1
|
Feng Y, Jiang Y, Chen X, Zhu L, Xue H, Wu M, Yang L, Yu H, Lin J. Improving the production of carbamoyltobramycin by an industrial Streptoalloteichus tenebrarius through metabolic engineering. Appl Microbiol Biotechnol 2024; 108:304. [PMID: 38643456 PMCID: PMC11033246 DOI: 10.1007/s00253-024-13141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
Tobramycin is an essential and extensively used broad-spectrum aminoglycoside antibiotic obtained through alkaline hydrolysis of carbamoyltobramycin, one of the fermentation products of Streptoalloteichus tenebrarius. To simplify the composition of fermentation products from industrial strain, the main byproduct apramycin was blocked by gene disruption and constructed a mutant mainly producing carbamoyltobramycin. The generation of antibiotics is significantly affected by the secondary metabolism of actinomycetes which could be controlled by modifying the pathway-specific regulatory proteins within the cluster. Within the tobramycin biosynthesis cluster, a transcriptional regulatory factor TobR belonging to the Lrp/AsnC family was identified. Based on the sequence and structural characteristics, tobR might encode a pathway-specific transcriptional regulatory factor during biosynthesis. Knockout and overexpression strains of tobR were constructed to investigate its role in carbamoyltobramycin production. Results showed that knockout of TobR increased carbamoyltobramycin biosynthesis by 22.35%, whereas its overexpression decreased carbamoyltobramycin production by 10.23%. In vitro electrophoretic mobility shift assay (EMSA) experiments confirmed that TobR interacts with DNA at the adjacent tobO promoter position. Strains overexpressing tobO with ermEp* promoter exhibited 36.36% increase, and tobO with kasOp* promoter exhibited 22.84% increase in carbamoyltobramycin titer. When the overexpressing of tobO and the knockout of tobR were combined, the production of carbamoyltobramycin was further enhanced. In the shake-flask fermentation, the titer reached 3.76 g/L, which was 42.42% higher than that of starting strain. Understanding the role of Lrp/AsnC family transcription regulators would be useful for other antibiotic biosynthesis in other actinomycetes. KEY POINTS: • The transcriptional regulator TobR belonging to the Lrp/AsnC family was identified. • An oxygenase TobO was identified within the tobramycin biosynthesis cluster. • TobO and TobR have significant effects on the synthesis of carbamoyltobramycin.
Collapse
Affiliation(s)
- Yun Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xutong Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hailong Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Haoran Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China.
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Dubey S, Maurya RK, Shree S, Kumar S, Jahan F, Krishnan MY, Ramachandran R. Mycobacterium tuberculosis Rv2324 is a multifunctional feast/famine regulatory protein involved in growth, DNA replication and damage control. Int J Biol Macromol 2023; 252:126459. [PMID: 37634786 DOI: 10.1016/j.ijbiomac.2023.126459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/20/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Feast/famine regulatory proteins (FFRPs) are multifunctional regulators. We show that Mtb Rv2324 is important for growth, survival, and countering DNA damage in Mycobacterium tuberculosis (Mtb). DNA-relaxation activity against linear and supercoiled substrates suggest its involvement in transcription activation, while its high affinity for recombination, replication and repair substrates suggest a role there too. Small-Angle-X-ray scattering supports the adoption of an 'open' quaternary association in response to amino-acid binding. Size-exclusion-chromatography and glutaraldehyde cross-linking identify the adoption of diverse oligomers modulated by amino-acid binding, and DNA interactions. We tested G52A, G101T and D104A mutants which correspond to highly conserved residues, distal to the DNA-binding site, and are important for amino acids binding. G101T exhibits increased DNA affinity, while G52A and D104A exhibit weak DNA-binding thereby suggesting that they mediate effector-binding, and DNA binding activities. Gain and loss-of-function studies show that Rv2324 overexpression promotes growth-rate, while its knock-down leads to retarded growth. Rv2324 down-regulation lowers Mtb survival inside resting and IFN-ϒ-activated macrophages. Rv2324 protects the pathogen from DNA damage, as evidenced by the reduction in the knockdown strain's survival following treatment with H2O2 and UV light. Overall, we show that Rv2324 plays a crucial role in regulating survival and growth of Mtb.
Collapse
Affiliation(s)
- Shikha Dubey
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Kumar Maurya
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Uttar Pradesh 226031, India
| | - Sonal Shree
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Uttar Pradesh 226031, India; Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Sanjay Kumar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Farheen Jahan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Uttar Pradesh 226031, India
| | - Manju Yasoda Krishnan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Uttar Pradesh 226031, India
| | - Ravishankar Ramachandran
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Bernauw AJ, Crabbe V, Ryssegem F, Willaert R, Bervoets I, Peeters E. Molecular mechanisms of regulation by a β-alanine-responsive Lrp-type transcription factor from Acidianus hospitalis. Microbiologyopen 2023; 12:e1356. [PMID: 37379425 PMCID: PMC10201364 DOI: 10.1002/mbo3.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 06/30/2023] Open
Abstract
The leucine-responsive regulatory protein (Lrp) family of transcriptional regulators is widespread among prokaryotes and especially well-represented in archaea. It harbors members with diverse functional mechanisms and physiological roles, often linked to the regulation of amino acid metabolism. BarR is an Lrp-type regulator that is conserved in thermoacidophilic Thermoprotei belonging to the order Sulfolobales and is responsive to the non-proteinogenic amino acid β-alanine. In this work, we unravel molecular mechanisms of the Acidianus hospitalis BarR homolog, Ah-BarR. Using a heterologous reporter gene system in Escherichia coli, we demonstrate that Ah-BarR is a dual-function transcription regulator that is capable of repressing transcription of its own gene and activating transcription of an aminotransferase gene, which is divergently transcribed from a common intergenic region. Atomic force microscopy (AFM) visualization reveals a conformation in which the intergenic region appears wrapped around an octameric Ah-BarR protein. β-alanine causes small conformational changes without affecting the oligomeric state of the protein, resulting in a relief of regulation while the regulator remains bound to the DNA. This regulatory and ligand response is different from the orthologous regulators in Sulfolobus acidocaldarius and Sulfurisphaera tokodaii, which is possibly explained by a distinct binding site organization and/or by the presence of an additional C-terminal tail in Ah-BarR. By performing site-directed mutagenesis, this tail is shown to be involved in ligand-binding response.
Collapse
Affiliation(s)
- Amber J. Bernauw
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Vincent Crabbe
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Fraukje Ryssegem
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Ronnie Willaert
- Research Group Structural Biology Brussels, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
- Alliance Research Group VUB‐UGent NanoMicrobiology, International Joint Research Group VUB‐EFPL NanoBiotechnology & NanoMedicineVrije Universiteit BrusselBrusselsBelgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering SciencesVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
4
|
Guckes KR, Miyashiro TI. The type-VI secretion system of the beneficial symbiont Vibrio fischeri. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001302. [PMID: 36809081 PMCID: PMC9972734 DOI: 10.1099/mic.0.001302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
The mutualistic symbiosis between the Hawaiian bobtail squid Euprymna scolopes and the marine bacterium Vibrio fischeri is a powerful experimental system for determining how intercellular interactions impact animal-bacterial associations. In nature, this symbiosis features multiple strains of V. fischeri within each adult animal, which indicates that different strains initially colonize each squid. Various studies have demonstrated that certain strains of V. fischeri possess a type-VI secretion system (T6SS), which can inhibit other strains from establishing symbiosis within the same host habitat. The T6SS is a bacterial melee weapon that enables a cell to kill adjacent cells by translocating toxic effectors via a lancet-like apparatus. This review describes the progress that has been made in understanding the factors that govern the structure and expression of the T6SS in V. fischeri and its effect on the symbiosis.
Collapse
Affiliation(s)
- Kirsten R. Guckes
- The Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
| | - Tim I. Miyashiro
- The Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
| |
Collapse
|
5
|
Glanville DG, Gazioglu O, Marra M, Tokars VL, Kushnir T, Habtom M, Croucher NJ, Nebenzahl YM, Mondragón A, Yesilkaya H, Ulijasz AT. Pneumococcal capsule expression is controlled through a conserved, distal cis-regulatory element during infection. PLoS Pathog 2023; 19:e1011035. [PMID: 36719895 PMCID: PMC9888711 DOI: 10.1371/journal.ppat.1011035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial pneumonia in the US and worldwide. Studies have shown that the differing chemical make-up between serotypes of its most important virulence factor, the capsule, can dictate disease severity. Here we demonstrate that control of capsule synthesis is also critical for infection and facilitated by two broadly conserved transcription factors, SpxR and CpsR, through a distal cis-regulatory element we name the 37-CE. Strikingly, changing only three nucleotides within this sequence is sufficient to render pneumococcus avirulent. Using in vivo and in vitro approaches, we present a model where SpxR interacts as a unique trimeric quaternary structure with the 37-CE to enable capsule repression in the airways. Considering its dramatic effect on infection, variation of the 37-CE between serotypes suggests this molecular switch could be a critical contributing factor to this pathogen's serotype-specific disease outcomes.
Collapse
Affiliation(s)
- David G. Glanville
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Michela Marra
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Valerie L. Tokars
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva, Israel
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Nicholas J. Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Sir Michael Uren Hub, Imperial College London, London, United Kingdom
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of The Negev, Beer-Sheva, Israel
| | - Alfonso Mondragón
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, University Road, Leicester, United Kingdom
| | - Andrew T. Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
6
|
Modrzejewska M, Kawalek A, Bartosik AA. The Lrp/AsnC-Type Regulator PA2577 Controls the EamA-like Transporter Gene PA2576 in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:13340. [PMID: 34948137 PMCID: PMC8707732 DOI: 10.3390/ijms222413340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
The regulatory network of gene expression in Pseudomonas aeruginosa, an opportunistic human pathogen, is very complex. In the PAO1 reference strain, about 10% of genes encode transcriptional regulators, many of which have undefined regulons and unknown functions. The aim of this study is the characterization of PA2577 protein, a representative of the Lrp/AsnC family of transcriptional regulators. This family encompasses proteins involved in the amino acid metabolism, regulation of transport processes or cell morphogenesis. The transcriptome profiling of P. aeruginosa cells with mild PA2577 overproduction revealed a decreased expression of the PA2576 gene oriented divergently to PA2577 and encoding an EamA-like transporter. A gene expression analysis showed a higher mRNA level of PA2576 in P. aeruginosa ΔPA2577, indicating that PA2577 acts as a repressor. Concomitantly, ChIP-seq and EMSA assays confirmed strong interactions of PA2577 with the PA2577/PA2576 intergenic region. Additionally, phenotype microarray analyses indicated an impaired metabolism of ΔPA2576 and ΔPA2577 mutants in the presence of polymyxin B, which suggests disturbances of membrane functions in these mutants. We show that PA2576 interacts with two proteins, PA5006 and PA3694, with a predicted role in lipopolysaccharide (LPS) and membrane biogenesis. Overall, our results indicate that PA2577 acts as a repressor of the PA2576 gene coding for the EamA-like transporter and may play a role in the modulation of the cellular response to stress conditions, including antimicrobial peptides, e.g., polymyxin B.
Collapse
Affiliation(s)
| | | | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.M.); (A.K.)
| |
Collapse
|
7
|
Ma X, Ma L, Huo YX. Reconstructing the transcription regulatory network to optimize resource allocation for robust biosynthesis. Trends Biotechnol 2021; 40:735-751. [PMID: 34895933 DOI: 10.1016/j.tibtech.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
An ideal microbial cell factory (MCF) should deliver maximal resources to production, which conflicts with the microbe's native growth-oriented resource allocation strategy and can therefore lead to early termination of the high-yield period. Reallocating resources from growth to production has become a critical factor in constructing robust MCFs. Instead of strengthening specific biosynthetic pathways, emerging endeavors are focused on rearranging the gene regulatory network to fundamentally reprogram the resource allocation pattern. Combining this idea with transcriptional regulation within the hierarchical regulatory network, this review discusses recent engineering strategies targeting the transcription machinery, module networks, regulatory edges, and bottom network layer. This global view will help to construct a production-oriented phenotype that fully harnesses the potential of MCFs.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Lianjie Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China.
| |
Collapse
|
8
|
Yan S, Zhen J, Li Y, Huang Y, Ai X, Li Y, Stojkoska A, Huang X, Ruan C, Li J, Fan L, Xie J. Mycobacterium Lrp/AsnC family transcriptional factor modulates the arginase pathway as both a sensor and a transcriptional repressor. J Genet Genomics 2021; 48:1020-1031. [PMID: 34696992 DOI: 10.1016/j.jgg.2021.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
L-Arginine is the precursor of nitric oxide (NO), a host immune effector against intracellular pathogens including Mycobacterium tuberculosis (M. tb). Pathogens including M. tb have evolved various strategies targeting arginine to block the production of NO for better survival and proliferation. However, L-arginine metabolism and regulation in Mycobacterium are poorly understood. Here, we report the identification of M. smegmatis MSMEG_1415 (homolog of M. tb Rv2324) as an arginine-responsive transcriptional factor regulating the arginase pathway. In the absence of L-arginine, MSMEG_1415 acts as a repressor to inhibit the transcription of the roc (for arginine, ornithine catabolism) gene cluster, thereby switching off the arginase pathway. Treatment with L-arginine relieves the transcriptional inhibition of MSMEG_1415 on the roc gene cluster to activate the arginase pathway. Moreover, the L-arginine-MSMEG_1415 complex activates the transcription of the roc gene cluster by recognizing and binding a 15-bp palindrome motif, thereby preventing the excess accumulation of L-arginine in M. smegmatis. Physiologically, MSMEG_1415 confers mycobacteria resistance to starvation and fluoroquinolones exposure, suggestive of its important role in M. smegmatis persistence. The results uncover a unique regulatory mechanism of arginine metabolism in mycobacteria and identify M. tb Rv2324 as an attractive candidate target for the design of drugs against tuberculosis.
Collapse
Affiliation(s)
- Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yuzhu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yu Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuefeng Ai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yue Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Cao Ruan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiang Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lin Fan
- Shanghai Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai Key Laboratory of Tuberculosis, Shanghai 200433, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Worst EG, Finkler M, Schenkelberger M, Kurt Ö, Helms V, Noireaux V, Ott A. A Methylation-Directed, Synthetic Pap Switch Based on Self-Complementary Regulatory DNA Reconstituted in an All E. coli Cell-Free Expression System. ACS Synth Biol 2021; 10:2725-2739. [PMID: 34550672 DOI: 10.1021/acssynbio.1c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyelonephritis-associated pili (pap) enable migration of the uropathogenic Escherichia coli strain (UPEC) through the urinary tract. UPEC can switch between a stable 'ON phase' where the corresponding pap genes are expressed and a stable 'OFF phase' where their transcription is repressed. Hereditary DNA methylation of either one of two GATC motives within the regulatory region stabilizes the respective phase over many generations. The underlying molecular mechanism is only partly understood. Previous investigations suggest that in vivo phase-variation stability results from cooperative action of the transcriptional regulators Lrp and PapI. Here, we use an E. coli cell-free expression system to study molecular functions of the pap regulatory region based on a specially designed, synthetic construct flanked by two reporter genes encoding fluorescent proteins for simple readout. On the basis of our observations we suggest that besides Lrp, the conformation of the self-complementary regulatory DNA plays a strong role in the regulation of phase-variation. Our work not only contributes to better understand the phase variation mechanism, but it represents a successful start for mimicking stable, hereditary, and strong expression control based on methylation. The conformation of the regulatory DNA corresponds to a Holliday junction. Gene expression must be expected to respond if opposite arms of the junction are drawn outward.
Collapse
Affiliation(s)
- Emanuel G. Worst
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| | - Marc Finkler
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| | - Marc Schenkelberger
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| | - Ömer Kurt
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| | - Volkhard Helms
- Universität des Saarlandes, Center for Bioinformatics, Saarbrücken, 66041, Germany
| | - Vincent Noireaux
- University of Minnesota, School of Physics and Astronomy, Minneapolis, Minnesota 55455, United States
| | - Albrecht Ott
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| |
Collapse
|
10
|
Leucine-Responsive Regulatory Protein in Acetic Acid Bacteria Is Stable and Functions at a Wide Range of Intracellular pH Levels. J Bacteriol 2021; 203:e0016221. [PMID: 34228496 DOI: 10.1128/jb.00162-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetic acid bacteria grow while producing acetic acid, resulting in acidification of the culture. Limited reports elucidate the effect of changes in intracellular pH on transcriptional factors. In the present study, the intracellular pH of Komagataeibacter europaeus was monitored with a pH-sensitive green fluorescent protein, showing that the intracellular pH decreased from 6.3 to 4.7 accompanied by acetic acid production during cell growth. The leucine-responsive regulatory protein of K. europaeus (KeLrp) was used as a model to examine pH-dependent effects, and its properties were compared with those of the Escherichia coli ortholog (EcLrp) at different pH levels. The DNA-binding activities of EcLrp and KeLrp with the target DNA (Ec-ilvI and Ke-ilvI) were examined by gel mobility shift assays under various pH conditions. EcLrp showed the highest affinity with the target at pH 8.0 (Kd [dissociation constant], 0.7 μM), decreasing to a minimum of 3.4 μM at pH 4.0. Conversely, KeLrp did not show significant differences in binding affinity between pH 4 and 7 (Kd, 1.0 to 1.5 μM), and the highest affinity was at pH 5.0 (Kd, 1.0 μM). Circular dichroism spectroscopy revealed that the α-helical content of KeLrp was the highest at pH 5.0 (49%) and was almost unchanged while being maintained at >45% over a range of pH levels examined, while that of EcLrp decreased from its maximum (49% at pH 7.0) to its minimum (36% at pH 4.0). These data indicate that KeLrp is stable and functions over a wide range of intracellular pH levels. IMPORTANCE Lrp is a highly conserved transcriptional regulator found in bacteria and archaea and regulates transcriptions of various genes. The intracellular pH of acetic acid bacteria (AAB) changes accompanied by acetic acid production during cell growth. The Lrp of AAB K. europaeus (KeLrp) was structurally stable over a wide range of pH and maintained DNA-binding activity even at low pH compared with Lrp from E. coli living in a neutral environment. An in vitro experiment showed DNA-binding activity of KeLrp to the target varied with changes in pH. In AAB, change of the intracellular pH during a cell growth would be an important trigger in controlling the activity of Lrp in vivo.
Collapse
|
11
|
Ziegler CA, Freddolino PL. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea. Crit Rev Biochem Mol Biol 2021; 56:373-400. [PMID: 34151666 DOI: 10.1080/10409238.2021.1925215] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs' complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.
Collapse
Affiliation(s)
- Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Grünberger F, Reichelt R, Waege I, Ned V, Bronner K, Kaljanac M, Weber N, El Ahmad Z, Knauss L, Madej MG, Ziegler C, Grohmann D, Hausner W. CopR, a Global Regulator of Transcription to Maintain Copper Homeostasis in Pyrococcus furiosus. Front Microbiol 2021; 11:613532. [PMID: 33505379 PMCID: PMC7830388 DOI: 10.3389/fmicb.2020.613532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022] Open
Abstract
Although copper is in many cases an essential micronutrient for cellular life, higher concentrations are toxic. Therefore, all living cells have developed strategies to maintain copper homeostasis. In this manuscript, we have analyzed the transcriptome-wide response of Pyrococcus furiosus to increased copper concentrations and described the essential role of the putative copper-sensing metalloregulator CopR in the detoxification process. To this end, we employed biochemical and biophysical methods to characterize the role of CopR. Additionally, a copR knockout strain revealed an amplified sensitivity in comparison to the parental strain towards increased copper levels, which designates an essential role of CopR for copper homeostasis. To learn more about the CopR-regulated gene network, we performed differential gene expression and ChIP-seq analysis under normal and 20 μM copper-shock conditions. By integrating the transcriptome and genome-wide binding data, we found that CopR binds to the upstream regions of many copper-induced genes. Negative-stain transmission electron microscopy and 2D class averaging revealed an octameric assembly formed from a tetramer of dimers for CopR, similar to published crystal structures from the Lrp family. In conclusion, we propose a model for CopR-regulated transcription and highlight the regulatory network that enables Pyrococcus to respond to increased copper concentrations.
Collapse
Affiliation(s)
- Felix Grünberger
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Ingrid Waege
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Verena Ned
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Korbinian Bronner
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Marcell Kaljanac
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Nina Weber
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Zubeir El Ahmad
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Lena Knauss
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - M. Gregor Madej
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Winfried Hausner
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Zhu L, Mack C, Wirtz A, Kranz A, Polen T, Baumgart M, Bott M. Regulation of γ-Aminobutyrate (GABA) Utilization in Corynebacterium glutamicum by the PucR-Type Transcriptional Regulator GabR and by Alternative Nitrogen and Carbon Sources. Front Microbiol 2020; 11:544045. [PMID: 33193127 PMCID: PMC7652997 DOI: 10.3389/fmicb.2020.544045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid mainly formed by decarboxylation of L-glutamate and is widespread in nature from microorganisms to plants and animals. In this study, we analyzed the regulation of GABA utilization by the Gram-positive soil bacterium Corynebacterium glutamicum, which serves as model organism of the phylum Actinobacteria. We show that GABA usage is subject to both specific and global regulatory mechanisms. Transcriptomics revealed that the gabTDP genes encoding GABA transaminase, succinate semialdehyde dehydrogenase, and GABA permease, respectively, were highly induced in GABA-grown cells compared to glucose-grown cells. Expression of the gabTDP genes was dependent on GABA and the PucR-type transcriptional regulator GabR, which is encoded divergently to gabT. A ΔgabR mutant failed to grow with GABA, but not with glucose. Growth of the mutant on GABA was restored by plasmid-based expression of gabR or of gabTDP, indicating that no further genes are specifically required for GABA utilization. Purified GabR (calculated mass 55.75 kDa) formed an octamer with an apparent mass of 420 kDa and bound to two inverted repeats in the gabR-gabT intergenic region. Glucose, gluconate, and myo-inositol caused reduced expression of gabTDP, presumably via the cAMP-dependent global regulator GlxR, for which a binding site is present downstream of the gabT transcriptional start site. C. glutamicum was able to grow with GABA as sole carbon and nitrogen source. Ammonium and, to a lesser extent, urea inhibited growth on GABA, whereas L-glutamine stimulated it. Possible mechanisms for these effects are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
14
|
Zamora M, Ziegler CA, Freddolino PL, Wolfe AJ. A Thermosensitive, Phase-Variable Epigenetic Switch: pap Revisited. Microbiol Mol Biol Rev 2020; 84:e00030-17. [PMID: 32727743 PMCID: PMC7392537 DOI: 10.1128/mmbr.00030-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It has been more than a decade since the last comprehensive review of the phase-variable uropathogen-associated pyelonephritis-associated pilus (pap) genetic switch. Since then, important data have come to light, including additional factors that regulate pap expression, better characterization of H-NS regulation, the structure of the Lrp octamer in complex with pap regulatory DNA, the temperature-insensitive phenotype of a mutant lacking the acetyltransferase RimJ, evidence that key components of the regulatory machinery are acetylated, and new insights into the role of DNA binding by key regulators in shaping both the physical structure and regulatory state of the papI and papBA promoters. This review revisits pap, integrating these newer observations with older ones to produce a new model for the concerted behavior of this virulence-regulatory region.
Collapse
Affiliation(s)
- Mario Zamora
- Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
15
|
Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation. Proc Natl Acad Sci U S A 2020; 117:18540-18549. [PMID: 32675239 PMCID: PMC7414142 DOI: 10.1073/pnas.2005019117] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacterial cells are small and were long thought to have little to no internal structure. However, advances in microscopy have revealed that bacteria do indeed contain subcellular compartments. But how these compartments form has remained a mystery. Recent progress in larger, more complex eukaryotic cells has identified a novel mechanism for intracellular organization known as liquid–liquid phase separation. This process causes certain types of molecules to concentrate within distinct compartments inside the cell. Here, we demonstrate that the same process also occurs in bacteria. This work, together with a growing body of literature, suggests that liquid–liquid phase separation is a common mechanism for intracellular organization in both eukaryotic and prokaryotic cells. Once described as mere “bags of enzymes,” bacterial cells are in fact highly organized, with many macromolecules exhibiting nonuniform localization patterns. Yet the physical and biochemical mechanisms that govern this spatial heterogeneity remain largely unknown. Here, we identify liquid–liquid phase separation (LLPS) as a mechanism for organizing clusters of RNA polymerase (RNAP) in Escherichia coli. Using fluorescence imaging, we show that RNAP quickly transitions from a dispersed to clustered localization pattern as cells enter log phase in nutrient-rich media. RNAP clusters are sensitive to hexanediol, a chemical that dissolves liquid-like compartments in eukaryotic cells. In addition, we find that the transcription antitermination factor NusA forms droplets in vitro and in vivo, suggesting that it may nucleate RNAP clusters. Finally, we use single-molecule tracking to characterize the dynamics of cluster components. Our results indicate that RNAP and NusA molecules move inside clusters, with mobilities faster than a DNA locus but slower than bulk diffusion through the nucleoid. We conclude that RNAP clusters are biomolecular condensates that assemble through LLPS. This work provides direct evidence for LLPS in bacteria and demonstrates that this process can serve as a mechanism for intracellular organization in prokaryotes and eukaryotes alike.
Collapse
|
16
|
Bylino OV, Ibragimov AN, Shidlovskii YV. Evolution of Regulated Transcription. Cells 2020; 9:E1675. [PMID: 32664620 PMCID: PMC7408454 DOI: 10.3390/cells9071675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genomes of all organisms abound with various cis-regulatory elements, which control gene activity. Transcriptional enhancers are a key group of such elements in eukaryotes and are DNA regions that form physical contacts with gene promoters and precisely orchestrate gene expression programs. Here, we follow gradual evolution of this regulatory system and discuss its features in different organisms. In eubacteria, an enhancer-like element is often a single regulatory element, is usually proximal to the core promoter, and is occupied by one or a few activators. Activation of gene expression in archaea is accompanied by the recruitment of an activator to several enhancer-like sites in the upstream promoter region. In eukaryotes, activation of expression is accompanied by the recruitment of activators to multiple enhancers, which may be distant from the core promoter, and the activators act through coactivators. The role of the general DNA architecture in transcription control increases in evolution. As a whole, it can be seen that enhancers of multicellular eukaryotes evolved from the corresponding prototypic enhancer-like regulatory elements with the gradually increasing genome size of organisms.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
| | - Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
17
|
Travers A, Muskhelishvili G. Chromosomal Organization and Regulation of Genetic Function in Escherichia coli Integrates the DNA Analog and Digital Information. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0016-2019. [PMID: 32056535 PMCID: PMC11168577 DOI: 10.1128/ecosalplus.esp-0016-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/22/2022]
Abstract
In this article, we summarize our current understanding of the bacterial genetic regulation brought about by decades of studies using the Escherichia coli model. It became increasingly evident that the cellular genetic regulation system is organizationally closed, and a major challenge is to describe its circular operation in quantitative terms. We argue that integration of the DNA analog information (i.e., the probability distribution of the thermodynamic stability of base steps) and digital information (i.e., the probability distribution of unique triplets) in the genome provides a key to understanding the organizational logic of genetic control. During bacterial growth and adaptation, this integration is mediated by changes of DNA supercoiling contingent on environmentally induced shifts in intracellular ionic strength and energy charge. More specifically, coupling of dynamic alterations of the local intrinsic helical repeat in the structurally heterogeneous DNA polymer with structural-compositional changes of RNA polymerase holoenzyme emerges as a fundamental organizational principle of the genetic regulation system. We present a model of genetic regulation integrating the genomic pattern of DNA thermodynamic stability with the gene order and function along the chromosomal OriC-Ter axis, which acts as a principal coordinate system organizing the regulatory interactions in the genome.
Collapse
Affiliation(s)
- Andrew Travers
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
18
|
Torres Montaguth OE, Bervoets I, Peeters E, Charlier D. Competitive Repression of the artPIQM Operon for Arginine and Ornithine Transport by Arginine Repressor and Leucine-Responsive Regulatory Protein in Escherichia coli. Front Microbiol 2019; 10:1563. [PMID: 31354664 PMCID: PMC6640053 DOI: 10.3389/fmicb.2019.01563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 11/20/2022] Open
Abstract
Two out of the three major uptake systems for arginine in Escherichia coli are encoded by the artJ-artPIQM gene cluster. ArtJ is the high-affinity periplasmic arginine-specific binding protein (ArgBP-I), whereas artI encodes the arginine and ornithine periplasmic binding protein (AO). Both ArtJ and ArtI are supposed to combine with the inner membrane-associated ArtQMP2 transport complex of the ATP-binding cassette-type (ABC). Transcription of artJ is repressed by arginine repressor (ArgR) and the artPIQM operon is regulated by the transcriptional regulators ArgR and Leucine-responsive regulatory protein (Lrp). Whereas repression by ArgR requires arginine as corepressor, repression of PartP by Lrp is partially counteracted by leucine, its major effector molecule. We demonstrate that binding of dimeric Lrp to the artP control region generates four complexes with a distinct migration velocity, and that leucine has an effect on both global binding affinity and cooperativity in the binding. We identify the binding sites for Lrp in the artP control region, reveal interferences in the binding of ArgR and Lrp in vitro and demonstrate that the two transcription factors act as competitive repressors in vivo, each one being a more potent regulator in the absence of the other. This competitive behavior may be explained by the partial steric overlap of their respective binding sites. Furthermore, we demonstrate ArgR binding to an unusual position in the control region of the lrp gene, downstream of the transcription initiation site. From this unusual position for an ArgR-specific operator, ArgR has little direct effect on lrp expression, but interferes with the negative leucine-sensitive autoregulation exerted by Lrp. Direct arginine and ArgR-dependent repression of lrp could be observed with a 25-bp deletion mutant, in which the ArgR binding site was artificially moved to a position immediately downstream of the lrp transcription initiation site. This finding is reminiscent of a previous observation made for the carAB operon encoding carbamoylphosphate synthase, where ArgR bound in overlap with the downstream promoter P2 does not block transcription initiated 67 bp upstream at the P1 promoter, and further supports the hypothesis that ArgR does not act as an efficient roadblock.
Collapse
Affiliation(s)
- Oscar E Torres Montaguth
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
19
|
NapA (Rv0430), a Novel Nucleoid-Associated Protein that Regulates a Virulence Operon in Mycobacterium tuberculosis in a Supercoiling-Dependent Manner. J Mol Biol 2019; 431:1576-1591. [DOI: 10.1016/j.jmb.2019.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
|
20
|
Lu Z, Zhang X, Dai J, Wang Y, He W. Engineering of leucine-responsive regulatory protein improves spiramycin and bitespiramycin biosynthesis. Microb Cell Fact 2019; 18:38. [PMID: 30782164 PMCID: PMC6379999 DOI: 10.1186/s12934-019-1086-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/07/2019] [Indexed: 11/21/2022] Open
Abstract
Background Bitespiramycin (BT) is produced by recombinant spiramycin (SP) producing strain Streptomyces spiramyceticus harboring a heterologous 4″-O-isovaleryltransferase gene (ist). Exogenous l-Leucine (l-Leu) could improve the production of BT. The orf2 gene found from the genomic sequence of S. spiramyceticus encodes a leucine-responsive regulatory protein (Lrp) family regulator named as SSP_Lrp. The functions of SSP_Lrp and l-Leu involved in the biosynthesis of spiramycin (SP) and BT were investigated in S. spiramyceticus. Results SSP_Lrp was a global regulator directly affecting the expression of three positive regulatory genes, bsm23, bsm42 and acyB2, in SP or BT biosynthesis. Inactivation of SSP_Lrp gene in S. spiramyceticus 1941 caused minor increase of SP production. However, SP production of the ΔSSP_Lrp-SP strain containing an SSP_Lrp deficient of putative l-Leu binding domain was higher than that of S. spiramyceticus 1941 (476.2 ± 3.1 μg/L versus 313.3 ± 25.2 μg/L, respectively), especially SP III increased remarkably. The yield of BT in ΔSSP_Lrp-BT strain was more than twice than that in 1941-BT. The fact that intracellular concentrations of branched-chain amino acids (BCAAs) decreased markedly in the ΔSSP_Lrp-SP demonstrated increasing catabolism of BCAAs provided more precursors for SP biosynthesis. Comparative analysis of transcriptome profiles of the ΔSSP_Lrp-SP and S. spiramyceticus 1941 found 12 genes with obvious differences in expression, including 6 up-regulated genes and 6 down-regulated genes. The up-regulated genes are related to PKS gene for SP biosynthesis, isoprenoid biosynthesis, a Sigma24 family factor, the metabolism of aspartic acid, pyruvate and acyl-CoA; and the down-regulated genes are associated with ribosomal proteins, an AcrR family regulator, and biosynthesis of terpenoid, glutamate and glutamine. Conclusion SSP_Lrp in S. spiramyceticus was a negative regulator involved in the SP and BT biosynthesis. The deletion of SSP_Lrp putative l-Leu binding domain was advantageous for production of BT and SP, especially their III components. Electronic supplementary material The online version of this article (10.1186/s12934-019-1086-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoting Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Jianlu Dai
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Yiguang Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China
| | - Weiqing He
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, No. 1 Tian Tan Xi Li, Beijing, 100050, People's Republic of China.
| |
Collapse
|
21
|
Kroner GM, Wolfe MB, Freddolino PL. Escherichia coli Lrp Regulates One-Third of the Genome via Direct, Cooperative, and Indirect Routes. J Bacteriol 2019; 201:e00411-18. [PMID: 30420454 PMCID: PMC6349092 DOI: 10.1128/jb.00411-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022] Open
Abstract
The global regulator Lrp plays a crucial role in regulating metabolism, virulence, and motility in response to environmental conditions. Lrp has previously been shown to activate or repress approximately 10% of the genes in Escherichia coli However, the full spectrum of targets, and how Lrp acts to regulate them, have stymied earlier study. We have combined matched chromatin-immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) under nine physiological conditions to comprehensively map the binding and regulatory activity of Lrp as it directs responses to nutrient abundance. In addition to identifying hundreds of novel Lrp targets, we observe two new global trends, as follows: first, that Lrp will often bind to promoters in a poised position under conditions when it has no regulatory activity to enable combinatorial interactions with other regulators, and second, that nutrient levels induce a global shift in the equilibrium between less-sequence-specific and more-sequence-specific DNA binding. The overall regulatory behavior of Lrp, which as we now show extends to 38% of E. coli genes directly or indirectly under at least one condition, thus arises from the interaction between changes in Lrp binding specificity and cooperative action with other regulators.IMPORTANCE To survive, bacteria such as E. coli must rapidly respond to changing environmental conditions, including nutrient levels. A decrease in nutrient availability causes bacteria to stop rapid replication and enter stationary phase, where they perform limited to no cell division. The E. coli global regulatory protein Lrp has been previously implicated in modulating the expression of genes particularly important at this transition from rapid to slowed growth. Here, we monitor Lrp's DNA binding locations and effect on gene expression under three different nutrient conditions across three growth stages. We find that Lrp's role is even broader than previously suspected and that it appears to interact with many other bacterial regulators to perform its function in a condition-specific manner.
Collapse
Affiliation(s)
- Grace M Kroner
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Cellular Biotechnology Training Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael B Wolfe
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Alanine dehydrogenases in mycobacteria. J Microbiol 2019; 57:81-92. [PMID: 30706339 DOI: 10.1007/s12275-019-8543-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
Since NAD(H)-dependent L-alanine dehydrogenase (EC 1.1.4.1; Ald) was identified as one of the major antigens present in culture filtrates of Mycobacterium tuberculosis, many studies on the enzyme have been conducted. Ald catalyzes the reversible conversion of pyruvate to alanine with concomitant oxidation of NADH to NAD+ and has a homohexameric quaternary structure. Expression of the ald genes was observed to be strongly upregulated in M. tuberculosis and Mycobacterium smegmatis grown in the presence of alanine. Furthermore, expression of the ald genes in some mycobacteria was observed to increase under respiration-inhibitory conditions such as oxygen-limiting and nutrient-starvation conditions. Upregulation of ald expression by alanine or under respiration-inhibitory conditions is mediated by AldR, a member of the Lrp/AsnC family of transcriptional regulators. Mycobacterial Alds were demonstrated to be the enzymes required for utilization of alanine as a nitrogen source and to help mycobacteria survive under respiration-inhibitory conditions by maintaining cellular NADH/NAD+ homeostasis. Several inhibitors of Ald have been developed, and their application in combination with respiration-inhibitory antitubercular drugs such as Q203 and bedaquiline was recently suggested.
Collapse
|
23
|
Ciaccia PN, Ramachandran R, Chattoraj DK. A Requirement for Global Transcription Factor Lrp in Licensing Replication of Vibrio cholerae Chromosome 2. Front Microbiol 2018; 9:2103. [PMID: 30250457 PMCID: PMC6139311 DOI: 10.3389/fmicb.2018.02103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
The human pathogen, Vibrio cholerae, belongs to the 10% of bacteria in which the genome is divided. Each of its two chromosomes, like bacterial chromosomes in general, replicates from a unique origin at fixed times in the cell cycle. Chr1 initiates first, and upon duplication of a site in Chr1, crtS, Chr2 replication initiates. Recent in vivo experiments demonstrate that crtS binds the Chr2-specific initiator RctB and promotes its initiator activity by remodeling it. Compared to the well-defined RctB binding sites in the Chr2 origin, crtS is an order of magnitude longer, suggesting that other factors can bind to it. We developed an in vivo screen to identify additional crtS-binding proteins and identified the global transcription factor, Lrp, as one such protein. Studies in vivo and in vitro indicate that Lrp binds to crtS and facilitates RctB binding to crtS. Chr2 replication is severely defective in the absence of Lrp, indicative of a critical role of the transcription factor in licensing Chr2 replication. Since Lrp responds to stresses such as nutrient limitation, its interaction with RctB presumably sensitizes Chr2 replication to the physiological state of the cell.
Collapse
Affiliation(s)
| | - Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
24
|
Ferrándiz MJ, Carreño D, Ayora S, de la Campa AG. HU of Streptococcus pneumoniae Is Essential for the Preservation of DNA Supercoiling. Front Microbiol 2018; 9:493. [PMID: 29662473 PMCID: PMC5890176 DOI: 10.3389/fmicb.2018.00493] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/02/2018] [Indexed: 01/11/2023] Open
Abstract
The histone-like protein HU is a conserved nucleoid-associated protein that is involved in the maintenance of the bacterial chromosome architecture. It is the only known nucleoid-associated protein in Streptococcus pneumoniae, but it has not been studied. The pneumococcal gene encoding this protein, hlp, is shown herein to be essential for cell viability. Its disruption was only possible either when it was duplicated in the chromosome and its expression induced from the P Zn promoter, or when hlp was cloned into a plasmid under the control of the inducible P mal promoter. In vitro assays indicated that pneumococcal HU shows a preference for binding to supercoiled DNA rather than to linear or nicked DNA. In vivo experiments in which the amount of HU was manipulated showed a relationship between the amount of HU and the level of DNA supercoiling. A twofold reduction in the amount of HU triggered a 21% increase in DNA relaxation in untreated cells. However, in cells treated with novobiocin, a drug that relaxes DNA by inhibiting DNA gyrase, a 35% increase in DNA relaxation was observed, instead of the expected 20% in cells with a constitutive HU amount. Conversely, a fourfold HU increase caused only 14% of DNA relaxation in the presence of novobiocin. Taken together, these results support an essential role for HU in the maintenance of DNA supercoiling in S. pneumoniae.
Collapse
Affiliation(s)
- María-José Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - David Carreño
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain.,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
25
|
Ishii Y, Akasaka N, Sakoda H, Hidese R, Fujiwara S. Leucine responsive regulatory protein is involved in methionine metabolism and polyamine homeostasis in acetic acid bacterium Komagataeibacter europaeus. J Biosci Bioeng 2018; 125:67-75. [DOI: 10.1016/j.jbiosc.2017.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/03/2017] [Accepted: 07/31/2017] [Indexed: 01/29/2023]
|
26
|
Cao M, Goodrich-Blair H. Ready or Not: Microbial Adaptive Responses in Dynamic Symbiosis Environments. J Bacteriol 2017; 199:e00883-16. [PMID: 28484049 PMCID: PMC5512229 DOI: 10.1128/jb.00883-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mutually beneficial and pathogenic symbiotic associations, microbes must adapt to the host environment for optimal fitness. Both within an individual host and during transmission between hosts, microbes are exposed to temporal and spatial variation in environmental conditions. The phenomenon of phenotypic variation, in which different subpopulations of cells express distinctive and potentially adaptive characteristics, can contribute to microbial adaptation to a lifestyle that includes rapidly changing environments. The environments experienced by a symbiotic microbe during its life history can be erratic or predictable, and each can impact the evolution of adaptive responses. In particular, the predictability of a rhythmic or cyclical series of environments may promote the evolution of signal transduction cascades that allow preadaptive responses to environments that are likely to be encountered in the future, a phenomenon known as adaptive prediction. In this review, we summarize environmental variations known to occur in some well-studied models of symbiosis and how these may contribute to the evolution of microbial population heterogeneity and anticipatory behavior. We provide details about the symbiosis between Xenorhabdus bacteria and Steinernema nematodes as a model to investigate the concept of environmental adaptation and adaptive prediction in a microbial symbiosis.
Collapse
Affiliation(s)
- Mengyi Cao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
27
|
Unoarumhi Y, Blumenthal RM, Matson JS. Evolution of a global regulator: Lrp in four orders of γ-Proteobacteria. BMC Evol Biol 2016; 16:111. [PMID: 27206730 PMCID: PMC4875751 DOI: 10.1186/s12862-016-0685-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/12/2016] [Indexed: 11/11/2022] Open
Abstract
Background Bacterial global regulators each regulate the expression of several hundred genes. In Escherichia coli, the top seven global regulators together control over half of all genes. Leucine-responsive regulatory protein (Lrp) is one of these top seven global regulators. Lrp orthologs are very widely distributed, among both Bacteria and Archaea. Surprisingly, even within the phylum γ-Proteobacteria (which includes E. coli), Lrp is a global regulator in some orders and a local regulator in others. This raises questions about the evolution of Lrp and, more broadly, of global regulators. Results We examined Lrp sequences from four bacterial orders of the γ-Proteobacteria using phylogenetic and Logo analyses. The orders studied were Enterobacteriales and Vibrionales, in which Lrp plays a global role in tested species; Pasteurellales, in which Lrp is a local regulator in the tested species; and Alteromonadales, an order closely related to the other three but in which Lrp has not yet been studied. For comparison, we analyzed the Lrp paralog AsnC, which in all tested cases is a local regulator. The Lrp and AsnC phylogenetic clusters each divided, as expected, into subclusters representing the Enterobacteriales, Vibrionales, and Pasteuralles. However the Alteromonadales did not yield coherent clusters for either Lrp or AsnC. Logo analysis revealed signatures associated with globally- vs. locally- acting Lrp orthologs, providing testable hypotheses for which portions of Lrp are responsible for a global vs. local role. These candidate regions include both ends of the Lrp polypeptide but not, interestingly, the highly-conserved helix-turn-helix motif responsible for DNA sequence specificity. Conclusions Lrp and AsnC have conserved sequence signatures that allow their unambiguous annotation, at least in γ-Proteobacteria. Among Lrp orthologs, specific residues correlated with global vs. local regulatory roles, and can now be tested to determine which are functionally relevant and which simply reflect divergence. In the Alteromonadales, it appears that there are different subgroups of Lrp orthologs, one of which may act globally while the other may act locally. These results suggest experiments to improve our understanding of the evolution of bacterial global regulators. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0685-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yvette Unoarumhi
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,Program in Bioinformatics and Proteomics/Genomics, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,Program in Bioinformatics and Proteomics/Genomics, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jyl S Matson
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| |
Collapse
|
28
|
Song N, Cui Y, Li Z, Chen L, Liu S. New Targets and Cofactors for the Transcription Factor LrpA fromMycobacterium tuberculosis. DNA Cell Biol 2016; 35:167-76. [DOI: 10.1089/dna.2015.3040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhaoli Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
29
|
Dey A, Shree S, Pandey SK, Tripathi RP, Ramachandran R. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS. J Biol Chem 2016; 291:11967-80. [PMID: 27006398 DOI: 10.1074/jbc.m115.700484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/06/2022] Open
Abstract
Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target.
Collapse
Affiliation(s)
- Abhishek Dey
- From the Molecular and Structural Biology Division and
| | - Sonal Shree
- From the Molecular and Structural Biology Division and
| | - Sarvesh Kumar Pandey
- the Medicinal and Process Chemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Rama Pati Tripathi
- the Medicinal and Process Chemistry Division, Council of Scientific and Industrial Research-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | | |
Collapse
|
30
|
Moore JM, Magnan D, Mojica AK, Núñez MAB, Bates D, Rosenberg SM, Hastings PJ. Roles of Nucleoid-Associated Proteins in Stress-Induced Mutagenic Break Repair in Starving Escherichia coli. Genetics 2015; 201:1349-62. [PMID: 26500258 PMCID: PMC4676537 DOI: 10.1534/genetics.115.178970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
The mutagenicity of DNA double-strand break repair in Escherichia coli is controlled by DNA-damage (SOS) and general (RpoS) stress responses, which let error-prone DNA polymerases participate, potentially accelerating evolution during stress. Either base substitutions and indels or genome rearrangements result. Here we discovered that most small basic proteins that compact the genome, nucleoid-associated proteins (NAPs), promote or inhibit mutagenic break repair (MBR) via different routes. Of 15 NAPs, H-NS, Fis, CspE, and CbpA were required for MBR; Dps inhibited MBR; StpA and Hha did neither; and five others were characterized previously. Three essential genes were not tested. Using multiple tests, we found the following: First, Dps, which reduces reactive oxygen species (ROS), inhibited MBR, implicating ROS in MBR. Second, CbpA promoted F' plasmid maintenance, allowing MBR to be measured in an F'-based assay. Third, Fis was required for activation of the SOS DNA-damage response and could be substituted in MBR by SOS-induced levels of DinB error-prone DNA polymerase. Thus, Fis promoted MBR by allowing SOS activation. Fourth, H-NS represses ROS detoxifier sodB and was substituted in MBR by deletion of sodB, which was not otherwise mutagenic. We conclude that normal ROS levels promote MBR and that H-NS promotes MBR by maintaining ROS. CspE positively regulates RpoS, which is required for MBR. Four of five previously characterized NAPs promoted stress responses that enhance MBR. Hence, most NAPs affect MBR, the majority via regulatory functions. The data show that a total of six NAPs promote MBR by regulating stress responses, indicating the importance of nucleoid structure and function to the regulation of MBR and of coupling mutagenesis to stress, creating genetic diversity responsively.
Collapse
Affiliation(s)
- Jessica M Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030
| | - David Magnan
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Ana K Mojica
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Undergraduate Program on Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, 62210, Morelos, Mexico
| | - María Angélica Bravo Núñez
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - David Bates
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - P J Hastings
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
31
|
Wang X, An C, Yang M, Li X, Ke Y, Lei S, Xu X, Yu J, Ren H, Du X, Wang Z, Qiu Y, Liu B, Chen Z. Immunization with individual proteins of the Lrp/AsnC family induces protection against Brucella melitensis 16M challenges in mice. Front Microbiol 2015; 6:1193. [PMID: 26579099 PMCID: PMC4625564 DOI: 10.3389/fmicb.2015.01193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/13/2015] [Indexed: 11/13/2022] Open
Abstract
Brucellosis is one of the most common zoonoses worldwide. Subunit vaccines are promising for the prevention of human brucellosis. In our previous protective antigen screening studies, we identified a new protective antigen, BMEI0357, which belongs to the Lrp/asnC protein family, a conserved transcriptional regulator in bacteria that is absent in eukaryotes. In the present study, the Brucella genome annotation was screened and a total of six proteins were identified as members of the Lrp/AsnC family. Lrp/AsnC proteins have two domains that are conserved among the family members. However, sequence similarities between these proteins ranged from 9 to 50%, indicating high sequence heterogeneity. To test whether proteins of this family have similar characteristics, all six proteins were cloned and expressed in Escherichia coli. The recombinant proteins were purified and their protective efficacy was evaluated in BALB/c mice challenged with Brucella melitensis 16M. The results show that all six Lrp/AsnC proteins could induce a protective immune response against Brucella melitensis 16M. Antibodies against the Lrp/AsnC proteins were detected in the immunized mice. However, levels of antibodies against these proteins were relatively variable in human brucellosis sera. Taken together, our results show that these six proteins of the Lrp/AsnC family in Brucella could induce protective immune responses in mice.
Collapse
Affiliation(s)
- Xinhui Wang
- Key Laboratory of Zoonosis, Institute of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China ; Experimental Animal Center, Academy of Military Medical Sciences Beijing, China ; Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Chang An
- Key Laboratory of Zoonosis, Institute of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China ; Experimental Animal Center, Academy of Military Medical Sciences Beijing, China
| | - Mingjuan Yang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xinran Li
- Key Laboratory of Zoonosis, Institute of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China ; Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Yuehua Ke
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Shuangshuang Lei
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xiaoyang Xu
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Jiuxuan Yu
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Hang Ren
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xinying Du
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Zhoujia Wang
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Yefeng Qiu
- Experimental Animal Center, Academy of Military Medical Sciences Beijing, China
| | - Bo Liu
- Key Laboratory of Zoonosis, Institute of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Zeliang Chen
- Department of Infectious Disease Control, Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
32
|
Regulation Mechanism of the ald Gene Encoding Alanine Dehydrogenase in Mycobacterium smegmatis and Mycobacterium tuberculosis by the Lrp/AsnC Family Regulator AldR. J Bacteriol 2015. [PMID: 26195594 DOI: 10.1128/jb.00453-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In the presence of alanine, AldR, which belongs to the Lrp/AsnC family of transcriptional regulators and regulates ald encoding alanine dehydrogenase in Mycobacterium smegmatis, changes its quaternary structure from a homodimer to an octamer with an open-ring conformation. Four AldR-binding sites (O2, O1, O4, and O3) with a consensus sequence of GA/T-N2-NWW/WWN-N2-A/TC were identified upstream of the M. smegmatis ald gene by means of DNase I footprinting analysis. O2, O1, and O4 are required for the induction of ald expression by alanine, while O3 is directly involved in the repression of ald expression. In addition to O3, both O1 and O4 are also necessary for full repression of ald expression in the absence of alanine, due to cooperative binding of AldR dimers to O1, O4, and O3. Binding of a molecule of the AldR octamer to the ald control region was demonstrated to require two AldR-binding sites separated by three helical turns between their centers and one additional binding site that is in phase with the two AldR-binding sites. The cooperative binding of AldR dimers to DNA requires three AldR-binding sites that are aligned with a periodicity of three helical turns. The aldR gene is negatively autoregulated independently of alanine. Comparative analysis of ald expression of M. smegmatis and Mycobacterium tuberculosis in conjunction with sequence analysis of both ald control regions led us to suggest that the expression of the ald genes in both mycobacterial species is regulated by the same mechanism. IMPORTANCE In mycobacteria, alanine dehydrogenase (Ald) is the enzyme required both to utilize alanine as a nitrogen source and to grow under hypoxic conditions by maintaining the redox state of the NADH/NAD(+) pool. Expression of the ald gene was reported to be regulated by the AldR regulator that belongs to the Lrp/AsnC (feast/famine) family, but the underlying mechanism was unknown. This study revealed the regulation mechanism of ald in Mycobacterium smegmatis and Mycobacterium tuberculosis. Furthermore, a generalized arrangement pattern of cis-acting regulatory sites for Lrp/AsnC (feast/famine) family regulators is suggested in this study.
Collapse
|
33
|
Shimada T, Saito N, Maeda M, Tanaka K, Ishihama A. Expanded roles of leucine-responsive regulatory protein in transcription regulation of the Escherichia coli genome: Genomic SELEX screening of the regulation targets. Microb Genom 2015; 1:e000001. [PMID: 28348809 PMCID: PMC5320599 DOI: 10.1099/mgen.0.000001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is a transcriptional regulator for the genes involved in transport, biosynthesis and catabolism of amino acids in Escherichia coli. In order to identify the whole set of genes under the direct control of Lrp, we performed Genomic SELEX screening and identified a total of 314 Lrp-binding sites on the E. coli genome. As a result, the regulation target of Lrp was predicted to expand from the hitherto identified genes for amino acid metabolism to a set of novel target genes for utilization of amino acids for protein synthesis, including tRNAs, aminoacyl-tRNA synthases and rRNAs. Northern blot analysis indicated alteration of mRNA levels for at least some novel targets, including the aminoacyl-tRNA synthetase genes. Phenotype MicroArray of the lrp mutant indicated significant alteration in utilization of amino acids and peptides, whilst metabolome analysis showed variations in the concentration of amino acids in the lrp mutant. From these two datasets we realized a reverse correlation between amino acid levels and cell growth rate: fast-growing cells contain low-level amino acids, whilst a high level of amino acids exists in slow-growing cells. Taken together, we propose that Lrp is a global regulator of transcription of a large number of the genes involved in not only amino acid transport and metabolism, but also amino acid utilization.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan.,Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Natsumi Saito
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan.,Department of Chemistry and Material Engineering, Tsuruoka National College of Technology, Yamagata, Japan
| | - Michihisa Maeda
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan.,Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
34
|
Melekhov VV, Shvyreva US, Timchenko AA, Tutukina MN, Preobrazhenskaya EV, Burkova DV, Artiukhov VG, Ozoline ON, Antipov SS. Modes of Escherichia coli Dps Interaction with DNA as Revealed by Atomic Force Microscopy. PLoS One 2015; 10:e0126504. [PMID: 25978038 PMCID: PMC4433220 DOI: 10.1371/journal.pone.0126504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/02/2015] [Indexed: 11/18/2022] Open
Abstract
Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system.
Collapse
Affiliation(s)
- Vladislav V. Melekhov
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Uliana S. Shvyreva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Alexander A. Timchenko
- Department of Physics of Nucleoproteids, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Maria N. Tutukina
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | | | - Diana V. Burkova
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| | - Valiriy G. Artiukhov
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| | - Olga N. Ozoline
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- * E-mail:
| | - Sergey S. Antipov
- Department of Cell Biology, Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, Russian Federation
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
- Department of biophysics and biotechnology, Voronezh State University, Voronezh, Russian Federation
| |
Collapse
|
35
|
Shintani M, Suzuki-Minakuchi C, Nojiri H. Nucleoid-associated proteins encoded on plasmids: Occurrence and mode of function. Plasmid 2015; 80:32-44. [PMID: 25952329 DOI: 10.1016/j.plasmid.2015.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/14/2015] [Accepted: 04/22/2015] [Indexed: 01/31/2023]
Abstract
Nucleoid-associated proteins (NAPs) play a role in changing the shape of microbial DNA, making it more compact and affecting the regulation of transcriptional networks in host cells. Genes that encode NAPs include H-NS family proteins (H-NS, Ler, MvaT, BpH3, Bv3F, HvrA, and Lsr2), FIS, HU, IHF, Lrp, and NdpA, and are found in both microbial chromosomes and plasmid DNA. In the present study, NAP genes were distributed among 442 plasmids out of 4602 plasmid sequences, and many H-NS family proteins, and HU, IHF, Lrp, and NdpA were found in plasmids of Alpha-, Beta-, and Gammaproteobacteria, while HvrA, Lsr2, HU, and Lrp were found in other classes including Actinobacteria and Bacilli. Larger plasmids frequently carried multiple NAP genes. In addition, NAP genes were more frequently found in conjugative plasmids than non-transmissible plasmids. Several host cells carried the same types of H-NS family proteins on both their plasmids and chromosome(s), while this was not observed for other NAPs. Recent studies have shown that NAP genes on plasmids and chromosomes play important roles in the physical and regulatory integration of plasmids into the host cell.
Collapse
Affiliation(s)
- Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan
| | - Chiho Suzuki-Minakuchi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
36
|
Pollak AJ, Reich NO. DNA Adenine Methyltransferase Facilitated Diffusion Is Enhanced by Protein–DNA “Roadblock” Complexes That Induce DNA Looping. Biochemistry 2015; 54:2181-92. [DOI: 10.1021/bi501344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Pollak
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
37
|
Liu H, Orell A, Maes D, van Wolferen M, Lindås AC, Bernander R, Albers SV, Charlier D, Peeters E. BarR, an Lrp-type transcription factor in Sulfolobus acidocaldarius, regulates an aminotransferase gene in a β-alanine responsive manner. Mol Microbiol 2014; 92:625-39. [PMID: 24646198 DOI: 10.1111/mmi.12583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 12/29/2022]
Abstract
In archaea, nothing is known about the β-alanine degradation pathway or its regulation. In this work, we identify and characterize BarR, a novel Lrp-like transcription factor and the first one that has a non-proteinogenic amino acid ligand. BarR is conserved in Sulfolobus acidocaldarius and Sulfolobus tokodaii and is located in a divergent operon with a gene predicted to encode β-alanine aminotransferase. Deletion of barR resulted in a reduced exponential growth rate in the presence of β-alanine. Furthermore, qRT-PCR and promoter activity assays demonstrated that BarR activates the expression of the adjacent aminotransferase gene, but only upon β-alanine supplementation. In contrast, auto-activation proved to be β-alanine independent. Heterologously produced BarR is an octamer in solution and forms a single complex by interacting with multiple sites in the 170 bp long intergenic region separating the divergently transcribed genes. In vitro, DNA binding is specifically responsive to β-alanine and site-mutant analyses indicated that β-alanine directly interacts with the ligand-binding pocket. Altogether, this work contributes to the growing body of evidence that in archaea, Lrp-like transcription factors have physiological roles that go beyond the regulation of α-amino acid metabolism.
Collapse
Affiliation(s)
- Han Liu
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
39
|
An Lrp-type transcriptional regulator controls expression of the Bacillus subtilis chromate transporter. Antonie Van Leeuwenhoek 2013; 104:941-8. [DOI: 10.1007/s10482-013-0013-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
40
|
Regulation of the ald gene encoding alanine dehydrogenase by AldR in Mycobacterium smegmatis. J Bacteriol 2013; 195:3610-20. [PMID: 23749971 DOI: 10.1128/jb.00482-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The regulatory gene aldR was identified 95 bp upstream of the ald gene encoding L-alanine dehydrogenase in Mycobacterium smegmatis. The AldR protein shows sequence similarity to the regulatory proteins of the Lrp/AsnC family. Using an aldR deletion mutant, we demonstrated that AldR serves as both activator and repressor for the regulation of ald gene expression, depending on the presence or absence of L-alanine. The purified AldR protein exists as a homodimer in the absence of L-alanine, while it adopts the quaternary structure of a homohexamer in the presence of L-alanine. The binding affinity of AldR for the ald control region was shown to be increased significantly by L-alanine. Two AldR binding sites (O1 and O2) with the consensus sequence GA-N₂-ATC-N₂-TC and one putative AldR binding site with the sequence GA-N₂-GTT-N₂-TC were identified upstream of the ald gene. Alanine and cysteine were demonstrated to be the effector molecules directly involved in the induction of ald expression. The cellular level of L-alanine was shown to be increased in M. smegmatis cells grown under hypoxic conditions, and the hypoxic induction of ald expression appears to be mediated by AldR, which senses the intracellular level of alanine.
Collapse
|
41
|
Abstract
Contrary to the traditional view that bacterial populations are clonal, single-cell analysis reveals that phenotypic heterogeneity is common in bacteria. Formation of distinct bacterial lineages appears to be frequent during adaptation to harsh environments, including the colonization of animals by bacterial pathogens. Formation of bacterial subpopulations is often controlled by epigenetic mechanisms that generate inheritable phenotypic diversity without altering the DNA sequence. Such mechanisms are diverse, ranging from relatively simple feedback loops to complex self-perpetuating DNA methylation patterns.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain.
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106.
| |
Collapse
|
42
|
Song N, Nguyen Duc T, van Oeffelen L, Muyldermans S, Peeters E, Charlier D. Expanded target and cofactor repertoire for the transcriptional activator LysM from Sulfolobus. Nucleic Acids Res 2013; 41:2932-49. [PMID: 23355617 PMCID: PMC3597687 DOI: 10.1093/nar/gkt021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Previously, Lrp-like transcriptional regulator LysM from the hyperthermoacidophilic crenarchaeon Sulfolobus solfataricus was proposed to have a single target, the lysWXJK operon of lysine biosynthesis, and a single effector molecule, l-lysine. Here we identify ∼70 novel binding sites for LysM in the S. solfataricus genome with a LysM-specific nanobody-based chromatin immunoprecipitation assay coupled to microarray hybridization (ChIP-chip) and in silico target site prediction using an energy-based position weight matrix, and validate these findings with in vitro binding. LysM binds to intergenic and coding regions, including promoters of various amino acid biosynthesis and transport genes. We confirm that l-lysine is the most potent effector molecule that reduces, but does not completely abolish, LysM binding, and show that several other amino acids and derivatives, including d-lysine, l-arginine, l-homoarginine, l-glutamine and l-methionine and branched-chain amino acids l-leucine, l-isoleucine and l-valine, significantly affect DNA-binding properties of LysM. Therefore, it appears from this study that LysM is a much more versatile regulator than previously thought, and that it uses a variety of amino acids to sense nutritional quality of the environment and to modulate expression of the metabolic machinery of Sulfolobus accordingly.
Collapse
Affiliation(s)
- Ningning Song
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Vassart A, Van Wolferen M, Orell A, Hong Y, Peeters E, Albers SV, Charlier D. Sa-Lrp from Sulfolobus acidocaldarius is a versatile, glutamine-responsive, and architectural transcriptional regulator. Microbiologyopen 2012; 2:75-93. [PMID: 23255531 PMCID: PMC3584215 DOI: 10.1002/mbo3.58] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 11/30/2022] Open
Abstract
Sa-Lrp is a member of the leucine-responsive regulatory protein (Lrp)-like family of transcriptional regulators in Sulfolobus acidocaldarius. Previously, we demonstrated the binding of Sa-Lrp to the control region of its own gene in vitro. However, the function and cofactor of Sa-Lrp remained an enigma. In this work, we demonstrate that glutamine is the cofactor of Sa-Lrp by inducing the formation of octamers and increasing the DNA-binding affinity and sequence specificity. In vitro protein-DNA interaction assays indicate that Sa-Lrp binds to promoter regions of genes with a variety of functions including ammonia assimilation, transcriptional control, and UV-induced pili synthesis. DNA binding occurs with a specific affinity for AT-rich binding sites, and the protein induces DNA bending and wrapping upon binding, indicating an architectural role of the regulator. Furthermore, by analyzing an Sa-lrp deletion mutant, we demonstrate that the protein affects transcription of some of the genes of which the promoter region is targeted and that it is an important determinant of the cellular aggregation phenotype. Taking all these results into account, we conclude that Sa-Lrp is a glutamine-responsive global transcriptional regulator with an additional architectural role.
Collapse
Affiliation(s)
- Amelia Vassart
- Research Group of Microbiology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Chim N, Owens CP, Contreras H, Goulding CW. Withdrawn. Infect Disord Drug Targets 2012:CDTID-EPUB-20121116-2. [PMID: 23167715 PMCID: PMC3695056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Withdrawn by the publisher.
Collapse
Affiliation(s)
- Nicholas Chim
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Cedric P. Owens
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Heidi Contreras
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine CA 92697, USA
| |
Collapse
|
45
|
The proline rich homeodomain protein PRH/Hhex forms stable oligomers that are highly resistant to denaturation. PLoS One 2012; 7:e35984. [PMID: 22540015 PMCID: PMC3335068 DOI: 10.1371/journal.pone.0035984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/29/2012] [Indexed: 11/19/2022] Open
Abstract
Background Many transcription factors control gene expression by binding to specific DNA sequences at or near the genes that they regulate. However, some transcription factors play more global roles in the control of gene expression by altering the architecture of sections of chromatin or even the whole genome. The ability to form oligomeric protein assemblies allows many of these proteins to manipulate extensive segments of DNA or chromatin via the formation of structures such as DNA loops or protein-DNA fibres. Principal Findings Here we show that the proline rich homeodomain protein PRH/Hhex forms predominantly octameric and/or hexadecameric species in solution as well as larger assemblies. We show that these assemblies are highly stable resisting denaturation by temperature and chemical denaturants. Conclusion These data indicate that PRH is functionally and structurally related to the Lrp/AsnC family of proteins, a group of proteins that are known to act globally to control gene expression in bacteria and archaea.
Collapse
|
46
|
Deng W, Wang H, Xie J. Regulatory and pathogenesis roles of Mycobacterium Lrp/AsnC family transcriptional factors. J Cell Biochem 2012; 112:2655-62. [PMID: 21608015 DOI: 10.1002/jcb.23193] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lrp/AsnC (leucine-responsive regulatory protein/asparagine synthase C products) family transcriptional regulators, widespread among bacteria and archaea, is also known as feast/famine regulatory protein (FFRPs). They regulate multiple cellular metabolisms globally (Lrp) or specifically (AsnC), such as amino acid metabolism, pili synthesis, DNA transactions during DNA repair and recombination, and also might be implicated in persistence. To better understanding of the pathogenesis of M. tuberculosis, based on our lab's work on this transcriptional factor family, these progresses are summarized, with special focus on that of Mycobacterium via comparative genomics.
Collapse
Affiliation(s)
- Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three GorgesArea, School of Life Sciences, Southwest University, Chongqing 400715, China
| | | | | |
Collapse
|
47
|
The TonB3 system in the human pathogen Vibrio vulnificus is under the control of the global regulators Lrp and cyclic AMP receptor protein. J Bacteriol 2012; 194:1897-911. [PMID: 22307757 DOI: 10.1128/jb.06614-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
TonB systems transduce the proton motive force of the cytoplasmic membrane to energize substrate transport through a specific TonB-dependent transporter across the outer membrane. Vibrio vulnificus, an opportunistic marine pathogen that can cause a fatal septicemic disease in humans and eels, possesses three TonB systems. While the TonB1 and TonB2 systems are iron regulated, the TonB3 system is induced when the bacterium grows in human serum. In this work we have determined the essential roles of the leucine-responsive protein (Lrp) and cyclic AMP (cAMP) receptor protein (CRP) in the transcriptional activation of this system. Whereas Lrp shows at least four very distinctive DNA binding regions spread out from position -59 to -509, cAMP-CRP binds exclusively in a region centered at position -122.5 from the start point of the transcription. Our results suggest that both proteins bind simultaneously to the region closer to the RNA polymerase binding site. Importantly, we report that the TonB3 system is induced not only by serum but also during growth in minimal medium with glycerol as the sole carbon source and low concentrations of Casamino Acids. In addition to catabolite repression by glucose, l-leucine acts by inhibiting the binding of Lrp to the promoter region, hence preventing transcription of the TonB3 operon. Thus, this TonB system is under the direct control of two global regulators that can integrate different environmental signals (i.e., glucose starvation and the transition between "feast" and "famine"). These results shed light on new mechanisms of regulation for a TonB system that could be widespread in other organisms.
Collapse
|
48
|
Recognition of DNA by the helix-turn-helix global regulatory protein Lrp is modulated by the amino terminus. J Bacteriol 2011; 193:3794-803. [PMID: 21642464 DOI: 10.1128/jb.00191-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The AsnC/Lrp family of regulatory proteins links bacterial and archaeal transcription patterns to metabolism. In Escherichia coli, Lrp regulates approximately 400 genes, over 200 of them directly. In earlier studies, lrp genes from Vibrio cholerae, Proteus mirabilis, and E. coli were introduced into the same E. coli background and yielded overlapping but significantly different regulons. These differences were seen despite amino acid sequence identities of 92% (Vibrio) and 98% (Proteus) to E. coli Lrp, including complete conservation of the helix-turn-helix motifs. The N-terminal region contains many of the sequence differences among these Lrp orthologs, which led us to investigate its role in Lrp function. Through the generation of hybrid proteins, we found that the N-terminal diversity is responsible for some of the differences between orthologs in terms of DNA binding (as revealed by mobility shift assays) and multimerization (as revealed by gel filtration, dynamic light scattering, and analytical ultracentrifugation). These observations indicate that the N-terminal tail plays a significant role in modulating Lrp function, similar to what is seen for a number of other regulatory proteins.
Collapse
|
49
|
Kawamura T, Vartanian AS, Zhou H, Dahlquist FW. The Design Involved in PapI and Lrp Regulation of the pap Operon. J Mol Biol 2011; 409:311-32. [DOI: 10.1016/j.jmb.2011.01.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
|
50
|
Ruiz J, Haneburger I, Jung K. Identification of ArgP and Lrp as transcriptional regulators of lysP, the gene encoding the specific lysine permease of Escherichia coli. J Bacteriol 2011; 193:2536-48. [PMID: 21441513 PMCID: PMC3133163 DOI: 10.1128/jb.00815-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/14/2011] [Indexed: 11/20/2022] Open
Abstract
Expression of lysP, which encodes the lysine-specific transporter LysP in Escherichia coli, is regulated by the concentration of exogenous available lysine. In this study, the LysR-type transcriptional regulator ArgP was identified as the activator of lysP expression. At lysine concentrations higher than 25 μM, lysP expression was shut off and phenocopied an argP deletion mutant. Purified ArgP-His(6) bound to the lysP promoter/control region at a sequence containing a conserved T-N(11)-A motif. Its affinity increased in the presence of lysine but not in the presence of the other known coeffector, arginine. In vivo data suggest that lysine-loaded ArgP and arginine-loaded ArgP compete at the lysP promoter. We propose that lysine-loaded ArgP prevents lysP transcription at the promoter clearance step, as described for the lysine-dependent regulation of argO (R. S. Laishram and J. Gowrishankar, Genes Dev. 21:1258-1272, 2007). The global regulator Lrp also bound to the lysP promoter/control region. An lrp mutant exhibited reduced lysP expression in the absence of external lysine. These results indicate that ArgP is a major regulator of lysP expression but that Lrp modulates lysP transcription under lysine-limiting conditions.
Collapse
Affiliation(s)
| | - Ina Haneburger
- Ludwig-Maximilians-Universität München, Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Ludwig-Maximilians-Universität München, Munich Center for integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| |
Collapse
|