1
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
2
|
van Wijk KJ, Bentolila S, Leppert T, Sun Q, Sun Z, Mendoza L, Li M, Deutsch EW. Detection and editing of the updated Arabidopsis plastid- and mitochondrial-encoded proteomes through PeptideAtlas. PLANT PHYSIOLOGY 2024; 194:1411-1430. [PMID: 37879112 DOI: 10.1093/plphys/kiad572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) ecotype Col-0 has plastid and mitochondrial genomes encoding over 100 proteins. Public databases (e.g. Araport11) have redundancy and discrepancies in gene identifiers for these organelle-encoded proteins. RNA editing results in changes to specific amino acid residues or creation of start and stop codons for many of these proteins, but the impact of RNA editing at the protein level is largely unexplored due to the complexities of detection. Here, we assembled the nonredundant set of identifiers, their correct protein sequences, and 452 predicted nonsynonymous editing sites of which 56 are edited at lower frequency. We then determined accumulation of edited and/or unedited proteoforms by searching ∼259 million raw tandem MS spectra from ProteomeXchange, which is part of PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/). We identified all mitochondrial proteins and all except 3 plastid-encoded proteins (NdhG/Ndh6, PsbM, and Rps16), but no proteins predicted from the 4 ORFs were identified. We suggest that Rps16 and 3 of the ORFs are pseudogenes. Detection frequencies for each edit site and type of edit (e.g. S to L/F) were determined at the protein level, cross-referenced against the metadata (e.g. tissue), and evaluated for technical detection challenges. We detected 167 predicted edit sites at the proteome level. Minor frequency sites were edited at low frequency at the protein level except for cytochrome C biogenesis 382 at residue 124 (Ccb382-124). Major frequency sites (>50% editing of RNA) only accumulated in edited form (>98% to 100% edited) at the protein level, with the exception of Rpl5-22. We conclude that RNA editing for major editing sites is required for stable protein accumulation.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Stephane Bentolila
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Margaret Li
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, WA 98109, USA
| |
Collapse
|
3
|
Bubunenko MG, Korepanov AP. The P-Site Loop of the Universally Conserved Bacterial Ribosomal Protein L5 Is Required for Maintaining Both Translation Rate and Fidelity. Int J Mol Sci 2023; 24:14285. [PMID: 37762588 PMCID: PMC10531944 DOI: 10.3390/ijms241814285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
The bacterial ribosomal 5S rRNA-binding protein L5 is universally conserved (uL5). It contains the so-called P-site loop (PSL), which contacts the P-site tRNA in the ribosome. Certain PSL mutations in yeast are lethal, suggesting that the loop plays an important role in translation. In this work, for the first time, a viable Escherichia coli strain was obtained with the deletion of the major part of the PSL (residues 73-80) of the uL5 protein. The deletion conferred cold sensitivity and drastically reduced the growth rate and overall protein synthesizing capacity of the mutant. Translation rate is decreased in mutant cells as compared to the control. At the same time, the deletion causes increased levels of -1 frameshifting and readthrough of all three stop codons. In general, the results show that the PSL of the uL5 is required for maintaining both the accuracy and rate of protein synthesis in vivo.
Collapse
Affiliation(s)
- Mikhail G. Bubunenko
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Alexey P. Korepanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Xing CY, Li GY, Wang Q, Guo JS, Shen Y, Yan P, Fang F, Chen YP. Proteomics reveals the enhancing mechanism for eliminating toxic hydroxylamine from water by nanocompartments containing hydroxylamine oxidase. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129787. [PMID: 36007364 DOI: 10.1016/j.jhazmat.2022.129787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Hydroxylamine (NH2OH) is a potentially toxic pollutant when it is present in water, as it can damage both bacteria and the human body. It is still difficult to eliminate the toxic NH2OH in water. Here, we showed that the model bacterium (Escherichia coli) with nanocompartments encapsulated with hydroxylamine oxidase (HAO) can remove NH2OH from water. In addition, the removal efficiency of NH2OH by genetically modified bacteria (with HAO-nanocompartments) was 3.87 mg N L-1 h-1, and that of wild-type bacteria (without HAO-nanocompartments) was only 1.86 mg N L-1 h-1. Label-free quantitative proteomics indicated that the nanocompartments containing HAO enhanced bacterial activity by inducing the up-regulation of proteins involved in stress and stimulus responses, and decreased their intracellular NH2OH concentration. Moreover, the synthesis of proteins involved in energy metabolism, gene expression, and other processes in bacterial was enhanced under hydroxylamine stress, and these changes increased the resistance of bacterial to NH2OH. This work can aid our understanding of the toxic effects of NH2OH on bacteria as well as the development of new approaches to eliminate NH2OH in water.
Collapse
Affiliation(s)
- Chong-Yang Xing
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Guang-Yi Li
- Shanghai Advanced Research Institute Chinese of Sciences, Shanghai 201210, China
| | - Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Chen S, Zeng X, Li Y, Qiu S, Peng X, Xie X, Liu Y, Liao C, Tang X, Wu J. The nuclear-encoded plastid ribosomal protein L18s are essential for plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:949897. [PMID: 36212366 PMCID: PMC9538462 DOI: 10.3389/fpls.2022.949897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plastid ribosomal proteins (PRPs) are necessary components for plastid ribosome biogenesis, playing essential roles in plastid development. The ribosomal protein L18 involved in the assemble of 5S rRNA and 23S rRNA, is vital for E. coli viability, but the functions of its homologs in plant plastid remain elusive. Here, we characterized the functions of the plant plastid ribosomal protein L18s (PRPL18s) in Arabidopsis and rice. AtPRPL18 was ubiquitously expressed in most of the plant tissues, but with higher expression levels in seedling shoots, leaves, and flowers. AtPRPL18 was localized in chloroplast. Genetic and cytological analyses revealed that a loss of function of AtPRPL18 resulted in embryo development arrest at globular stage. However, overexpression of AtPRPL18 did not show any visible phenotypical changes in Arabidopsis. The rice OsPRPL18 was localized in chloroplast. In contrast to AtPRPL18, knockout of OsPRPL18 did not affect embryo development, but led to an albino lethal phenotype at the seedling stage. Cytological analyses showed that chloroplast development was impaired in the osprpl18-1 mutant. Moreover, a loss-function of OsPRPL18 led to defects in plastid ribosome biogenesis and a serious reduction in the efficiency of plastid intron splicing. In all, these results suggested that PRPL18s play critical roles in plastid ribosome biogenesis, plastid intron splicing, and chloroplast development, and are essential for plant survival.
Collapse
Affiliation(s)
- Shujing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinjue Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chancan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
6
|
Wang Q, Zhou YM, Xing CY, Li WC, Shen Y, Yan P, Guo JS, Fang F, Chen YP. Encapsulins from Ca. Brocadia fulgida: An effective tool to enhance the tolerance of engineered bacteria (pET-28a-cEnc) to Zn 2. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128954. [PMID: 35462189 DOI: 10.1016/j.jhazmat.2022.128954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Zn2+ is largely discharged from many industries and poses a severe threat to the environment, making its remediation crucial. Encapsulins, proteinaceous nano-compartments, may protect cells against environmental stresses by sequestering toxic substances. To determine whether hemerythrin-containing encapsulins (cEnc) from anammox bacteria Ca. Brocadia fulgida can help cells deal with toxic substances such as Zn2+, we transferred cEnc into E.coli by molecular biology technologies for massive expression and then cultured them in media with increasing Zn2+ levels. The engineered bacteria (with cEnc) grew better and entered the apoptosis phase later, while wild bacteria showed poor survival. Furthermore, tandem mass tag-based quantitative proteomic analysis was used to reveal the underlying regulatory mechanism by which the genetically-engineered bacteria (with cEnc) adapted to Zn2+ stress. When Zn2+ was sequestered in cEnc as a transition, the engineered bacteria presented a complex network of regulatory systems against Zn2+-induced cytotoxicity, including functions related to ribosomes, sulfur metabolism, flagellar assembly, DNA repair, protein synthesis, and Zn2+ efflux. Our findings offer an effective and promising stress control strategy to enhance the Zn2+ tolerance of bacteria for Zn2+ remediation and provide a new application for encapsulins.
Collapse
Affiliation(s)
- Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yue-Ming Zhou
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chong-Yang Xing
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wen-Chao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Adaptive responses of Pseudomonas aeruginosa to treatment with antibiotics. Antimicrob Agents Chemother 2021; 66:e0087821. [PMID: 34748386 DOI: 10.1128/aac.00878-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is among the highest priority pathogens for drug development, because of its resistance to antibiotics, extraordinary adaptability, and persistence. Anti-pseudomonal research is strongly encouraged to address the acute scarcity of innovative antimicrobial lead structures. In an effort to understand the physiological response of P. aeruginosa to clinically relevant antibiotics, we investigated the proteome after exposure to ciprofloxacin, levofloxacin, rifampicin, gentamicin, tobramycin, azithromycin, tigecycline, polymyxin B, colistin, ceftazidime, meropenem, and piperacillin/tazobactam. We further investigated the response to CHIR-90, which represents a promising class of lipopolysaccharide biosynthesis inhibitors currently under evaluation. Radioactive pulse-labeling of newly synthesized proteins followed by 2D-PAGE was used to monitor the acute response of P. aeruginosa to antibiotic treatment. The proteomic profiles provide insights into the cellular defense strategies for each antibiotic. A mathematical comparison of these response profiles based on upregulated marker proteins revealed similarities of responses to antibiotics acting on the same target area. This study provides insights into the effects of commonly used antibiotics on P. aeruginosa and lays the foundation for the comparative analysis of the impact of novel compounds with precedented and unprecedented modes of action.
Collapse
|
8
|
Nikolaeva DD, Gelfand MS, Garushyants SK. Simplification of Ribosomes in Bacteria with Tiny Genomes. Mol Biol Evol 2021; 38:58-66. [PMID: 32681797 PMCID: PMC7782861 DOI: 10.1093/molbev/msaa184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ribosome is an essential cellular machine performing protein biosynthesis. Its structure and composition are highly conserved in all species. However, some bacteria have been reported to have an incomplete set of ribosomal proteins. We have analyzed ribosomal protein composition in 214 small bacterial genomes (<1 Mb) and found that although the ribosome composition is fairly stable, some ribosomal proteins may be absent, especially in bacteria with dramatically reduced genomes. The protein composition of the large subunit is less conserved than that of the small subunit. We have identified the set of frequently lost ribosomal proteins and demonstrated that they tend to be positioned on the ribosome surface and have fewer contacts to other ribosome components. Moreover, some proteins are lost in an evolutionary correlated manner. The reduction of ribosomal RNA is also common, with deletions mostly occurring in free loops. Finally, the loss of the anti-Shine-Dalgarno sequence is associated with the loss of a higher number of ribosomal proteins.
Collapse
Affiliation(s)
- Daria D Nikolaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sofya K Garushyants
- Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia
| |
Collapse
|
9
|
Nikolaeva DD, Gelfand MS, Garushyants SK. Simplification of Ribosomes in Bacteria with Tiny Genomes. Mol Biol Evol 2021. [PMID: 32681797 DOI: 10.1101/755876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
The ribosome is an essential cellular machine performing protein biosynthesis. Its structure and composition are highly conserved in all species. However, some bacteria have been reported to have an incomplete set of ribosomal proteins. We have analyzed ribosomal protein composition in 214 small bacterial genomes (<1 Mb) and found that although the ribosome composition is fairly stable, some ribosomal proteins may be absent, especially in bacteria with dramatically reduced genomes. The protein composition of the large subunit is less conserved than that of the small subunit. We have identified the set of frequently lost ribosomal proteins and demonstrated that they tend to be positioned on the ribosome surface and have fewer contacts to other ribosome components. Moreover, some proteins are lost in an evolutionary correlated manner. The reduction of ribosomal RNA is also common, with deletions mostly occurring in free loops. Finally, the loss of the anti-Shine-Dalgarno sequence is associated with the loss of a higher number of ribosomal proteins.
Collapse
Affiliation(s)
- Daria D Nikolaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sofya K Garushyants
- Institute for Information Transmission Problems (Kharkevich Institute), Moscow, Russia
| |
Collapse
|
10
|
Wang C, Guo H, He X, Zhang S, Wang J, Wang L, Guo D, Guo X. Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6-MPK4 cascade. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1421-1433. [PMID: 31794094 PMCID: PMC7206998 DOI: 10.1111/pbi.13307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
In eukaryotes, MAPK scaffold proteins are crucial for regulating the function of MAPK cascades. However, only a few MAPK scaffold proteins have been reported in plants, and the molecular mechanism through which scaffold proteins regulate the function of the MAPK cascade remains poorly understood. Here, we identified GhMORG1, a GhMKK6-GhMPK4 cascade scaffold protein that positively regulates the resistance of cotton to Fusarium oxysporum. GhMORG1 interacted with GhMKK6 and GhMPK4, and the overexpression of GhMORG1 in cotton protoplasts dramatically increased the activity of the GhMKK6-GhMPK4 cascade. Quantitative phosphoproteomics was used to clarify the mechanism of GhMORG1 in regulating disease resistance, and thirty-two proteins were considered as the putative substrates of the GhMORG1-dependent GhMKK6-GhMPK4 cascade. These putative substrates were involved in multiple disease resistance processes, such as cellular amino acid metabolic processes, calcium ion binding and RNA binding. The kinase assays verified that most of the putative substrates were phosphorylated by the GhMKK6-GhMPK4 cascade. For functional analysis, nine putative substrates were silenced in cotton, respectively. The resistance of cotton to F. oxysporum was decreased in the substrate-silenced cottons. These results suggest that GhMORG1 regulates several different disease resistance processes by facilitating the phosphorylation of GhMKK6-GhMPK4 cascade substrates. Taken together, these findings reveal a new plant MAPK scaffold protein and provide insights into the mechanism of plant resistance to pathogens.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Hongbin Guo
- Statistics DepartmentUniversity of AucklandAucklandNew Zealand
| | - Xiaowen He
- State Key Laboratory of Crop BiologyShandong Agricultural UniversityTaianChina
| | - Shuxin Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Jiayu Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Lijun Wang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Dezheng Guo
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| | - Xingqi Guo
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianChina
| |
Collapse
|
11
|
Gray MW, Burger G, Derelle R, Klimeš V, Leger MM, Sarrasin M, Vlček Č, Roger AJ, Eliáš M, Lang BF. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome. BMC Biol 2020; 18:22. [PMID: 32122349 PMCID: PMC7050145 DOI: 10.1186/s12915-020-0741-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023] Open
Abstract
Background Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. Results In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. Conclusions As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.
Collapse
Affiliation(s)
- Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Gertraud Burger
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michelle M Leger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.,Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Matt Sarrasin
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| | - Čestmír Vlček
- Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - B Franz Lang
- Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Highly Reduced Genome of the New Species Mycobacterium uberis, the Causative Agent of Nodular Thelitis and Tuberculoid Scrotitis in Livestock and a Close Relative of the Leprosy Bacilli. mSphere 2018; 3:3/5/e00405-18. [PMID: 30282756 PMCID: PMC6170788 DOI: 10.1128/msphere.00405-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nodular thelitis is a chronic enzootic infection affecting dairy cows and goats. The causative agent was recently shown to be related to the leprosy-causing bacilli Mycobacterium leprae and Mycobacterium lepromatosis In this study, the genome of this pathogen was sequenced and analyzed. Phylogenomic analyses confirmed that the pathogen present in nodular thelitis and tuberculoid scrotitis is a distinct species related to the leprosy bacilli and Mycobacterium haemophilum Because the pathogen was originally isolated from a bovine udder, it was named "Mycobacterium uberis" The genome of "M. uberis" is only 3.12 Mb in length, which represents the smallest mycobacterial genome identified so far but which is close to that of leprosy bacilli in size. The genome contains 1,759 protein-coding genes and 1,081 pseudogenes, indicative of extensive reductive evolution and likely the reason that M. uberis cannot be grown axenically. The pseudogenization and genome reduction in M. uberis seem to have been to some extent independent from the results determined for the genomes of the leprosy bacilli.IMPORTANCE M. uberis is an emerging skin pathogen in dairy animals. Its genome underwent massive reduction and gene decay, leading to a minimal set of genes required for an obligatory intracellular lifestyle, which highly resembles the evolution of the leprosy agents M. leprae and M. lepromatosis The genomic similarity between M. uberis and the leprosy bacilli can help in identifying key virulence factors of these closely related species or in identifying genes responsible for the distinct differences between thelitis or scrotitis and leprosy with respect to clinical manifestations. Specific DNA markers can now be developed for quick detection of this pathogen.
Collapse
|
13
|
Nikulin AD. Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins. BIOCHEMISTRY (MOSCOW) 2018; 83:S111-S133. [DOI: 10.1134/s0006297918140109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Anikaev AY, Isaev AB, Korobeinikova AV, Garber MB, Gongadze GM. Role of Protein L25 and Its Contact with Protein L16 in Maintaining the Active State of Escherichia coli Ribosomes in vivo. BIOCHEMISTRY (MOSCOW) 2016; 81:19-27. [PMID: 26885579 DOI: 10.1134/s0006297916010028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A ribosomal protein of the L25 family specifically binding to 5S rRNA is an evolutionary feature of bacteria. Structural studies showed that within the ribosome this protein contacts not only 5S rRNA, but also the C-terminal region of protein L16. Earlier we demonstrated that ribosomes from the ΔL25 strain of Escherichia coli have reduced functional activity. In the present work, it is established that the reason for this is a fraction of functionally inactive 50S ribosomal subunits. These subunits have a deficit of protein L16 and associate very weakly with 30S subunits. To study the role of the contact of these two proteins in the formation of the active ribosome, we created a number of E. coli strains containing protein L16 with changes in its C-terminal region. We found that some mutations (K133L or K127L/K133L) in this protein lead to a noticeable slowing of cell growth and decrease in the activity of their translational apparatus. As in the case of the ribosomes from the ΔL25 strain, the fraction of 50S subunits, which are deficient in protein L16, is present in the ribosomes of the mutant strains. All these data indicate that the contact with protein L25 is important for the retention of protein L16 within the E. coli ribosome in vivo. In the light of these findings, the role of the protein of the L25 family in maintaining the active state of the bacterial ribosome is discussed.
Collapse
Affiliation(s)
- A Y Anikaev
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | |
Collapse
|
15
|
Sharma H, Anand B. Fluorescence bimolecular complementation enables facile detection of ribosome assembly defects in Escherichia coli. RNA Biol 2016; 13:872-82. [PMID: 27388791 DOI: 10.1080/15476286.2016.1207037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Assembly factors promote the otherwise non-spontaneous maturation of ribosome under physiological conditions inside the cell. Systematic identification and characterization of candidate assembly factors are fraught with bottlenecks due to lack of facile assay system to capture assembly defects. Here, we show that bimolecular fluorescence complementation (BiFC) allows detection of assembly defects that are induced by the loss of assembly factors. The fusion of N and C-terminal fragments of Venus fluorescent protein to the ribosomal proteins uS13 and uL5, respectively, in Escherichia coli facilitated the incorporation of the tagged uS13 and uL5 onto the respective ribosomal subunits. When the ribosomal subunits associated to form the 70S particle, the complementary fragments of Venus were brought into proximity and rendered the Venus fluorescent. Assembly defects that inhibit the subunits association were provoked by either the loss of the known assembly factors such as RsgA and SrmB or the presence of small molecule inhibitors of ribosome maturation such as Lamotrigine and several ribosome-targeting antibiotics and these showed abrogation of the fluorescence complementation. This suggests that BiFC can be employed as a surrogate measure to detect ribosome assembly defects proficiently by circumventing the otherwise cumbersome procedures. BiFC thus offers a facile platform not only for systematic screening to validate potential assembly factors but also to discover novel small molecule inhibitors of ribosome assembly toward mapping the complex assembly landscape of ribosome.
Collapse
Affiliation(s)
- Himanshu Sharma
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| | - Baskaran Anand
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam , India
| |
Collapse
|
16
|
Szymanski M, Zielezinski A, Barciszewski J, Erdmann VA, Karlowski WM. 5SRNAdb: an information resource for 5S ribosomal RNAs. Nucleic Acids Res 2015; 44:D180-3. [PMID: 26490961 PMCID: PMC4702797 DOI: 10.1093/nar/gkv1081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023] Open
Abstract
Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA-protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces.
Collapse
Affiliation(s)
- Maciej Szymanski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Volker A Erdmann
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Wojciech M Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 61-614 Poznan, Poland
| |
Collapse
|
17
|
Aseev LV, Bylinkina NS, Boni IV. Regulation of the rplY gene encoding 5S rRNA binding protein L25 in Escherichia coli and related bacteria. RNA (NEW YORK, N.Y.) 2015; 21:851-61. [PMID: 25749694 PMCID: PMC4408793 DOI: 10.1261/rna.047381.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/22/2014] [Indexed: 05/09/2023]
Abstract
Ribosomal protein (r-protein) L25 is one of the three r-proteins (L25, L5, L18) that interact with 5S rRNA in eubacteria. Specific binding of L25 with a certain domain of 5S r-RNA, a so-called loop E, has been studied in detail, but information about regulation of L25 synthesis has remained totally lacking. In contrast to the rplE (L5) and rplR (L18) genes that belong to the polycistronic spc-operon and are regulated at the translation level by r-protein S8, the rplY (L25) gene forms an independent transcription unit. The main goal of this work was to study the regulation of the rplY expression in vivo. We show that the rplY promoter is down-regulated by ppGpp and its cofactor DksA in response to amino acid starvation. At the level of translation, the rplY expression is subjected to the negative feedback control. The 5'-untranslated region of the rplY mRNA comprises specific sequence/structure features, including an atypical SD-like sequence, which are highly conserved in a subset of gamma-proteobacterial families. Despite the lack of a canonical SD element, the rplY'-'lacZ single-copy reporter showed unusually high translation efficiency. Expression of the rplY gene in trans decreased the translation yield, indicating the mechanism of autogenous repression. Site-directed mutagenesis of the rplY 5' UTR revealed an important role of the conserved elements in the translation control. Thus, the rplY expression regulation represents one more example of regulatory pathways that control ribosome biogenesis in Escherichia coli and related bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| | - Natalia S Bylinkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia Moscow Institute of Physics and Technology, 141700, Moscow Region, Dolgoprudny, Russia
| | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
| |
Collapse
|
18
|
Studying the properties of domain I of the ribosomal protein l1: incorporation into ribosome and regulation of the l1 operon expression. Protein J 2015; 34:103-10. [PMID: 25681234 DOI: 10.1007/s10930-015-9602-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
L1 is a conserved protein of the large ribosomal subunit. This protein binds strongly to the specific region of the high molecular weight rRNA of the large ribosomal subunit, thus forming a conserved flexible structural element--the L1 stalk. L1 protein also regulates translation of the operon that comprises its own gene. Crystallographic data suggest that L1 interacts with RNA mainly by means of its domain I. We show here for the first time that the isolated domain I of the bacterial protein L1 of Thermus thermophilus and Escherichia coli is able to incorporate in vivo into the E. coli ribosome. Furthermore, domain I of T. thermophilus L1 can regulate expression of the L1 gene operon of Archaea in the coupled transcription-translation system in vitro, as well as the intact protein. We have identified the structural elements of domain I of the L1 protein that may be responsible for its regulatory properties.
Collapse
|
19
|
Anikaev AY, Korepanov AP, Korobeinikova AV, Kljashtorny VG, Piendl W, Nikonov SV, Garber MB, Gongadze GM. Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo. BIOCHEMISTRY (MOSCOW) 2014; 79:826-35. [DOI: 10.1134/s0006297914080112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ribosome biogenesis in african trypanosomes requires conserved and trypanosome-specific factors. EUKARYOTIC CELL 2014; 13:727-37. [PMID: 24706018 DOI: 10.1128/ec.00307-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Large ribosomal subunit protein L5 is responsible for the stability and trafficking of 5S rRNA to the site of eukaryotic ribosomal assembly. In Trypanosoma brucei, in addition to L5, trypanosome-specific proteins P34 and P37 also participate in this process. These two essential proteins form a novel preribosomal particle through interactions with both the ribosomal protein L5 and 5S rRNA. We have generated a procyclic L5 RNA interference cell line and found that L5 itself is a protein essential for trypanosome growth, despite the presence of other 5S rRNA binding proteins. Loss of L5 decreases the levels of all large-subunit rRNAs, 25/28S, 5.8S, and 5S rRNAs, but does not alter small-subunit 18S rRNA. Depletion of L5 specifically reduced the levels of the other large ribosomal proteins, L3 and L11, whereas the steady-state levels of the mRNA for these proteins were increased. L5-knockdown cells showed an increase in the 40S ribosomal subunit and a loss of the 60S ribosomal subunits, 80S monosomes, and polysomes. In addition, L5 was involved in the processing and maturation of precursor rRNAs. Analysis of polysomal fractions revealed that unprocessed rRNA intermediates accumulate in the ribosome when L5 is depleted. Although we previously found that the loss of P34 and P37 does not result in a change in the levels of L5, the loss of L5 resulted in an increase of P34 and P37 proteins, suggesting the presence of a compensatory feedback loop. This study demonstrates that ribosomal protein L5 has conserved functions, in addition to nonconserved trypanosome-specific features, which could be targeted for drug intervention.
Collapse
|
21
|
Gabdulkhakov A, Nikonov S, Garber M. Revisiting the Haloarcula marismortui 50S ribosomal subunit model. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:997-1004. [PMID: 23695244 DOI: 10.1107/s0907444913004745] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 02/18/2013] [Indexed: 11/10/2022]
Abstract
The structure of the large ribosomal subunit from the halophilic archaeon Haloarcula marismortui (Hma) is the only crystal structure of an archaeal ribosomal particle that has been determined to date. However, the first model of the Hma 50S ribosomal subunit contained some gaps: the structures of functionally important mobile lateral protuberances were not visualized. Subsequently, some parts of the P (L12) stalk base were visualized at 3.0 Å resolution [Kavran & Steitz (2007), J. Mol. Biol. 371, 1047-1059]: the RNA-binding domain of r-protein P0 (L10), the C-terminal domain of L11 and helices 43 and 44 of the 23 S rRNA. Here, the 2.4 Å resolution electron-density map of the Hma 50S ribosomal subunit was revisited and approximately two-thirds of the P0 protein, residues 1-58 of the N-terminal domains of two P1 protein molecules, residues 130-156 of L11, the full-length r-protein LX, nucleotides 2137-2149 and 2226-2237 of the 23S rRNA helix H76 forming the L1 stalk, nucleotides 2339-2343 of the 23S rRNA (contacting L5 protein) and loops 29-34 and 108-128 of protein L5 could be visualized. Thus, this paper provides a supplemented version of the Hma 50S ribosomal subunit model.
Collapse
Affiliation(s)
- Azat Gabdulkhakov
- Institute of Protein Research, RAS, Pushchino, Moscow Region 142290, Russian Federation.
| | | | | |
Collapse
|
22
|
Korobeinikova AV, Garber MB, Gongadze GM. Ribosomal proteins: structure, function, and evolution. BIOCHEMISTRY (MOSCOW) 2012; 77:562-74. [PMID: 22817455 DOI: 10.1134/s0006297912060028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The question concerning reasons for the variety of ribosomal proteins that arose for more than 40 years ago is still open. Ribosomes of modern organisms contain 50-80 individual proteins. Some are characteristic for all domains of life (universal ribosomal proteins), whereas others are specific for bacteria, archaea, or eucaryotes. Extensive information about ribosomal proteins has been obtained since that time. However, the role of the majority of ribosomal proteins in the formation and functioning of the ribosome is still not so clear. Based on recent data of experiments and bioinformatics, this review presents a comprehensive evaluation of structural conservatism of ribosomal proteins from evolutionarily distant organisms. Considering the current knowledge about features of the structural organization of the universal proteins and their intermolecular contacts, a possible role of individual proteins and their structural elements in the formation and functioning of ribosomes is discussed. The structural and functional conservatism of the majority of proteins of this group suggests that they should be present in the ribosome already in the early stages of its evolution.
Collapse
Affiliation(s)
- A V Korobeinikova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
23
|
Ciganda M, Prohaska K, Hellman K, Williams N. A novel association between two trypanosome-specific factors and the conserved L5-5S rRNA complex. PLoS One 2012; 7:e41398. [PMID: 22859981 PMCID: PMC3409183 DOI: 10.1371/journal.pone.0041398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are involved in and essential for ribosome biogenesis. The proteins interact with the 5S rRNA with nearly identical binding characteristics. We have shown that this interaction is achieved mainly through the LoopA region of the RNA, but P34 and P37 also protect the L5 binding site located on LoopC. We now provide evidence to show that these factors form a novel pre-ribosomal particle through interactions with both 5S rRNA and the L5 ribosomal protein. Further in silico and in vitro analysis of T. brucei L5 indicates a lower affinity for 5S rRNA than expected, based on other eukaryotic L5 proteins. We hypothesize that P34 and P37 complement L5 and bridge the interaction with 5S rRNA, stabilizing it and aiding in the early steps of ribosome biogenesis.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Kimberly Prohaska
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Kristina Hellman
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Noreen Williams
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Korepanov AP, Korobeinikova AV, Shestakov SA, Garber MB, Gongadze GM. Protein L5 is crucial for in vivo assembly of the bacterial 50S ribosomal subunit central protuberance. Nucleic Acids Res 2012; 40:9153-9. [PMID: 22821559 PMCID: PMC3467071 DOI: 10.1093/nar/gks676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the present work, ribosomes assembled in bacterial cells in the absence of essential ribosomal protein L5 were obtained. After arresting L5 synthesis, Escherichia coli cells divide a limited number of times. During this time, accumulation of defective large ribosomal subunits occurs. These 45S particles lack most of the central protuberance (CP) components (5S rRNA and proteins L5, L16, L18, L25, L27, L31, L33 and L35) and are not able to associate with the small ribosomal subunit. At the same time, 5S rRNA is found in the cytoplasm in complex with ribosomal proteins L18 and L25 at quantities equal to the amount of ribosomes. Thus, it is the first demonstration that protein L5 plays a key role in formation of the CP during assembly of the large ribosomal subunit in the bacterial cell. A possible model for the CP assembly in vivo is discussed in view of the data obtained.
Collapse
Affiliation(s)
- Alexey P Korepanov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | | | | | | | | |
Collapse
|
25
|
Koc EC, Koc H. Regulation of mammalian mitochondrial translation by post-translational modifications. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1055-66. [PMID: 22480953 DOI: 10.1016/j.bbagrm.2012.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/24/2012] [Accepted: 03/16/2012] [Indexed: 11/29/2022]
Abstract
Mitochondria are responsible for the production of over 90% of the energy in eukaryotes through oxidative phosphorylation performed by electron transfer and ATP synthase complexes. Mitochondrial translation machinery is responsible for the synthesis of 13 essential proteins of these complexes encoded by the mitochondrial genome. Emerging data suggest that acetyl-CoA, NAD(+), and ATP are involved in regulation of this machinery through post-translational modifications of its protein components. Recent high-throughput proteomics analyses and mapping studies have provided further evidence for phosphorylation and acetylation of ribosomal proteins and translation factors. Here, we will review our current knowledge related to these modifications and their possible role(s) in the regulation of mitochondrial protein synthesis using the homology between mitochondrial and bacterial translation machineries. However, we have yet to determine the effects of phosphorylation and acetylation of translation components in mammalian mitochondrial biogenesis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Emine C Koc
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV 25755, USA.
| | | |
Collapse
|
26
|
Abstract
The assembly of ribosomes from a discrete set of components is a key aspect of the highly coordinated process of ribosome biogenesis. In this review, we present a brief history of the early work on ribosome assembly in Escherichia coli, including a description of in vivo and in vitro intermediates. The assembly process is believed to progress through an alternating series of RNA conformational changes and protein-binding events; we explore the effects of ribosomal proteins in driving these events. Ribosome assembly in vivo proceeds much faster than in vitro, and we outline the contributions of several of the assembly cofactors involved, including Era, RbfA, RimJ, RimM, RimP, and RsgA, which associate with the 30S subunit, and CsdA, DbpA, Der, and SrmB, which associate with the 50S subunit.
Collapse
Affiliation(s)
- Zahra Shajani
- Departments of Molecular Biology and Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
27
|
Bartlow P, Tiwari N, Beitle RR, Ataai MM. Evaluation of Escherichia coli proteins that burden nonaffinity-based chromatography as a potential strategy for improved purification performance. Biotechnol Prog 2011; 28:137-45. [DOI: 10.1002/btpr.703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/28/2011] [Indexed: 11/12/2022]
|
28
|
Ciganda M, Williams N. Eukaryotic 5S rRNA biogenesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:523-33. [PMID: 21957041 DOI: 10.1002/wrna.74] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
29
|
Korobeinikova AV, Gongadze GM, Korepanov AP, Eliseev BD, Bazhenova MV, Garber MB. 5S rRNA-recognition module of CTC family proteins and its evolution. BIOCHEMISTRY (MOSCOW) 2011; 73:156-63. [DOI: 10.1134/s0006297908020065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Barb AW, Cort JR, Seetharaman J, Lew S, Lee HW, Acton T, Xiao R, Kennedy MA, Tong L, Montelione GT, Prestegard JH. Structures of domains I and IV from YbbR are representative of a widely distributed protein family. Protein Sci 2011; 20:396-405. [PMID: 21154411 DOI: 10.1002/pro.571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 01/27/2023]
Abstract
YbbR domains are widespread throughout Eubacteria and are expressed as monomeric units, linked in tandem repeats or cotranslated with other domains. Although the precise role of these domains remains undefined, the location of the multiple YbbR domain-encoding ybbR gene in the Bacillus subtilis glmM operon and its previous identification as a substrate for a surfactin-type phosphopantetheinyl transferase suggests a role in cell growth, division, and virulence. To further characterize the YbbR domains, structures of two of the four domains (I and IV) from the YbbR-like protein of Desulfitobacterium hafniense Y51 were solved by solution nuclear magnetic resonance and X-ray crystallography. The structures show the domains to have nearly identical topologies despite a low amino acid identity (23%). The topology is dominated by β-strands, roughly following a "figure 8" pattern with some strands coiling around the domain perimeter and others crossing the center. A similar topology is found in the C-terminal domain of two stress-responsive bacterial ribosomal proteins, TL5 and L25. Based on these models, a structurally guided amino acid alignment identifies features of the YbbR domains that are not evident from naïve amino acid sequence alignments. A structurally conserved cis-proline (cis-Pro) residue was identified in both domains, though the local structure in the immediate vicinities surrounding this residue differed between the two models. The conservation and location of this cis-Pro, plus anchoring Val residues, suggest this motif may be significant to protein function.
Collapse
Affiliation(s)
- Adam W Barb
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Calhoun LN, Liyanage R, Lay JO, Kwon YM. Proteomic analysis of Salmonella enterica serovar Enteritidis following propionate adaptation. BMC Microbiol 2010; 10:249. [PMID: 20920181 PMCID: PMC2957393 DOI: 10.1186/1471-2180-10-249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 09/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of Salmonella Enteritidis subjected to this stress. RESULTS In this study, we used 2 D gel electrophoresis to examine the proteomes of PA adapted and unadapted S. Enteritidis and have identified five proteins that are upregulated in PA adapted cultures using standard peptide mass fingerprinting by MALDI-TOF-MS and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of these five, two significant stress-related proteins (Dps and CpxR) were shown (via qRT-PCR analysis) to be upregulated at the transcriptional level as well. Unlike the wild type when adapted to PA (which demonstrates significant acid resistance), PA adapted S. Enteritidis ∆dps and S. Enteritidis ∆cpxR were at a clear disadvantage when challenged to a highly acidic environment. However, we found the acid resistance to be fully restorable after genetic complementation. CONCLUSIONS This work reveals a significant difference in the proteomes of PA adapted and unadapted S. Enteritidis and affirms the contribution of Dps and CpxR in PA induced acid resistance.
Collapse
Affiliation(s)
- Leona N Calhoun
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, 1260 W, Maple Avenue, Fayetteville, AR 72701, USA
| | | | | | | |
Collapse
|
32
|
da Silva Batista JS, Torres AR, Hungria M. Towards a two-dimensional proteomic reference map of Bradyrhizobium japonicum
CPAC 15: Spotlighting “hypothetical proteins”. Proteomics 2010; 10:3176-89. [DOI: 10.1002/pmic.201000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Van Minnebruggen A, Neyt P, De Groeve S, Coussens G, Ponce MR, Micol JL, Van Lijsebettens M. The ang3 mutation identified the ribosomal protein gene RPL5B with a role in cell expansion during organ growth. PHYSIOLOGIA PLANTARUM 2010; 138:91-101. [PMID: 19878482 DOI: 10.1111/j.1399-3054.2009.01301.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The role of translation in the regulation of higher plant growth and development is not well understood. Mutational analysis is a powerful tool to identify and study the function of genes related to a biological process, such as growth. Here we analyzed functionally the angusta3 (ang3) narrow leaf mutant. The AG3 gene was cloned by fine mapping combined with candidate gene sequencing and it corresponded to the ribosomal protein gene RPL5B. Based on amino acid sequence homology, promoter DNA sequence homology and in silico gene expression analysis, RPL5B was found to be putatively functionally redundant with RPL5A. The morphological analysis of ang3 mutants showed that the leaf lamina area was significantly reduced from the third rosette leaf on, mainly because of decreased width. Cellular analysis of the abaxial epidermal cell layer of the third leaf indicated that the cell number in the mutant was similar to that of the wild type, but the cell size was significantly reduced. We postulate that the reduced cell expansion in the epidermis contributes to the narrow shape of ang3 leaves. Growth was also significantly impaired in hypocotyls and primary roots, hinting at a general role for RPL5B in organ growth, unrelated to dorsiventral axis formation. Comparison of the transcriptome of the shoot apices of the mutant and the wild type revealed a limited number of differentially expressed genes, such as MYB23 and MYB5, of which the lower expression in the ang3 mutant correlated with reduced trichome density. Our data suggest that translation is an important level of control of growth and development in plants.
Collapse
|
34
|
Gongadze GM, Korepanov AP, Korobeinikova AV, Garber MB. Bacterial 5S rRNA-binding proteins of the CTC family. BIOCHEMISTRY (MOSCOW) 2009; 73:1405-17. [PMID: 19216708 DOI: 10.1134/s0006297908130038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presence of CTC family proteins is a unique feature of bacterial cells. In the CTC family, there are true ribosomal proteins (found in ribosomes of exponentially growing cells), and at the same time there are also proteins temporarily associated with the ribosome (they are produced by the cells under stress only and incorporate into the ribosome). One feature is common for these proteins - they specifically bind to 5S rRNA. In this review, the history of investigations of the best known representatives of this family is described briefly. Structural organization of the CTC family proteins and their occurrence among known taxonomic bacterial groups are discussed. Structural features of 5S rRNA and CTC protein are described that predetermine their specific interaction. Taking into account the position of a CTC protein and its intermolecular contacts in the ribosome, a possible role of its complex with 5S rRNA in ribosome functioning is discussed.
Collapse
Affiliation(s)
- G M Gongadze
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | |
Collapse
|
35
|
Abstract
The assembly of bacterial ribosomes is viewed with increasing interest as a potential target for new antibiotics. The in vivo synthesis and assembly of ribosomes are briefly reviewed here, highlighting the many ways in which assembly can be perturbed. The process is compared with the model in vitro process from which much of our knowledge is derived. The coordinate synthesis of the ribosomal components is essential for their ordered and efficient assembly; antibiotics interfere with this coordination and therefore affect assembly. It has also been claimed that the binding of antibiotics to nascent ribosomes prevents their assembly. These two contrasting models of antibiotic action are compared and evaluated. Finally, the suitability and tractability of assembly as a drug target are assessed.
Collapse
|
36
|
Kaczanowska M, Rydén-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 2007; 71:477-94. [PMID: 17804668 PMCID: PMC2168646 DOI: 10.1128/mmbr.00013-07] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
37
|
Smits P, Smeitink JAM, van den Heuvel LP, Huynen MA, Ettema TJG. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 2007; 35:4686-703. [PMID: 17604309 PMCID: PMC1950548 DOI: 10.1093/nar/gkm441] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For production of proteins that are encoded by the mitochondrial genome, mitochondria rely on their own mitochondrial translation system, with the mitoribosome as its central component. Using extensive homology searches, we have reconstructed the evolutionary history of the mitoribosomal proteome that is encoded by a diverse subset of eukaryotic genomes, revealing an ancestral ribosome of alpha-proteobacterial descent that more than doubled its protein content in most eukaryotic lineages. We observe large variations in the protein content of mitoribosomes between different eukaryotes, with mammalian mitoribosomes sharing only 74 and 43% of its proteins with yeast and Leishmania mitoribosomes, respectively. We detected many previously unidentified mitochondrial ribosomal proteins (MRPs) and found that several have increased in size compared to their bacterial ancestral counterparts by addition of functional domains. Several new MRPs have originated via duplication of existing MRPs as well as by recruitment from outside of the mitoribosomal proteome. Using sensitive profile-profile homology searches, we found hitherto undetected homology between bacterial and eukaryotic ribosomal proteins, as well as between fungal and mammalian ribosomal proteins, detecting two novel human MRPs. These newly detected MRPs constitute, along with evolutionary conserved MRPs, excellent new screening targets for human patients with unresolved mitochondrial oxidative phosphorylation disorders.
Collapse
Affiliation(s)
- Paulien Smits
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Lambert P. van den Heuvel
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Thijs J. G. Ettema
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- *To whom correspondence should be addressed.
| |
Collapse
|
38
|
Phadtare S, Kazakov T, Bubunenko M, Court DL, Pestova T, Severinov K. Transcription antitermination by translation initiation factor IF1. J Bacteriol 2007; 189:4087-93. [PMID: 17384193 PMCID: PMC1913383 DOI: 10.1128/jb.00188-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial translation initiation factor IF1 is an S1 domain protein that belongs to the oligomer binding (OB) fold proteins. Cold shock domain (CSD)-containing proteins such as CspA (the major cold shock protein of Escherichia coli) and its homologues also belong to the OB fold protein family. The striking structural similarity between IF1 and CspA homologues suggests a functional overlap between these proteins. Certain members of the CspA family of cold shock proteins act as nucleic acid chaperones: they melt secondary structures in nucleic acids and act as transcription antiterminators. This activity may help the cell to acclimatize to low temperatures, since cold-induced stabilization of secondary structures in nascent RNA can impede transcription elongation. Here we show that the E. coli translation initiation factor, IF1, also has RNA chaperone activity and acts as a transcription antiterminator in vivo and in vitro. We further show that the RNA chaperone activity of IF1, although critical for transcription antitermination, is not essential for its role in supporting cell growth, which presumably functions in translation. The results thus indicate that IF1 may participate in transcription regulation and that cross talk and/or functional overlap may exist between the Csp family proteins, known to be involved in transcription regulation at cold shock, and S1 domain proteins, known to function in translation.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|