1
|
Lloyd MD, Gregory KS, Acharya KR. Functional implications of unusual NOS and SONOS covalent linkages found in proteins. Chem Commun (Camb) 2024; 60:9463-9471. [PMID: 39109843 DOI: 10.1039/d4cc03191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The tertiary and quaternary structures of many proteins are stabilized by strong covalent forces, of which disulfide bonds are the most well known. A new type of intramolecular and intermolecular covalent bond has been recently reported, consisting of the Lys and Cys side-chains linked by an oxygen atom (NOS). These post-translational modifications are widely distributed amongst proteins, and are formed under oxidative conditions. Similar linkages are observed during antibiotic biosynthesis, where hydroxylamine intermediates are tethered to the sulfur of enzyme active site Cys residues. These linkages open the way to understanding protein structure and function, give new insights into enzyme catalysis and natural product biosynthesis, and offer new strategies for drug design.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Kyle S Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
2
|
García-Paz FDM, Del Moral S, Morales-Arrieta S, Ayala M, Treviño-Quintanilla LG, Olvera-Carranza C. Multidomain chimeric enzymes as a promising alternative for biocatalysts improvement: a minireview. Mol Biol Rep 2024; 51:410. [PMID: 38466518 DOI: 10.1007/s11033-024-09332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Searching for new and better biocatalysts is an area of study in constant development. In nature, mechanisms generally occurring in evolution, such as genetic duplication, recombination, and natural selection processes, produce various enzymes with different architectures and properties. The recombination of genes that code proteins produces multidomain chimeric enzymes that contain two or more domains that sometimes enhance their catalytic properties. Protein engineering has mimicked this process to enhance catalytic activity and the global stability of enzymes, searching for new and better biocatalysts. Here, we present and discuss examples from both natural and synthetic multidomain chimeric enzymes and how additional domains heighten their stability and catalytic activity. Moreover, we also describe progress in developing new biocatalysts using synthetic fusion enzymes and revise some methodological strategies to improve their biological fitness.
Collapse
Affiliation(s)
- Flor de María García-Paz
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México
| | - Sandra Del Moral
- Investigador por México-CONAHCyT, Unidad de Investigación y Desarrollo en Alimentos, Tecnológico Nacional de México, Campus Veracruz. MA de Quevedo 2779, Col. Formando Hogar, CP 91960, Veracruz, Veracruz, México
| | - Sandra Morales-Arrieta
- Departamento de Biotecnología, Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal CP 62550, Jiutepec, Morelos, México
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México
| | - Luis Gerardo Treviño-Quintanilla
- Departamento de Biotecnología, Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal CP 62550, Jiutepec, Morelos, México
| | - Clarita Olvera-Carranza
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Col. Chamilpa CP 62210, Cuernavaca, Morelos, México.
| |
Collapse
|
3
|
Qu Y, Guan Q, Du Y, Shi W, Zhao M, Huang Z, Ruan W. Insight into the effect of rice-straw ash on enhancing the anaerobic digestion performance of high salinity organic wastewater. CHEMOSPHERE 2023; 340:139920. [PMID: 37611754 DOI: 10.1016/j.chemosphere.2023.139920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Anaerobic digestion is an economic method for treating high salinity organic wastewater (HSOW), but performance enhancement is needed because of the inhibitory effect of high salinity. In this study, rice-straw ash (RSA) was applied to alleviate the inhibitory effect during HSOW anaerobic digestion. The results showed that, when the NaCl content increased from 0% to 3.0%, the methane production decreased by 87.35%, and the TOC removal rate decreased to 34.12%. As a K+ and alkalinity source, RSA addition enhanced the anaerobic digestion performance, and the optimal dosage was 0.88 g/L. Under this dosage, the methane production increased by 221.60%, and TOC removal rate reached 66.42% at 3.0% salinity. The addition of RSA increased the proportion of living cells in the high salinity environment, and enhanced the activity of key enzymes and electron transfer efficiency in the anaerobic digestion process. The addition of RSA with a dosage of 0.88 g/L promoted the accumulation of acetoclastic methanogen Methanothrix. The abundance of substrate transporters, ion transporters and electron transfer related functional genes were enriched, which might be key for promoting HSOW anaerobic digestion performance. The results also showed that RSA addition played an important role in maintaining the stability of the anaerobic digestion system, and it could be a potential strategy for enhancing the anaerobic digestion performance under high salinity conditions.
Collapse
Affiliation(s)
- Yunhe Qu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuyue Guan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Yang Du
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou, 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou, 215009, China
| |
Collapse
|
4
|
White N, Sadeeshkumar H, Sun A, Sudarsan N, Breaker RR. Na + riboswitches regulate genes for diverse physiological processes in bacteria. Nat Chem Biol 2022; 18:878-885. [PMID: 35879547 PMCID: PMC9337991 DOI: 10.1038/s41589-022-01086-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/10/2022] [Indexed: 01/31/2023]
Abstract
Organisms presumably have mechanisms to monitor and physiologically adapt to changes in cellular Na+ concentrations. Only a single bacterial protein has previously been demonstrated to selectively sense Na+ and regulate gene expression. Here we report a riboswitch class, previously called the 'DUF1646 motif', whose members selectively sense Na+ and regulate the expression of genes relevant to sodium biology. Many proteins encoded by Na+-riboswitch-regulated genes are annotated as metal ion transporters, whereas others are involved in mitigating osmotic stress or harnessing Na+ gradients for ATP production. Na+ riboswitches exhibit dissociation constants in the low mM range, and strongly reject all other alkali and alkaline earth ions. Likewise, only Na+ triggers riboswitch-mediated transcription and gene expression changes. These findings reveal that some bacteria use Na+ riboswitches to monitor, adjust and exploit Na+ concentrations and gradients, and in some instances collaborate with c-di-AMP riboswitches to coordinate gene expression during osmotic stress.
Collapse
Affiliation(s)
- Neil White
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | - Harini Sadeeshkumar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Anna Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Koendjbiharie JG, van Kranenburg R, Kengen SWM. The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism. FEMS Microbiol Rev 2021; 45:fuaa061. [PMID: 33289792 PMCID: PMC8100219 DOI: 10.1093/femsre/fuaa061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
At the junction between the glycolysis and the tricarboxylic acid cycle-as well as various other metabolic pathways-lies the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node (PPO-node). These three metabolites form the core of a network involving at least eleven different types of enzymes, each with numerous subtypes. Obviously, no single organism maintains each of these eleven enzymes; instead, different organisms possess different subsets in their PPO-node, which results in a remarkable degree of variation, despite connecting such deeply conserved metabolic pathways as the glycolysis and the tricarboxylic acid cycle. The PPO-node enzymes play a crucial role in cellular energetics, with most of them involved in (de)phosphorylation of nucleotide phosphates, while those responsible for malate conversion are important redox enzymes. Variations in PPO-node therefore reflect the different energetic niches that organisms can occupy. In this review, we give an overview of the biochemistry of these eleven PPO-node enzymes. We attempt to highlight the variation that exists, both in PPO-node compositions, as well as in the roles that the enzymes can have within those different settings, through various recent discoveries in both bacteria and archaea that reveal deviations from canonical functions.
Collapse
Affiliation(s)
- Jeroen G Koendjbiharie
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
6
|
Xu X, Shi H, Gong X, Chen P, Gao Y, Zhang X, Xiang S. Structural insights into sodium transport by the oxaloacetate decarboxylase sodium pump. eLife 2020; 9:53853. [PMID: 32459174 PMCID: PMC7274780 DOI: 10.7554/elife.53853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
The oxaloacetate decarboxylase sodium pump (OAD) is a unique primary-active transporter that utilizes the free energy derived from oxaloacetate decarboxylation for sodium transport across the cell membrane. It is composed of 3 subunits: the α subunit catalyzes carboxyl-transfer from oxaloacetate to biotin, the membrane integrated β subunit catalyzes the subsequent carboxyl-biotin decarboxylation and the coupled sodium transport, the γ subunit interacts with the α and β subunits and stabilizes the OAD complex. We present here structure of the Salmonella typhimurium OAD βγ sub-complex. The structure revealed that the β and γ subunits form a β3γ3 hetero-hexamer with extensive interactions between the subunits and shed light on the OAD holo-enzyme assembly. Structure-guided functional studies provided insights into the sodium binding sites in the β subunit and the coupling between carboxyl-biotin decarboxylation and sodium transport by the OAD β subunit.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Huigang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowen Gong
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Vitt S, Prinz S, Hellwig N, Morgner N, Ermler U, Buckel W. Molecular and Low-Resolution Structural Characterization of the Na +-Translocating Glutaconyl-CoA Decarboxylase From Clostridium symbiosum. Front Microbiol 2020; 11:480. [PMID: 32300335 PMCID: PMC7145394 DOI: 10.3389/fmicb.2020.00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/05/2020] [Indexed: 11/13/2022] Open
Abstract
Some anaerobic bacteria use biotin-dependent Na+-translocating decarboxylases (Bdc) of β-keto acids or their thioester analogs as key enzymes in their energy metabolism. Glutaconyl-CoA decarboxylase (Gcd), a member of this protein family, drives the endergonic translocation of Na+ across the membrane with the exergonic decarboxylation of glutaconyl-CoA (ΔG0’ ≈−30 kJ/mol) to crotonyl-CoA. Here, we report on the molecular characterization of Gcd from Clostridium symbiosum based on native PAGE, size exclusion chromatography (SEC) and laser-induced liquid bead ion desorption mass spectrometry (LILBID-MS). The obtained molecular mass of ca. 400 kDa fits to the DNA sequence-derived mass of 379 kDa with a subunit composition of 4 GcdA (65 kDa), 2 GcdB (35 kDa), GcdC1 (15 kDa), GcdC2 (14 kDa), and 2 GcdD (10 kDa). Low-resolution structural information was achieved from preliminary electron microscopic (EM) measurements, which resulted in a 3D reconstruction model based on negative-stained particles. The Gcd structure is built up of a membrane-spanning base primarily composed of the GcdB dimer and a solvent-exposed head with the GcdA tetramer as major component. Both globular parts are bridged by a linker presumably built up of segments of GcdC1, GcdC2 and the 2 GcdDs. The structure of the highly mobile Gcd complex represents a template for the global architecture of the Bdc family.
Collapse
Affiliation(s)
- Stella Vitt
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Simone Prinz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Nils Hellwig
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Ulrich Ermler
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Wolfgang Buckel
- Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
8
|
The fumarylacetoacetate hydrolase (FAH) superfamily of enzymes: multifunctional enzymes from microbes to mitochondria. Biochem Soc Trans 2018; 46:295-309. [PMID: 29487229 DOI: 10.1042/bst20170518] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022]
Abstract
Prokaryotic and eukaryotic fumarylacetoacetate hydrolase (FAH) superfamily members, sharing conserved regions that form the so-called FAH-domain, catalyze a remarkable variety of reactions. These enzymes are essential in the metabolic pathways to degrade aromatic compounds in prokaryotes and eukaryotes. It appears that prokaryotic FAH superfamily members evolved mainly to allow microbes to generate energy and useful metabolites from complex carbon sources. We review recent findings, indicating that both prokaryotic and eukaryotic members of the FAH superfamily also display oxaloacetate decarboxylase (ODx) activity. The identification of human FAH domain-containing protein 1 as mitochondrial ODx regulating mitochondrial function supports the new concept that, during evolution, eukaryotic FAH superfamily members have acquired important regulatory functions beyond catabolism of complex carbon sources. Molecular studies on the evolution and function of FAH superfamily members are expected to provide new mechanistic insights in their physiological roles.
Collapse
|
9
|
Maderbocus R, Fields BL, Hamilton K, Luo S, Tran TH, Dietrich LEP, Tong L. Crystal structure of a Pseudomonas malonate decarboxylase holoenzyme hetero-tetramer. Nat Commun 2017; 8:160. [PMID: 28757619 PMCID: PMC5534430 DOI: 10.1038/s41467-017-00233-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/12/2017] [Indexed: 11/26/2022] Open
Abstract
Pseudomonas species and other aerobic bacteria have a biotin-independent malonate decarboxylase that is crucial for their utilization of malonate as the sole carbon and energy source. The malonate decarboxylase holoenzyme contains four subunits, having an acyl-carrier protein (MdcC subunit) with a distinct prosthetic group, as well as decarboxylase (MdcD–MdcE) and acyl-carrier protein transferase (MdcA) catalytic activities. Here we report the crystal structure of a Pseudomonas malonate decarboxylase hetero-tetramer, as well as biochemical and functional studies based on the structural information. We observe a malonate molecule in the active site of MdcA and we also determine the structure of malonate decarboxylase with CoA in the active site of MdcD–MdcE. Both structures provide molecular insights into malonate decarboxylase catalysis. Mutations in the hetero-tetramer interface can abolish holoenzyme formation. Mutations in the hetero-tetramer interface and the active sites can abolish Pseudomonas aeruginosa growth in a defined medium with malonate as the sole carbon source. Some aerobic bacteria contain a biotin-independent malonate decarboxylase (MDC), which allows them to use malonate as the sole carbon source. Here, the authors present the crystal structure of a Pseudomonas MDC and give insights into its catalytic mechanism and function.
Collapse
Affiliation(s)
- Riyaz Maderbocus
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Blanche L Fields
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Keith Hamilton
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Shukun Luo
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Timothy H Tran
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Lars E P Dietrich
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
10
|
Striking Diversity in Holoenzyme Architecture and Extensive Conformational Variability in Biotin-Dependent Carboxylases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:161-194. [PMID: 28683917 DOI: 10.1016/bs.apcsb.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biotin-dependent carboxylases are widely distributed in nature and have central roles in the metabolism of fatty acids, amino acids, carbohydrates, and other compounds. The last decade has seen the accumulation of structural information on most of these large holoenzymes, including the 500-kDa dimeric yeast acetyl-CoA carboxylase, the 750-kDa α6β6 dodecameric bacterial propionyl-CoA carboxylase, 3-methylcrotonyl-CoA carboxylase, and geranyl-CoA carboxylase, the 720-kDa hexameric bacterial long-chain acyl-CoA carboxylase, the 500-kDa tetrameric bacterial single-chain pyruvate carboxylase, the 370-kDa α2β4 bacterial two-subunit pyruvate carboxylase, and the 130-kDa monomeric eukaryotic urea carboxylase. A common theme that has emerged from these studies is the dramatic structural flexibility of these holoenzymes despite their strong overall sequence conservation, evidenced both by the extensive diversity in the architectures of the holoenzymes and by the extensive conformational variability of their domains and subunits. This structural flexibility is crucial for the function and regulation of these enzymes and identifying compounds that can interfere with it represents an attractive approach for developing novel modulators and drugs. The extensive diversity observed in the structures so far and its biochemical and functional implications will be the focus of this review.
Collapse
|
11
|
Klimchuk OI, Dibrova DV, Mulkidjanian AY. Phylogenomic analysis identifies a sodium-translocating decarboxylating oxidoreductase in thermotogae. BIOCHEMISTRY (MOSCOW) 2016; 81:481-90. [DOI: 10.1134/s0006297916050059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Inoue M, Li X. Highly active and stable oxaloacetate decarboxylase Na⁺ pump complex for structural analysis. Protein Expr Purif 2015; 115:34-8. [PMID: 25986323 DOI: 10.1016/j.pep.2015.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/09/2015] [Accepted: 05/09/2015] [Indexed: 11/18/2022]
Abstract
The oxaloacetate decarboxylase primary Na(+) pump (Oad) produces energy for the surviving of some pathogenic bacteria under anaerobic conditions. Oad composes of three subunits: Oad-α, a biotinylated soluble subunit and catalyzes the decarboxylation of oxaloacetate; Oad-β, a transmembrane subunit and functions as a Na(+) pump; and Oad-γ, a single transmembrane α-helical anchor subunit and assembles Oad-α/β/γ complex. The molecular mechanism of Oad complex coupling the exothermic decarboxylation to generate the Na(+) electrochemical gradient remains unsolved. Our biophysical and biochemical studies suggested that the stoichiometry of Oad complex from Vibrio cholerae composed of α, β, γ in 4:2:2 stoichiometry not that of 4:4:4. The high-resolution structure determination of the Oad complex would reveal the energetic transformation mechanism from the catalytical soluble α subunit to membrane β subunit. Sufficient amount stable, conformational homogenous and active Oad complex with the right stoichiometry is the prerequisite for structural analysis. Here we report an easy and reproducible protocol to obtain high quantity and quality Oad complex protein for structural analysis.
Collapse
Affiliation(s)
- Michio Inoue
- The Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| | - Xiaodan Li
- The Laboratory of Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland.
| |
Collapse
|
13
|
Sheng X, Liu Y. QM/MM Study of the Reaction Mechanism of the Carboxyl Transferase Domain of Pyruvate Carboxylase from Staphylococcus aureus. Biochemistry 2014; 53:4455-66. [DOI: 10.1021/bi500020r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiang Sheng
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Northwest
Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China
| |
Collapse
|
14
|
Abstract
The phosphotransfer mechanism of PYKs (pyruvate kinases) has been studied in detail, but the mechanism of the intrinsic decarboxylase reaction catalysed by PYKs is still unknown. 1H NMR was used in the present study to follow OAA (oxaloacetate) decarboxylation by trypanosomatid and human PYKs confirming that the decarboxylase activity is conserved across distantly related species. Crystal structures of TbPYK (Trypanosoma brucei PYK) complexed with the product of the decarboxylase reaction (pyruvate), and a series of substrate analogues (D-malate, 2-oxoglutarate and oxalate) show that the OAA analogues bind to the kinase active site with similar binding modes, confirming that both decarboxylase and kinase activities share a common site for substrate binding and catalysis. Decarboxylation of OAA as monitored by NMR for TbPYK has a relatively low turnover with values of 0.86 s-1 and 1.47 s-1 in the absence and presence of F26BP (fructose 2,6-bisphosphate) respectively. Human M1PYK (M1 isoform of PYK) has a measured turnover value of 0.50 s-1. The X-ray structures explain why the decarboxylation activity is specific for OAA and is not general for α-oxo acid analogues. Conservation of the decarboxylase reaction across divergent species is a consequence of piggybacking on the conserved kinase mechanism which requires a stabilized enol intermediate.
Collapse
|
15
|
Lietzan AD, St. Maurice M. Functionally diverse biotin-dependent enzymes with oxaloacetate decarboxylase activity. Arch Biochem Biophys 2014; 544:75-86. [DOI: 10.1016/j.abb.2013.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/15/2013] [Accepted: 10/18/2013] [Indexed: 12/31/2022]
|
16
|
Lietzan AD, St Maurice M. A substrate-induced biotin binding pocket in the carboxyltransferase domain of pyruvate carboxylase. J Biol Chem 2013; 288:19915-25. [PMID: 23698000 DOI: 10.1074/jbc.m113.477828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp(590) and Tyr(628) and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.
Collapse
Affiliation(s)
- Adam D Lietzan
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, USA
| | | |
Collapse
|
17
|
Waldrop GL, Holden HM, St Maurice M. The enzymes of biotin dependent CO₂ metabolism: what structures reveal about their reaction mechanisms. Protein Sci 2013; 21:1597-619. [PMID: 22969052 DOI: 10.1002/pro.2156] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO₂ carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis.
Collapse
Affiliation(s)
- Grover L Waldrop
- Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
18
|
Metagenomic cloning and characterization of Na⁺ transporters from Huamachi Salt Lake in China. Microbiol Res 2013; 168:119-24. [PMID: 23218230 DOI: 10.1016/j.micres.2012.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 11/23/2022]
Abstract
Moderately halophilic bacteria are a kind of extreme environment microorganism that can tolerate moderate salt concentrations ranging from 0.5M to 2.5M. Here, via a metagenomic library screen, we identified four putative Na(+) transporters, designated H7-Nha, H16-Mppe, H19-Cap and H35-Mrp, from moderately halophilic community in the hypersaline soil of Huamachi Salt Lake, China. Functional complementation observed in a Na(+)(Ca(2+))/H(+) antiporter-defective Escherichia coli mutant (KNabc) suggests that the four putative Na(+) transporters could confer cells a capacity of Na(+) resistance probably by enhancing Na(+) or Ca(2+) efflux, but not Li(+) or K(+) exchange. Blastp analysis of the deduced amino-acid sequences indicates that H7-Nha has 71% identity to the NhaG Na(+)/H(+) antiporter of Bacillus subtilis, while H19-Cap shows 99% identity to Enterobacter cloacae Ca(2+) antiporter. Interestingly, H16-Mppe shares 59% identity to the metallophosphoesterase of Bacillus cellulosilyticus and H35-Mrp shows 68% identity to multidrug resistance protein of Lysinibacillus sphaericus. This is the first report that predicts a potential role of metallophosphoesterase in Na(+) resistance in halophilic bacteria. Furthermore, everted membrane vesicles prepared from E. coli cells harboring H7-Nha exhibit Na(+)/H(+) antiporter activity, but not Li(+) (K(+))/H(+) antiporter activity, confirming that H7-Nha supports Na(+) resistance mainly via Na(+)/H(+) antiport. Our report also demonstrates that metagenomic library screen is a convenient and effective way to explore more novel types of Na(+) transporters.
Collapse
|
19
|
Crystal structures of Cg1458 reveal a catalytic lid domain and a common catalytic mechanism for the FAH family. Biochem J 2013; 449:51-60. [PMID: 23046410 DOI: 10.1042/bj20120913] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cg1458 was recently characterized as a novel soluble oxaloacetate decarboxylase. However, sequence alignment identified that Cg1458 has no similarity with other oxaloacetate decarboxylases and instead belongs to the FAH (fumarylacetoacetate hydrolase) family. Differences in the function of Cg1458 and other FAH proteins may suggest a different catalytic mechanism. To help elucidate the catalytic mechanism of Cg1458, crystal structures of Cg1458 in both the open and closed conformations have been determined for the first time up to a resolution of 1.9 Å (1 Å=0.1 nm) and 2.0 Å respectively. Comparison of both structures and detailed biochemical studies confirmed the presence of a catalytic lid domain which is missing in the native enzyme structure. In this lid domain, a glutamic acid-histidine dyad was found to be critical in mediating enzymatic catalysis. On the basis of structural modelling and comparison, as well as large-scale sequence alignment studies, we further determined that the catalytic mechanism of Cg1458 is actually through a glutamic acid-histidine-water triad, and this catalytic triad is common among FAH family proteins that catalyse the cleavage of the C-C bond of the substrate. Two sequence motifs, HxxE and Hxx…xxE have been identified as the basis for this mechanism.
Collapse
|
20
|
Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 2012; 70:863-91. [PMID: 22869039 DOI: 10.1007/s00018-012-1096-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 12/14/2022]
Abstract
Biotin-dependent carboxylases include acetyl-CoA carboxylase (ACC), propionyl-CoA carboxylase (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), geranyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), carboxyltransferase (CT), and biotin-carboxyl carrier protein components. These enzymes are widely distributed in nature and have important functions in fatty acid metabolism, amino acid metabolism, carbohydrate metabolism, polyketide biosynthesis, urea utilization, and other cellular processes. ACCs are also attractive targets for drug discovery against type 2 diabetes, obesity, cancer, microbial infections, and other diseases, and the plastid ACC of grasses is the target of action of three classes of commercial herbicides. Deficiencies in the activities of PCC, MCC, or PC are linked to serious diseases in humans. Our understanding of these enzymes has been greatly enhanced over the past few years by the crystal structures of the holoenzymes of PCC, MCC, PC, and UC. The structures reveal unanticipated features in the architectures of the holoenzymes, including the presence of previously unrecognized domains, and provide a molecular basis for understanding their catalytic mechanism as well as the large collection of disease-causing mutations in PCC, MCC, and PC. This review will summarize the recent advances in our knowledge on the structure and function of these important metabolic enzymes.
Collapse
|
21
|
Pamp SJ, Harrington ED, Quake SR, Relman DA, Blainey PC. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res 2012; 22:1107-19. [PMID: 22434425 PMCID: PMC3371716 DOI: 10.1101/gr.131482.111] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Segmented filamentous bacteria (SFB) are host-specific intestinal symbionts that comprise a distinct clade within the Clostridiaceae, designated Candidatus Arthromitus. SFB display a unique life cycle within the host, involving differentiation into multiple cell types. The latter include filaments that attach intimately to intestinal epithelial cells, and from which "holdfasts" and spores develop. SFB induce a multifaceted immune response, leading to host protection from intestinal pathogens. Cultivation resistance has hindered characterization of these enigmatic bacteria. In the present study, we isolated five SFB filaments from a mouse using a microfluidic device equipped with laser tweezers, generated genome sequences from each, and compared these sequences with each other, as well as to recently published SFB genome sequences. Based on the resulting analyses, SFB appear to be dependent on the host for a variety of essential nutrients. SFB have a relatively high abundance of predicted proteins devoted to cell cycle control and to envelope biogenesis, and have a group of SFB-specific autolysins and a dynamin-like protein. Among the five filament genomes, an average of 8.6% of predicted proteins were novel, including a family of secreted SFB-specific proteins. Four ADP-ribosyltransferase (ADPRT) sequence types, and a myosin-cross-reactive antigen (MCRA) protein were discovered; we hypothesize that they are involved in modulation of host responses. The presence of polymorphisms among mouse SFB genomes suggests the evolution of distinct SFB lineages. Overall, our results reveal several aspects of SFB adaptation to the mammalian intestinal tract.
Collapse
Affiliation(s)
- Sünje J Pamp
- Department of Microbiology and Immunology, The Howard Hughes Medical Institute
| | | | | | | | | |
Collapse
|
22
|
Lombard J, Moreira D. Early evolution of the biotin-dependent carboxylase family. BMC Evol Biol 2011; 11:232. [PMID: 21827699 PMCID: PMC3199775 DOI: 10.1186/1471-2148-11-232] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 08/09/2011] [Indexed: 01/15/2023] Open
Abstract
Background Biotin-dependent carboxylases are a diverse family of carboxylating enzymes widespread in the three domains of life, and thus thought to be very ancient. This family includes enzymes that carboxylate acetyl-CoA, propionyl-CoA, methylcrotonyl-CoA, geranyl-CoA, acyl-CoA, pyruvate and urea. They share a common catalytic mechanism involving a biotin carboxylase domain, which fixes a CO2 molecule on a biotin carboxyl carrier peptide, and a carboxyl transferase domain, which transfers the CO2 moiety to the specific substrate of each enzyme. Despite this overall similarity, biotin-dependent carboxylases from the three domains of life carrying their reaction on different substrates adopt very diverse protein domain arrangements. This has made difficult the resolution of their evolutionary history up to now. Results Taking advantage of the availability of a large amount of genomic data, we have carried out phylogenomic analyses to get new insights on the ancient evolution of the biotin-dependent carboxylases. This allowed us to infer the set of enzymes present in the last common ancestor of each domain of life and in the last common ancestor of all living organisms (the cenancestor). Our results suggest that the last common archaeal ancestor had two biotin-dependent carboxylases, whereas the last common bacterial ancestor had three. One of these biotin-dependent carboxylases ancestral to Bacteria most likely belonged to a large family, the CoA-bearing-substrate carboxylases, that we define here according to protein domain composition and phylogenetic analysis. Eukaryotes most likely acquired their biotin-dependent carboxylases through the mitochondrial and plastid endosymbioses as well as from other unknown bacterial donors. Finally, phylogenetic analyses support previous suggestions about the existence of an ancient bifunctional biotin-protein ligase bound to a regulatory transcription factor. Conclusions The most parsimonious scenario for the early evolution of the biotin-dependent carboxylases, supported by the study of protein domain composition and phylogenomic analyses, entails that the cenancestor possessed two different carboxylases able to carry out the specific carboxylation of pyruvate and the non-specific carboxylation of several CoA-bearing substrates, respectively. These enzymes may have been able to participate in very diverse metabolic pathways in the cenancestor, such as in ancestral versions of fatty acid biosynthesis, anaplerosis, gluconeogenesis and the autotrophic fixation of CO2.
Collapse
Affiliation(s)
- Jonathan Lombard
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Univ, Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
23
|
Balsera M, Buey RM, Li XD. Quaternary structure of the oxaloacetate decarboxylase membrane complex and mechanistic relationships to pyruvate carboxylases. J Biol Chem 2011; 286:9457-67. [PMID: 21209096 PMCID: PMC3058996 DOI: 10.1074/jbc.m110.197442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/16/2010] [Indexed: 01/15/2023] Open
Abstract
The oxaloacetate decarboxylase primary Na(+) pump (OAD) is an essential membrane protein complex that functions in the citrate fermentation pathway of some pathogenic bacteria under anaerobic conditions. OAD contains three different subunits: Oad-α, a biotinylated extrinsic protein that catalyzes the α-ketodecarboxylation of oxaloacetate; Oad-γ, a structural bitopic membrane protein whose cytosolic tail (named as Oad-γ') binds tightly to Oad-α; and Oad-β, a multispan transmembrane α-helical protein that constitutes the Na(+) channel. How OAD is organized structurally at the membrane and what the molecular determinants are that lead to an efficient energy coupling mechanism remain elusive. In the present work, we elucidate the stoichiometry of the native complex as well as the low resolution structure of the peripheral components of OAD (Oad-α and Oad-γ') by small angle x-ray scattering. Our results point to a quaternary assembly similar to the pyruvate carboxylase complex organization. Herein, we propose a model in which the association in pairs of Oad-α dimers, mediated by Oad-γ, results in the acquisition of a functional oligomeric state at the bacterial membrane. New structural insights for the conformational rearrangements associated with the carboxylbiotin transfer reaction within OAD are provided.
Collapse
Affiliation(s)
- Monica Balsera
- From Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
- the Departamento de Estrés Abiótico, Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, 37008 Salamanca, Spain, and
| | - Ruben M. Buey
- From Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
- the Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Campus Unamuno, 37008 Salamanca, Spain
| | - Xiao-Dan Li
- From Biomolecular Research, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
24
|
Meuric V, Rouillon A, Chandad F, Bonnaure-Mallet M. Putative respiratory chain of Porphyromonas gingivalis. Future Microbiol 2010; 5:717-34. [PMID: 20441545 DOI: 10.2217/fmb.10.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electron transfer chain in Porphyromonas gingivalis, or periodontopathogens, has not yet been characterized. P. gingivalis, a strict anaerobic bacteria and the second colonizer of the oral cavity, is considered to be a major causal agent involved in periodontal diseases. Primary colonizers create a favorable environment for P. gingivalis growth by decreasing oxygen pressure. Oxygen does not appear to be the final electron acceptor of the respiratory chain. Fumarate and cytochrome b have been implicated as major components of the respiratory activity. However, the P. gingivalis genome shows many other enzymes that could be implicated in aerobic or nitrite respiration. Using bioinformatic tools and literature studies of respiratory pathways, the ATP synthesis mechanism from the sodium cycle and nutrients metabolism, the putative respirasome of P. gingivalis has been proposed.
Collapse
Affiliation(s)
- Vincent Meuric
- Equipe de Microbiologie, UPRES-EA 1254, Université Européenne de Bretagne, Université de Rennes I, UFR Odontologie, Bâtiment 15, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | |
Collapse
|
25
|
Structure-function relations in oxaloacetate decarboxylase complex. Fluorescence and infrared approaches to monitor oxomalonate and Na(+) binding effect. PLoS One 2010; 5:e10935. [PMID: 20543879 PMCID: PMC2881705 DOI: 10.1371/journal.pone.0010935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/08/2010] [Indexed: 11/19/2022] Open
Abstract
Background Oxaloacetate decarboxylase (OAD) is a member of the Na+ transport decarboxylase enzyme family found exclusively in anaerobic bacteria. OAD of Vibrio cholerae catalyses a key step in citrate fermentation, converting the chemical energy of the decarboxylation reaction into an electrochemical gradient of Na+ ions across the membrane, which drives endergonic membrane reactions such as ATP synthesis, transport and motility. OAD is a membrane-bound enzyme composed of α, β and γ subunits. The α subunit contains the carboxyltransferase catalytic site. Methodology/Principal Findings In this report, spectroscopic techniques were used to probe oxomalonate (a competitive inhibitor of OAD with respect to oxaloacetate) and Na+ effects on the enzyme tryptophan environment and on the secondary structure of the OAD complex, as well as the importance of each subunit in the catalytic mechanism. An intrinsic fluorescence approach, Red Edge Excitation Shift (REES), indicated that solvent molecule mobility in the vicinity of OAD tryptophans was more restricted in the presence of oxomalonate. It also demonstrated that, although the structure of OAD is sensitive to the presence of NaCl, oxomalonate was able to bind to the enzyme even in the absence of Na+. REES changes due to oxomalonate binding were also observed with the αγ and α subunits. Infrared spectra showed that OAD, αγ and α subunits have a main component band centered between 1655 and 1650 cm−1 characteristic of a high content of α helix structures. Addition of oxomalonate induced a shift of the amide-I band of OAD toward higher wavenumbers, interpreted as a slight decrease of β sheet structures and a concomitant increase of α helix structures. Oxomalonate binding to αγand α subunits also provoked secondary structure variations, but these effects were negligible compared to OAD complex. Conclusion Oxomalonate binding affects the tryptophan environment of the carboxyltransferase subunit, whereas Na+ alters the tryptophan environment of the β subunit, consistent with the function of these subunits within the enzyme complex. Formation of a complex between OAD and its substrates elicits structural changes in the α-helical as well as β-strand secondary structure elements.
Collapse
|
26
|
Bello Z, Grubmeyer C. Roles for cationic residues at the quinolinic acid binding site of quinolinate phosphoribosyltransferase. Biochemistry 2010; 49:1388-95. [PMID: 20047306 DOI: 10.1021/bi9018225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quinolinic acid phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) forms nicotinate mononucleotide (NAMN) from quinolinic acid (QA) and 5-phosphoribosyl 1-pyrophosphate (PRPP). Previously determined crystal structures of QAPRTase.QA and QAPRTase.PA.PRPP complexes show positively charged residues (Arg118, Arg152, Arg175, Lys185, and His188) lining the QA binding site. To assess the roles of these residues in the Salmonella typhimurium QAPRTase reaction, they were individually mutated to alanine and the recombinant proteins overexpressed and purified from a recombineered Escherichia coli strain that lacks the QAPRTase gene. Gel filtration indicated that the mutations did not affect the dimeric aggregation state of the enzymes. Arg175 is critical for the QAPRTase reaction, and its mutation to alanine produced an inactive enzyme. The k(cat) values for R152A and K185A were reduced by 33-fold and 625-fold, and binding affinity of PRPP and QA to the enzymes decreased. R152A and K185A mutants displayed 116-fold and 83-fold increases in activity toward the normally inactive QA analogue, nicotinic acid (NA), indicating roles for these residues in defining the substrate specificity of QAPRTase. Moreover, K185A QAPRTase displayed a 300-fold higher k(cat)/K(m) for NA over the natural substrate QA. Pre-steady-state analysis of K185A with QA revealed a burst of nucleotide formation followed by a slower steady-state rate, unlike the linear kinetics of WT. Intriguingly, pre-steady-state analysis of K185A with NA produced a rapid but linear rate for NAMN formation. The result implies a critical role for Lys185 in the chemistry of the QAPRTase intermediate. Arg118 is an essential residue that reaches across the dimer interface. Mutation of Arg118 to alanine resulted in 5000-fold decrease in k(cat) value and a decrease in the binding affinity of QA and PRPP to R152A. Equimolar mixtures of R118A with inactive or virtually inactive mutants produced approximately 50% of the enzymatic activity of WT, establishing an interfacial role for Arg118 during catalysis.
Collapse
Affiliation(s)
- Zainab Bello
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | |
Collapse
|
27
|
Rachid S, Revermann O, Dauth C, Kazmaier U, Müller R. Characterization of a novel type of oxidative decarboxylase involved in the biosynthesis of the styryl moiety of chondrochloren from an acylated tyrosine. J Biol Chem 2010; 285:12482-9. [PMID: 20080978 DOI: 10.1074/jbc.m109.079707] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myxobacteria are soil-dwelling bacteria notable for several unique behavioral features, such as cellular movement by gliding and the formation of multicellular fruiting bodies. More recently they have gained recognition as producers of several unique polyketide and nonribosomal polypeptide metabolites with potential therapeutic value. The biosynthesis of these compounds often involves highly unusual mechanisms including the formation of the chloro-hydroxy-styryl moiety of the chondrochloren antibiotic produced by Chondromyces crocatus Cm c5. Here it is shown that the final product of the chondrochloren megasynthetase is the novel natural product pre-chondrochloren, a carboxylated and saturated derivative of chondrochloren. This compound was isolated from strains harboring mutants of a hypothetical oxidative decarboxylase (CndG) identified in the chondrochloren gene cluster. CndG was heterologously expressed in Escherichia coli and shown to be an FAD-dependent oxidative decarboxylase. Biochemical characterization of the protein was achieved using the intermediate described above as the substrate and yielded chondrochloren by oxidative decarboxylation. It was also demonstrated that the CndG post-assembly line modification of pre-chondrochloren is essential for the biological activity of chondrochloren.
Collapse
Affiliation(s)
- Shwan Rachid
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Center for Infection Research, Saarland University, 66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
28
|
Kress D, Brügel D, Schall I, Linder D, Buckel W, Essen LO. An asymmetric model for Na+-translocating glutaconyl-CoA decarboxylases. J Biol Chem 2009; 284:28401-28409. [PMID: 19654317 PMCID: PMC2788889 DOI: 10.1074/jbc.m109.037762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Indexed: 11/06/2022] Open
Abstract
Glutaconyl-CoA decarboxylase (Gcd) couples the biotin-dependent decarboxylation of glutaconyl-CoA with the generation of an electrochemical Na(+) gradient. Sequencing of the genes encoding all subunits of the Clostridium symbiosum decarboxylase membrane complex revealed that it comprises two distinct biotin carrier subunits, GcdC(1) and GcdC(2), which differ in the length of a central alanine- and proline-rich linker domain. Co-crystallization of the decarboxylase subunit GcdA with the substrate glutaconyl-CoA, the product crotonyl-CoA, and the substrate analogue glutaryl-CoA, respectively, resulted in a high resolution model for substrate binding and catalysis revealing remarkable structural changes upon substrate binding. Unlike the GcdA structure from Acidaminococcus fermentans, these data suggest that in intact Gcd complexes, GcdA is associated as a tetramer crisscrossed by a network of solvent-filled tunnels.
Collapse
Affiliation(s)
- Daniel Kress
- Biochemie, Fachbereich Chemie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Daniela Brügel
- Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Iris Schall
- Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Dietmar Linder
- Biochemie, Fachbereich Medizin, Justus von Liebig-Universität, D-35392 Gieβen, Germany
| | - Wolfgang Buckel
- Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, D-35032 Marburg, Germany; Max-Plank-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany.
| | - Lars-Oliver Essen
- Biochemie, Fachbereich Chemie, Philipps-Universität Marburg, D-35032 Marburg, Germany.
| |
Collapse
|
29
|
Yu LPC, Xiang S, Lasso G, Gil D, Valle M, Tong L. A symmetrical tetramer for S. aureus pyruvate carboxylase in complex with coenzyme A. Structure 2009; 17:823-32. [PMID: 19523900 DOI: 10.1016/j.str.2009.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/31/2009] [Accepted: 04/07/2009] [Indexed: 01/15/2023]
Abstract
Pyruvate carboxylase (PC) is a conserved metabolic enzyme with important cellular functions. We report crystallographic and cryo-electron microscopy (EM) studies of Staphylococcus aureus PC (SaPC) in complex with acetyl-CoA, an allosteric activator, and mutagenesis, biochemical, and structural studies of the biotin binding site of its carboxyltransferase (CT) domain. The disease-causing A610T mutation abolishes catalytic activity by blocking biotin binding to the CT active site, and Thr908 might play a catalytic role in the CT reaction. The crystal structure of SaPC in complex with CoA reveals a symmetrical tetramer, with one CoA molecule bound to each monomer, and cryo-EM studies confirm the symmetrical nature of the tetramer. These observations are in sharp contrast to the highly asymmetrical tetramer of Rhizobium etli PC in complex with ethyl-CoA. Our structural information suggests that acetyl-CoA promotes a conformation for the dimer of the biotin carboxylase domain of PC that might be catalytically more competent.
Collapse
Affiliation(s)
- Linda P C Yu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
30
|
Jitrapakdee S, Maurice MS, Rayment I, Cleland WW, Wallace JC, Attwood PV. Structure, mechanism and regulation of pyruvate carboxylase. Biochem J 2008; 413:369-87. [PMID: 18613815 PMCID: PMC2859305 DOI: 10.1042/bj20080709] [Citation(s) in RCA: 295] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PC (pyruvate carboxylase) is a biotin-containing enzyme that catalyses the HCO(3)(-)- and MgATP-dependent carboxylation of pyruvate to form oxaloacetate. This is a very important anaplerotic reaction, replenishing oxaloacetate withdrawn from the tricarboxylic acid cycle for various pivotal biochemical pathways. PC is therefore considered as an enzyme that is crucial for intermediary metabolism, controlling fuel partitioning toward gluconeogenesis or lipogenesis and in insulin secretion. The enzyme was discovered in 1959 and over the last decade there has been much progress in understanding its structure and function. PC from most organisms is a tetrameric protein that is allosterically regulated by acetyl-CoA and aspartate. High-resolution crystal structures of the holoenzyme with various ligands bound have recently been determined, and have revealed details of the binding sites and the relative positions of the biotin carboxylase, carboxyltransferase and biotin carboxyl carrier domains, and also a unique allosteric effector domain. In the presence of the allosteric effector, acetyl-CoA, the biotin moiety transfers the carboxy group between the biotin carboxylase domain active site on one polypeptide chain and the carboxyltransferase active site on the adjacent antiparallel polypeptide chain. In addition, the bona fide role of PC in the non-gluconeogenic tissues has been studied using a combination of classical biochemistry and genetic approaches. The first cloning of the promoter of the PC gene in mammals and subsequent transcriptional studies reveal some key cognate transcription factors regulating tissue-specific expression. The present review summarizes these advances and also offers some prospects in terms of future directions for the study of this important enzyme.
Collapse
Affiliation(s)
- Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Martin St. Maurice
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - W. Wallace Cleland
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - John C. Wallace
- School of Molecular & Biomedical Science, University of Adelaide, SA 5005, Australia
| | - Paul V. Attwood
- School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6100, Australia
| |
Collapse
|
31
|
Xiang S, Tong L. Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol 2008; 15:295-302. [PMID: 18297087 DOI: 10.1038/nsmb.1393] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 01/23/2008] [Indexed: 12/12/2022]
Abstract
Pyruvate carboxylase (PC) catalyzes the biotin-dependent production of oxaloacetate and has important roles in gluconeogenesis, lipogenesis, insulin secretion and other cellular processes. PC contains the biotin carboxylase (BC), carboxyltransferase (CT) and biotin-carboxyl carrier protein (BCCP) domains. We report here the crystal structures at 2.8-A resolution of full-length PC from Staphylococcus aureus and the C-terminal region (missing only the BC domain) of human PC. A conserved tetrameric association is observed for both enzymes, and our structural and mutagenesis studies reveal a previously uncharacterized domain, the PC tetramerization (PT) domain, which is important for oligomerization. A BCCP domain is located in the active site of the CT domain, providing the first molecular insights into how biotin participates in the carboxyltransfer reaction. There are dramatic differences in domain positions in the monomer and the organization of the tetramer between these enzymes and the PC from Rhizobium etli.
Collapse
Affiliation(s)
- Song Xiang
- Department of Biological Sciences, 212 Amsterdam Avenue, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
32
|
Narayanan BC, Niu W, Han Y, Zou J, Mariano PS, Dunaway-Mariano D, Herzberg O. Structure and function of PA4872 from Pseudomonas aeruginosa, a novel class of oxaloacetate decarboxylase from the PEP mutase/isocitrate lyase superfamily. Biochemistry 2007; 47:167-82. [PMID: 18081320 DOI: 10.1021/bi701954p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa PA4872 was identified by sequence analysis as a structurally and functionally novel member of the PEP mutase/isocitrate lyase superfamily and therefore targeted for investigation. Substrate screens ruled out overlap with known catalytic functions of superfamily members. The crystal structure of PA4872 in complex with oxalate (a stable analogue of the shared family alpha-oxyanion carboxylate intermediate/transition state) and Mg2+ was determined at 1.9 A resolution. As with other PEP mutase/isocitrate lyase superfamily members, the protein assembles into a dimer of dimers with each subunit adopting an alpha/beta barrel fold and two subunits swapping their barrel's C-terminal alpha-helices. Mg2+ and oxalate bind in the same manner as observed with other superfamily members. The active site gating loop, known to play a catalytic role in the PEP mutase and lyase branches of the superfamily, adopts an open conformation. The Nepsilon of His235, an invariant residue in the PA4872 sequence family, is oriented toward a C(2) oxygen of oxalate analogous to the C(3) of a pyruvyl moiety. Deuterium exchange into alpha-oxocarboxylate-containing compounds was confirmed by 1H NMR spectroscopy. Having ruled out known activities, the involvement of a pyruvate enolate intermediate suggested a decarboxylase activity of an alpha-oxocarboxylate substrate. Enzymatic assays led to the discovery that PA4872 decarboxylates oxaloacetate (kcat = 7500 s(-1) and Km = 2.2 mM) and 3-methyloxaloacetate (kcat = 250 s(-1) and Km = 0.63 mM). Genome context of the fourteen sequence family members indicates that the enzyme is used by select group of Gram-negative bacteria to maintain cellular concentrations of bicarbonate and pyruvate; however the decarboxylation activity cannot be attributed to a pathway common to the various bacterial species.
Collapse
Affiliation(s)
- Buvaneswari C Narayanan
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
St Maurice M, Reinhardt L, Surinya KH, Attwood PV, Wallace JC, Cleland WW, Rayment I. Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme. Science 2007; 317:1076-9. [PMID: 17717183 DOI: 10.1126/science.1144504] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Biotin-dependent multifunctional enzymes carry out metabolically important carboxyl group transfer reactions and are potential targets for the treatment of obesity and type 2 diabetes. These enzymes use a tethered biotin cofactor to carry an activated carboxyl group between distantly spaced active sites. The mechanism of this transfer has remained poorly understood. Here we report the complete structure of pyruvate carboxylase at 2.0 angstroms resolution, which shows its domain arrangement. The structure, when combined with mutagenic analysis, shows that intermediate transfer occurs between active sites on separate polypeptide chains. In addition, domain rearrangements associated with activator binding decrease the distance between active-site pairs, providing a mechanism for allosteric activation. This description provides insight into the function of biotin-dependent enzymes and presents a new paradigm for multifunctional enzyme catalysis.
Collapse
Affiliation(s)
- Martin St Maurice
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Adenosine triphosphate (ATP) is used as a general energy source by all living cells. The free energy released by hydrolyzing its terminal phosphoric acid anhydride bond to yield ADP and phosphate is utilized to drive various energy-consuming reactions. The ubiquitous F(1)F(0) ATP synthase produces the majority of ATP by converting the energy stored in a transmembrane electrochemical gradient of H(+) or Na(+) into mechanical rotation. While the mechanism of ATP synthesis by the ATP synthase itself is universal, diverse biological reactions are used by different cells to energize the membrane. Oxidative phosphorylation in mitochondria or aerobic bacteria and photophosphorylation in plants are well-known processes. Less familiar are fermentation reactions performed by anaerobic bacteria, wherein the free energy of the decarboxylation of certain metabolites is converted into an electrochemical gradient of Na(+) ions across the membrane (decarboxylation phosphorylation). This chapter will focus on the latter mechanism, presenting an updated survey on the Na(+)-translocating decarboxylases from various organisms. In the second part, we provide a detailed description of the F(1)F(0) ATP synthases with special emphasis on the Na(+)-translocating variant of these enzymes.
Collapse
|