1
|
Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat Methods 2019; 17:184-192. [DOI: 10.1038/s41592-019-0666-6] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023]
|
2
|
Relation of the pdxB-usg- truA- dedA Operon and the truA Gene to the Intracellular Survival of Salmonella enterica Serovar Typhimurium. Int J Mol Sci 2019; 20:ijms20020380. [PMID: 30658401 PMCID: PMC6358828 DOI: 10.3390/ijms20020380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 11/28/2022] Open
Abstract
Salmonella is the genus of Gram-negative, facultative intracellular pathogens that have the ability to infect large numbers of animal or human hosts. The S. enterica usg gene is associated with intracellular survival based on ortholog screening and identification. In this study, the λ-Red recombination system was used to construct gene deletion strains and to investigate whether the identified operon was related to intracellular survival. The pdxB-usg-truA-dedA operon enhanced the intracellular survival of S. enterica by resisting the oxidative environment and the usg and truA gene expression was induced by H2O2. Moreover, the genes in this operon (except for dedA) contributed to virulence in mice. These findings indicate that the pdxB-usg-truA-dedA operon functions in resistance to oxidative environments during intracellular survival and is required for in vivo S. enterica virulence. This study provides insight toward a better understand of the characteristics of intracellular pathogens and explores the gene modules involved in their intracellular survival.
Collapse
|
3
|
Matelska D, Shabalin IG, Jabłońska J, Domagalski MJ, Kutner J, Ginalski K, Minor W. Classification, substrate specificity and structural features of D-2-hydroxyacid dehydrogenases: 2HADH knowledgebase. BMC Evol Biol 2018; 18:199. [PMID: 30577795 PMCID: PMC6303947 DOI: 10.1186/s12862-018-1309-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The family of D-isomer specific 2-hydroxyacid dehydrogenases (2HADHs) contains a wide range of oxidoreductases with various metabolic roles as well as biotechnological applications. Despite a vast amount of biochemical and structural data for various representatives of the family, the long and complex evolution and broad sequence diversity hinder functional annotations for uncharacterized members. RESULTS We report an in-depth phylogenetic analysis, followed by mapping of available biochemical and structural data on the reconstructed phylogenetic tree. The analysis suggests that some subfamilies comprising enzymes with similar yet broad substrate specificity profiles diverged early in the evolution of 2HADHs. Based on the phylogenetic tree, we present a revised classification of the family that comprises 22 subfamilies, including 13 new subfamilies not studied biochemically. We summarize characteristics of the nine biochemically studied subfamilies by aggregating all available sequence, biochemical, and structural data, providing comprehensive descriptions of the active site, cofactor-binding residues, and potential roles of specific structural regions in substrate recognition. In addition, we concisely present our analysis as an online 2HADH enzymes knowledgebase. CONCLUSIONS The knowledgebase enables navigation over the 2HADHs classification, search through collected data, and functional predictions of uncharacterized 2HADHs. Future characterization of the new subfamilies may result in discoveries of enzymes with novel metabolic roles and with properties beneficial for biotechnological applications.
Collapse
Affiliation(s)
- Dorota Matelska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Ivan G Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA
| | - Jagoda Jabłońska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin J Domagalski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA
| | - Jan Kutner
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA. .,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA. .,Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
4
|
Wu B, Yu Q, Zheng S, Pedroso MM, Guddat LW, He B, Schenk G. Relative catalytic efficiencies and transcript levels of three d- and two l-lactate dehydrogenases for optically pure d-lactate production in Sporolactobacillus inulinus. Microbiologyopen 2018; 8:e00704. [PMID: 30066438 PMCID: PMC6528580 DOI: 10.1002/mbo3.704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022] Open
Abstract
As the optical purity of the lactate monomer is pivotal for polymerization, the production of optically pure d‐lactate is of significant importance. Sporolactobacillus inulinus YBS1‐5 is a superior optically pure d‐lactate‐producing bacterium. However, little is known about the relationship between lactate dehydrogenases in S. inulinus YBS1‐5 and the optical purity of d‐lactate. Three potential d‐lactate dehydrogenase (D‐LDH1‐3)‐ and two putative l‐lactate dehydrogenase (L‐LDH1‐2)‐encoding genes were cloned from the YBS1‐5 strain and expressed in Escherichia coli D‐LDH1 exhibited the highest catalytic efficiency toward pyruvate, whereas two L‐LDHs showed low catalytic efficiency. Different neutralizers significantly affected the optical purity of d‐lactate produced by strain YBS1‐5 as well as the transcription levels of ldhDs and ldhLs. The high catalytic efficiency of D‐LDH1 and elevated ldhD1 mRNA levels suggest that this enzyme is essential for d‐lactate synthesis in S. inulinus YBS1‐5. The correlation between the optical purity of d‐lactate and transcription levels of ldhL1 in the case of different neutralizers indicate that ldhL1 is a key factor affecting the optical purity of d‐lactate in S. inulinus YBS1‐5.
Collapse
Affiliation(s)
- Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Salvato F, Wilson R, Portilla Llerena JP, Kiyota E, Lima Reis K, Boaretto LF, Balbuena TS, Azevedo RA, Thelen JJ, Mazzafera P. Luxurious Nitrogen Fertilization of Two Sugar Cane Genotypes Contrasting for Lignin Composition Causes Changes in the Stem Proteome Related to Carbon, Nitrogen, and Oxidant Metabolism but Does Not Alter Lignin Content. J Proteome Res 2017; 16:3688-3703. [PMID: 28836437 DOI: 10.1021/acs.jproteome.7b00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sugar cane is an important crop for sugar and biofuel production. Its lignocellulosic biomass represents a promising option as feedstock for second-generation ethanol production. Nitrogen fertilization can affect differently tissues and its biopolymers, including the cell-wall polysaccharides and lignin. Lignin content and composition are the most important factors associated with biomass recalcitrance to convert cell-wall polysaccharides into fermentable sugars. Thus it is important to understand the metabolic relationship between nitrogen fertilization and lignin in this feedstock. In this study, a large-scale proteomics approach based on GeLC-MS/MS was employed to identify and relatively quantify proteins differently accumulated in two contrasting genotypes for lignin composition after excessive nitrogen fertilization. From the ∼1000 nonredundant proteins identified, 28 and 177 were differentially accumulated in response to nitrogen from IACSP04-065 and IACSP04-627 lines, respectively. These proteins were associated with several functional categories, including carbon metabolism, amino acid metabolism, protein turnover, and oxidative stress. Although nitrogen fertilization has not changed lignin content, phenolic acids and lignin composition were changed in both species but not in the same way. Sucrose and reducing sugars increased in plants of the genotype IACSP04-065 receiving nitrogen.
Collapse
Affiliation(s)
- Fernanda Salvato
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil.,Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Rashaun Wilson
- Department of Biochemistry, University of Missouri Columbia, Missouri 65201, United States
| | - Juan Pablo Portilla Llerena
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Eduardo Kiyota
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Karina Lima Reis
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Luis Felipe Boaretto
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Tiago S Balbuena
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Jaboticabal, São Paulo 14884-900, Brazil
| | - Ricardo A Azevedo
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri Columbia, Missouri 65201, United States
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil.,Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| |
Collapse
|
6
|
Zhu L, Xu X, Wang L, Dong H, Yu B. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity. PLoS One 2015; 10:e0139066. [PMID: 26398356 PMCID: PMC4580590 DOI: 10.1371/journal.pone.0139066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022] Open
Abstract
Hydroxyacid dehydrogenases are responsible for the conversion of 2-keto acids to 2-hydroxyacids and have a wide range of biotechnological applications. In this study, a D-lactate dehydrogenase (D-LDH) from a Sporolactobacillus inulinus strain was experimentally verified to have both the D-LDH and glutamate dehydrogenase (GDH) activities (reversible deamination). The catalytic mechanism was demonstrated by identification of key residues from the crystal structure analysis and site-directed mutagenesis. The Arg234 and Gly79 residues of this enzyme play a significant role in both D-LDH and GDH activities. His295 and Phe298 in DLDH744 were identified to be key residues for lactate dehydrogenase (LDH) activity only whereas Tyr101 is a unique residue that is critical for GDH activity. Characterization of the biochemical properties contributes to understanding of the catalytic mechanism of this novel D-lactate dehydrogenase enzyme.
Collapse
Affiliation(s)
- Lingfeng Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaoling Xu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hui Dong
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
- * E-mail: (BY) (HD)
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- * E-mail: (BY) (HD)
| |
Collapse
|
7
|
A New Family ofD-2-Hydroxyacid Dehydrogenases That ComprisesD-Mandelate Dehydrogenases and 2-Ketopantoate Reductases. Biosci Biotechnol Biochem 2014; 72:1087-94. [DOI: 10.1271/bbb.70827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Mukherjee T, Hanes J, Tews I, Ealick SE, Begley TP. Pyridoxal phosphate: biosynthesis and catabolism. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1585-96. [PMID: 21767669 DOI: 10.1016/j.bbapap.2011.06.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/26/2011] [Accepted: 06/29/2011] [Indexed: 11/19/2022]
Abstract
Vitamin B(6) is an essential cofactor that participates in a large number of biochemical reactions. Pyridoxal phosphate is biosynthesized de novo by two different pathways (the DXP dependent pathway and the R5P pathway) and can also be salvaged from the environment. It is one of the few cofactors whose catabolic pathway has been comprehensively characterized. It is also known to function as a singlet oxygen scavenger and has protective effects against oxidative stress in fungi. Enzymes utilizing vitamin B(6) are important targets for therapeutic agents. This review provides a concise overview of the mechanistic enzymology of vitamin B(6) biosynthesis and catabolism. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.
Collapse
Affiliation(s)
- Tathagata Mukherjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
9
|
Rudolph J, Kim J, Copley SD. Multiple turnovers of the nicotino-enzyme PdxB require α-keto acids as cosubstrates. Biochemistry 2010; 49:9249-55. [PMID: 20831184 PMCID: PMC3295541 DOI: 10.1021/bi101291d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PdxB catalyzes the second step in the biosynthesis of pyridoxal phosphate by oxidizing 4-phospho-d-erythronate (4PE) to 2-oxo-3-hydroxy-4-phosphobutanoate (OHPB) with concomitant reduction of NAD(+) to NADH. PdxB is a nicotino-enzyme wherein the NAD(H) cofactor remains tightly bound to PdxB. It has been a mystery how PdxB performs multiple turnovers since addition of free NAD(+) does not reoxidize the enzyme-bound NADH following conversion of 4PE to OHPB. We have solved this mystery by demonstrating that a variety of physiologically available α-keto acids serve as oxidants of PdxB to sustain multiple turnovers. In a coupled assay using the next two enzymes of the biosynthetic pathway for pyridoxal phosphate (SerC and PdxA), we have found that α-ketoglutarate, oxaloacetic acid, and pyruvate are equally good substrates for PdxB (k(cat)/K(m) values ~1 × 10(4) M⁻¹s⁻¹). The kinetic parameters for the substrate 4PE include a k(cat) of 1.4 s⁻¹, a K(m) of 2.9 μM, and a k(cat)/K(m) of 6.7 × 10(6) M⁻¹s⁻¹. Additionally, we have characterized the stereochemistry of α-ketoglutarate reduction by showing that d-2-HGA, but not l-2-HGA, is a competitive inhibitor vs 4PE and a noncompetitive inhibitor vs α-ketoglutarate.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Juhan Kim
- Cooperative Institute for Research in Environmental Sciences. University of Colorado at Boulder, Boulder, CO, USA
| | - Shelley D. Copley
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences. University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
10
|
Janiak V, Petersen M, Zentgraf M, Klebe G, Heine A. Structure and substrate docking of a hydroxy(phenyl)pyruvate reductase from the higher plant Coleus blumei Benth. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:593-603. [PMID: 20445235 DOI: 10.1107/s0907444910006360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/18/2010] [Indexed: 01/17/2023]
Abstract
Hydroxy(phenyl)pyruvate reductase [H(P)PR] belongs to the family of D-isomer-specific 2-hydroxyacid dehydrogenases and catalyzes the reduction of hydroxyphenylpyruvates as well as hydroxypyruvate and pyruvate to the corresponding lactates. Other non-aromatic substrates are also accepted. NADPH is the preferred cosubstrate. The crystal structure of the enzyme from Coleus blumei (Lamiaceae) has been determined at 1.47 A resolution. In addition to the apoenzyme, the structure of a complex with NADP(+) was determined at a resolution of 2.2 A. H(P)PR is a dimer with a molecular mass of 34 113 Da per subunit. The structure is similar to those of other members of the enzyme family and consists of two domains separated by a deep catalytic cleft. To gain insights into substrate binding, several compounds were docked into the cosubstrate complex structure using the program AutoDock. The results show two possible binding modes with similar docking energy. However, only binding mode A provides the necessary environment in the active centre for hydride and proton transfer during reduction, leading to the formation of the (R)-enantiomer of lactate and/or hydroxyphenyllactate.
Collapse
Affiliation(s)
- Verena Janiak
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Drake EJ, Gulick AM. Three-dimensional structures of Pseudomonas aeruginosa PvcA and PvcB, two proteins involved in the synthesis of 2-isocyano-6,7-dihydroxycoumarin. J Mol Biol 2008; 384:193-205. [PMID: 18824174 DOI: 10.1016/j.jmb.2008.09.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/01/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
The pvcABCD operon of Pseudomonas aeruginosa encodes four proteins (PA2254, PA2255, PA2256, and PA2257) that form a cluster that is responsible for the synthesis of a cyclized isocyano derivative of tyrosine. These proteins, which were identified originally as being responsible for a step in the maturation of the chromophore of the peptide siderophore pyoverdine, have been identified recently as belonging to a family of proteins that produce small organic isonitriles. We report that strains harboring a disruption in the pvcA or pvcB genes are able to grow in iron-depleted conditions and to produce pyoverdine. Additionally, we have determined the three-dimensional crystal structures of PvcA and PvcB. The structure of PvcA demonstrates a novel enzyme architecture that is built upon a Rossmann fold. We have analyzed the sequence conservation of enzymes within this family and identified six conserved motifs. These regions of the protein cluster around a putative active site cavity. The structure of the PvcB protein confirms it is a member of the Fe2+/alpha-ketoglutarate-dependent oxygenase family of enzymes. The active site of PvcB is compared to the structures of other family members and suggests that a conformational change to order several loops will accompany the binding of ligands.
Collapse
Affiliation(s)
- Eric J Drake
- Hauptman-Woodward Medical Research Institute, Department of Structural Biology, State University of New York at Buffalo, 700 Ellicott St, Buffalo, NY 14203-1102, USA
| | | |
Collapse
|
12
|
Parkinson GN, Vines D, Driscoll PC, Djordjevic S. Crystal structures of PI3K-C2alpha PX domain indicate conformational change associated with ligand binding. BMC STRUCTURAL BIOLOGY 2008; 8:13. [PMID: 18312637 PMCID: PMC2292188 DOI: 10.1186/1472-6807-8-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 02/29/2008] [Indexed: 11/15/2022]
Abstract
Background PX domains have specialized protein structures involved in binding of phosphoinositides (PIs). Through binding to the various PIs PX domains provide site-specific membrane signals to modulate the intracellular localisation and biological activity of effector proteins. Several crystal structures of these domains are now available from a variety of proteins. All PX domains contain a canonical core structure with main differences exhibited within the loop regions forming the phosphoinositide binding pockets. It is within these areas that the molecular basis for ligand specificity originates. Results We now report two new structures of PI3K-C2α PX domain that crystallised in a P3121 space group. The two structures, refined to 2.1 Å and 2.5 Å, exhibit significantly different conformations of the phosphoinositide-binding loops. Unexpectedly, in one of the structures, we have detected a putative-ligand trapped in the binding site during the process of protein purification and crystallisation. Conclusion The two structures reported here provide a more complete description of the phosphoinositide binding region compared to the previously reported 2.6 Å crystal structure of human PI3K-C2α PX where this region was highly disordered. The structures enabled us to further analyse PI specificity and to postulate that the observed conformational change could be related to ligand-binding.
Collapse
Affiliation(s)
- Gary N Parkinson
- Cancer Research UK Biomolecular Structure Group, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | | |
Collapse
|
13
|
Scott DE, Ciulli A, Abell C. Coenzyme biosynthesis: enzyme mechanism, structure and inhibition. Nat Prod Rep 2007; 24:1009-26. [PMID: 17898895 DOI: 10.1039/b703108b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights five key reactions in vitamin biosynthesis and in particular focuses on their mechanisms and inhibition and insights from structural studies. Each of the enzymes has the potential to be a target for novel antimicrobial agents.
Collapse
Affiliation(s)
- Duncan E Scott
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|