotide exchange factors, Snl1 is not required for propagation of yeast prions [URE3] and [PSI+]. Overexpressing Snl1 derivative consisting of only the BAG domain (Snl1-S) cures [URE3]; however, elevated levels of the entire cytosolic domain of Snl1 (Snl1-M), which has nine additional amino-terminal residues, has no effect. Substituting the three lysine residues in this region of Snl1-M with alanine restores ability to cure [URE3]. [PSI+] is unaffected by overproduction of either Snl1-S or Snl1-M. The Snl1-S mutant engineered with weaker affinity to Hsp70 does not cure [URE3], indicating that curing of [URE3] by Snl1-S requires Hsp70. Our data suggest that Snl1 anchoring to endoplasmic reticulum or nuclear membrane restricts its ability to modulate cytosolic activities of Hsp70 proteins. Furthermore, the short amino-terminal extension of the BAG domain profoundly affects its function.
Collapse
|
36
|
Nizhnikov AA, Kondrashkina AM, Galkin AP. Interactions of [NSI +] prion-like determinant with SUP35 and VTS1 genes in Saccharomyces cerevisiae. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413100074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Sharma J, Liebman SW. Variant-specific prion interactions: Complicating factors. CELLULAR LOGISTICS 2013; 3:e25698. [PMID: 24475372 PMCID: PMC3891757 DOI: 10.4161/cl.25698] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/09/2013] [Indexed: 01/09/2023]
Abstract
Prions are protein conformations that “self-seed” the misfolding of their non-prion iso-forms into prion, often amyloid, conformations. The most famous prion is the mammalian PrP protein that in its prion form causes transmissible spongiform encephalopathy. Curiously there can be distinct conformational differences even between prions of the same protein propagated in the same host species. These are called prion strains or variants. For example, different PrP variants are faithfully transmitted during self-seeding and are associated with distinct disease characteristics. Variant-specific PrP prion differences include the length of the incubation period before the disease appears and the deposition of prion aggregates in distinct regions of the brain.1 Other more common neurodegenerative diseases (e.g., Alzheimer disease, Parkinson disease, type 2 diabetes and ALS) are likewise caused by the misfolding of a normal protein into a self-seeding aggregate.2-4 One of the most important unanswered questions is how the first prion-like seed arises de novo, resulting in the pathological cascade.
Collapse
Affiliation(s)
- Jaya Sharma
- Department of Biological Sciences; University of Illinois at Chicago; Chicago, IL USA
| | - Susan W Liebman
- Department of Biological Sciences; University of Illinois at Chicago; Chicago, IL USA ; Department of Biochemistry and Molecular Biology; University of Nevada Reno; Reno, NV USA
| |
Collapse
|
38
|
Exploring the basis of [PIN(+)] variant differences in [PSI(+)] induction. J Mol Biol 2013; 425:3046-59. [PMID: 23770111 DOI: 10.1016/j.jmb.2013.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/07/2013] [Accepted: 06/07/2013] [Indexed: 01/12/2023]
Abstract
Certain soluble proteins can form amyloid-like prion aggregates. Indeed, the same protein can make different types of aggregates, called variants. Each variant is heritable because it attracts soluble homologous protein to join its aggregate, which is then broken into seeds (propagons) and transmitted to daughter cells. [PSI(+)] and [PIN(+)] are respectively prion forms of Sup35 and Rnq1. Curiously, [PIN(+)] enhances the de novo induction of [PSI(+)]. Different [PIN(+)] variants do this to dramatically different extents. Here, we investigate the mechanism underlying this effect. Consistent with a heterologous prion cross-seeding model, different [PIN(+)] variants preferentially promoted the appearance of different variants of [PSI(+)]. However, we did not detect this specificity in vitro. Also, [PIN(+)] variant cross-seeding efficiencies were not proportional to the level of Rnq1 coimmunocaptured with Sup35 or to the number of [PIN(+)] propagons characteristic for that variant. This leads us to propose that [PIN(+)] variants differ in the cross-seeding quality of their seeds, following the Sup35/[PIN(+)] binding step.
Collapse
|
39
|
Suzuki G, Tanaka M. Expanding the yeast prion world: Active prion conversion of non-glutamine/asparagine-rich Mod5 for cell survival. Prion 2013; 7:109-13. [PMID: 23117914 PMCID: PMC3609114 DOI: 10.4161/pri.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian and fungal prion proteins form self-perpetuating β-sheet-rich fibrillar aggregates called amyloid. Prion inheritance is based on propagation of the regularly oriented amyloid structures of the prion proteins. All yeast prion proteins identified thus far contain aggregation-prone glutamine/asparagine (Gln/Asn)-rich domains, although the mammalian prion protein and fungal prion protein HET-s do not contain such sequences. In order to fill this gap, we searched for novel yeast prion proteins lacking Gln/Asn-rich domains via a genome-wide screen based on cross-seeding between two heterologous proteins and identified Mod5, a yeast tRNA isopentenyltransferase, as a novel non-Gln/Asn-rich yeast prion protein. Mod5 formed self-propagating amyloid fibers in vitro and the introduction of Mod5 amyloids into non-prion yeast induced dominantly and cytoplasmically heritable prion state [MOD (+) ], which harbors aggregates of endogenous Mod5. [MOD (+) ] yeast showed an increased level of membrane lipid ergosterol and acquired resistance to antifungal agents. Importantly, enhanced de novo formation of [MOD (+) ] was observed when non-prion yeast was grown under selective pressures from antifungal drugs. Our findings expand the family of yeast prions to non-Gln/Asn-rich proteins and reveal the acquisition of a fitness advantage for cell survival through active prion conversion.
Collapse
|
40
|
Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, Zhou A. Amyloids and yeast prion biology. Biochemistry 2013; 52:1514-27. [PMID: 23379365 DOI: 10.1021/bi301686a] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prions (infectious proteins) of Saccharomyces cerevisiae are proteins acting as genes, by templating their conformation from one molecule to another in analogy to DNA templating its sequence. Most yeast prions are amyloid forms of normally soluble proteins, and a single protein sequence can have any of several self-propagating forms (called prion strains or variants), analogous to the different possible alleles of a DNA gene. A central issue in prion biology is the structural basis of this conformational templating process. The in-register parallel β sheet structure found for several infectious yeast prion amyloids naturally suggests an explanation for this conformational templating. While most prions are plainly diseases, the [Het-s] prion of Podospora anserina may be a functional amyloid, with important structural implications. Yeast prions are important models for human amyloid diseases in general, particularly because new evidence is showing infectious aspects of several human amyloidoses not previously classified as prions. We also review studies of the roles of chaperones, aggregate-collecting proteins, and other cellular components using yeast that have led the way in improving the understanding of similar processes that must be operating in many human amyloidoses.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Antony H, Wiegmans AP, Wei MQ, Chernoff YO, Khanna KK, Munn AL. Potential roles for prions and protein-only inheritance in cancer. Cancer Metastasis Rev 2012; 31:1-19. [PMID: 22138778 DOI: 10.1007/s10555-011-9325-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited mutations are known to cause familial cancers. However, the cause of sporadic cancers, which likely represent the majority of cancers, is yet to be elucidated. Sporadic cancers contain somatic mutations (including oncogenic mutations); however, the origin of these mutations is unclear. An intriguing possibility is that a stable alteration occurs in somatic cells prior to oncogenic mutations and promotes the subsequent accumulation of oncogenic mutations. This review explores the possible role of prions and protein-only inheritance in cancer. Genetic studies using lower eukaryotes, primarily yeast, have identified a large number of proteins as prions that confer dominant phenotypes with cytoplasmic (non-Mendelian) inheritance. Many of these have mammalian functional homologs. The human prion protein (PrP) is known to cause neurodegenerative diseases and has now been found to be upregulated in multiple cancers. PrP expression in cancer cells contributes to cancer progression and resistance to various cancer therapies. Epigenetic changes in the gene expression and hyperactivation of MAP kinase signaling, processes that in lower eukaryotes are affected by prions, play important roles in oncogenesis in humans. Prion phenomena in yeast appear to be influenced by stresses, and there is considerable evidence of the association of some amyloids with biologically positive functions. This suggests that if protein-only somatic inheritance exists in mammalian cells, it might contribute to cancer phenotypes. Here, we highlight evidence in the literature for an involvement of prion or prion-like mechanisms in cancer and how they may in the future be viewed as diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- H Antony
- Griffith Health Institute, Griffith University, Southport, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
42
|
Mitkevich OV, Kochneva-Pervukhova NV, Surina ER, Benevolensky SV, Kushnirov VV, Ter-Avanesyan MD. DNA aptamers detecting generic amyloid epitopes. Prion 2012; 6:400-6. [PMID: 22874671 DOI: 10.4161/pri.20678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloids are fibrillar protein aggregates resulting from non-covalent autocatalytic polymerization of various structurally and functionally unrelated proteins. Previously we have selected DNA aptamers, which bind specifically to the in vitro assembled amyloid fibrils of the yeast prionogenic protein Sup35. Here we show that such DNA aptamers can be used to detect SDS-insoluble amyloid aggregates of the Sup35 protein, and of some other amyloidogenic proteins, including mouse PrP, formed in yeast cells. The obtained data suggest that these aggregates and the Sup35 amyloid fibrils assembled in vitro possess common conformational epitopes recognizable by aptamers. The described DNA aptamers may be used for detection of various amyloid aggregates in yeast and, presumably, other organisms.
Collapse
Affiliation(s)
- Olga V Mitkevich
- A.N. Bach Institute of Biochemistry, The Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
44
|
Tyedmers J. Patterns of [PSI (+) ] aggregation allow insights into cellular organization of yeast prion aggregates. Prion 2012; 6:191-200. [PMID: 22449721 DOI: 10.4161/pri.18986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI (+) ] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates.
Collapse
Affiliation(s)
- Jens Tyedmers
- Center for Molecular Biology of the University of Heidelberg (ZMBH, Heidelberg, Germany.
| |
Collapse
|
45
|
Soto C. Transmissible proteins: expanding the prion heresy. Cell 2012; 149:968-77. [PMID: 22632966 PMCID: PMC3367461 DOI: 10.1016/j.cell.2012.05.007] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/26/2022]
Abstract
The once-heretical concept that a misfolded protein is the infectious agent responsible for prion diseases is now widely accepted. Recent exciting research has led not only to the end of the skepticism that proteins can transmit disease but also to expanding the concept that transmissible proteins might be at the root of some of the most prevalent human illnesses. At the same time, the idea that biological information can be transmitted by propagation of protein (mis)folding raises the possibility that heritable protein agents may be operating as epigenetic factors in normal biological functions and participating in evolutionary adaptation.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012; 336:355-9. [PMID: 22517861 DOI: 10.1126/science.1219491] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Prion conversion from a soluble protein to an aggregated state may be involved in the cellular adaptation of yeast to the environment. However, it remains unclear whether and how cells actively use prion conversion to acquire a fitness advantage in response to environmental stress. We identified Mod5, a yeast transfer RNA isopentenyltransferase lacking glutamine/asparagine-rich domains, as a yeast prion protein and found that its prion conversion in yeast regulated the sterol biosynthetic pathway for acquired cellular resistance against antifungal agents. Furthermore, selective pressure by antifungal drugs on yeast facilitated the de novo appearance of Mod5 prion states for cell survival. Thus, phenotypic changes caused by active prion conversion under environmental selection may contribute to cellular adaptation in living organisms.
Collapse
Affiliation(s)
- Genjiro Suzuki
- Laboratory for Protein Conformation Diseases, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA.
| |
Collapse
|
48
|
King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 2012; 1462:61-80. [PMID: 22445064 DOI: 10.1016/j.brainres.2012.01.016] [Citation(s) in RCA: 497] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/06/2012] [Accepted: 01/07/2012] [Indexed: 02/08/2023]
Abstract
Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable 'prion domain' enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease and Huntington's disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion domains of RNA-binding proteins could underlie the classical non-cell-autonomous emanation of neurodegenerative pathology from originating epicenters to neighboring portions of the nervous system. This article is part of a Special Issue entitled RNA-Binding Proteins.
Collapse
Affiliation(s)
- Oliver D King
- Boston Biomedical Research Institute, 64 Grove St., Watertown, MA 02472, USA.
| | | | | |
Collapse
|
49
|
[NSI+] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes. Curr Genet 2012; 58:35-47. [PMID: 22215010 DOI: 10.1007/s00294-011-0363-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/19/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
We recently discovered the novel non-chromosomal determinant in Saccharomyces cerevisiae [NSI(+)] (nonsense suppression inducer), which causes omnipotent nonsense suppression in strains where the Sup35 N-terminal domain is deleted. [NSI(+)] possesses yeast prion features and does not correspond to previously identified yeast prion determinants. Here, we show that [NSI(+)] enhances nonsense codon read-through and inhibits vegetative growth in S. cerevisiae. Using a large-scale overexpression screen to identify genes that impact the phenotypic effects of [NSI(+)], we found that the SUP35 and SUP45 genes encoding the translation termination factors eRF3 and eRF1, respectively, modulate nonsense suppression in [NSI(+)] strains. The VTS1 gene encodes an NQ-enriched RNA-binding protein that enhances nonsense suppression in [NSI(+)] and [nsi(-)] strains. We demonstrate that VTS1 overexpression, like [NSI(+)] induction, causes translational read-through and growth defects in S. cerevisiae.
Collapse
|
50
|
Staniforth GL, Tuite MF. Fungal prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:417-56. [PMID: 22482457 DOI: 10.1016/b978-0-12-385883-2.00007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For both mammalian and fungal prion proteins, conformational templating drives the phenomenon of protein-only infectivity. The conformational conversion of a protein to its transmissible prion state is associated with changes to host cellular physiology. In mammals, this change is synonymous with disease, whereas in fungi no notable detrimental effect on the host is typically observed. Instead, fungal prions can serve as epigenetic regulators of inheritance in the form of partial loss-of-function phenotypes. In the presence of environmental challenges, the prion state [PRION(+)], with its resource for phenotypic plasticity, can be associated with a growth advantage. The growing number of yeast proteins that can switch to a heritable [PRION(+)] form represents diverse and metabolically penetrating cellular functions, suggesting that the [PRION(+)] state in yeast is a functional one, albeit rarely found in nature. In this chapter, we introduce the biochemical and genetic properties of fungal prions, many of which are shared by the mammalian prion protein PrP, and then outline the major contributions that studies on fungal prions have made to prion biology.
Collapse
Affiliation(s)
- Gemma L Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | |
Collapse
|