1
|
Chen LY, Huang YC, Huang ST, Hsieh YC, Guan HH, Chen NC, Chuankhayan P, Yoshimura M, Tai MH, Chen CJ. Domain swapping and SMYD1 interactions with the PWWP domain of human hepatoma-derived growth factor. Sci Rep 2018; 8:287. [PMID: 29321480 PMCID: PMC5762634 DOI: 10.1038/s41598-017-18510-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/13/2017] [Indexed: 12/14/2022] Open
Abstract
The human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal PWWP domain capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancers. We report the first crystal structures of the human HDGF PWWP domain (residues 1–100) in a complex with SMYD1 of 10 bp at 2.84 Å resolution and its apo form at 3.3 Å, respectively. The structure of the apo PWWP domain comprises mainly four β-strands and two α-helices. The PWWP domain undergoes domain swapping to dramatically transform its secondary structures, altering the overall conformation from monomeric globular folding into an extended dimeric structure upon DNA binding. The flexible loop2, as a hinge loop with the partially built structure in the apo PWWP domain, notably refolds into a visible and stable α-helix in the DNA complex. The swapped PWWP domain interacts with the minor grooves of the DNA through residues Lys19, Gly22, Arg79 and Lys80 in varied ways on loops 1 and 4 of the two chains, and the structure becomes more rigid than the apo form. These novel structural findings, together with physiological and activity assays of HDGF and the PWWP domain, provide new insights into the DNA-binding mechanism of HDGF during nucleosomal functions.
Collapse
Affiliation(s)
- Li-Ying Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan.,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan.,Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Tsung Huang
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yin-Cheng Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hong-Hsiang Guan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Nai-Chi Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Phimonphan Chuankhayan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Masato Yoshimura
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Chun-Jung Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan. .,Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
2
|
Nüße J, Mirastschijski U, Waespy M, Oetjen J, Brandes N, Rebello O, Paroni F, Kelm S, Dietz F. Two new isoforms of the human hepatoma-derived growth factor interact with components of the cytoskeleton. Biol Chem 2016; 397:417-36. [PMID: 26845719 DOI: 10.1515/hsz-2015-0273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
Abstract
Hepatoma-derived growth factor (HDGF) is involved in diverse, apparently unrelated processes, such as cell proliferation, apoptosis, DNA-repair, transcriptional control, ribosome biogenesis and cell migration. Most of the interactions of HDGF with diverse molecules has been assigned to the hath region of HDGF. In this study we describe two previously unknown HDGF isoforms, HDGF-B and HDGF-C, generated via alternative splicing with structurally unrelated N-terminal regions of their hath region, which is clearly different from the well described isoform, HDGF-A. In silico modeling revealed striking differences near the PHWP motif, an essential part of the binding site for glycosaminoglycans and DNA/RNA. This observation prompted the hypothesis that these isoforms would have distinct interaction patterns with correspondingly diverse roles on cellular processes. Indeed, we discovered specific associations of HDGF-B and HDGF-C with cytoskeleton elements, such as tubulin and dynein, suggesting previously unknown functions of HDGF in retrograde transport, site directed localization and/or cytoskeleton organization. In contrast, the main isoform HDGF-A does not interact directly with the cytoskeleton, but via RNA with messenger ribonucleoprotein (mRNP) complexes. In summary, the discovery of HDGF splice variants with their discrete binding activities and subcellular distributions opened new avenues for understanding its biological function and importance.
Collapse
|
3
|
Gesslbauer B, Derler R, Handwerker C, Seles E, Kungl AJ. Exploring the glycosaminoglycan-protein interaction network by glycan-mediated pull-down proteomics. Electrophoresis 2016; 37:1437-47. [PMID: 26970331 DOI: 10.1002/elps.201600043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 01/13/2023]
Abstract
Glycosaminoglycans (GAGs) are linear, highly sulfated polysaccharides expressed by almost all animal cells. They occur as soluble molecules, or form proteoglycans by being O-linked to different core proteins on the cell surface and in the extracellular matrix. Due to their ability to interact with diverse proteins and to modulate their biologic functions, GAGs are main drivers of mammalian biology. However, to the present day, the human GAG binding proteome has only been insufficiently explored. The aim of this study was therefore to investigate the human GAG binding proteome of different sources by using the major GAG classes as ligands, and to explore the GAG-binding selectivity of the human plasma proteome. For this purpose, proteins were pulled down from immobilized low molecular weight heparin, heparan sulfate, and dermatan sulfate under different conditions and were identified by nano-LC/MS². Four hundred and fifty eight human GAG binding proteins have been identified, whereas plasma proteins showed clear differences in their GAG-binding specificity/selectivity and affinity. We were able to differentiate between proteins that bound to all three glycan ligands and proteins that showed selective binding to one or two glycan ligands. Moreover, step-gradient salt elution revealed different binding affinities toward different GAG ligands. On top of proteins with well-known GAG-binding properties we have identified formerly unknown GAG binders. Functional annotation of the identified GAG-binding proteins showed clusters of proteins that are involved in a variety of biological processes. The method described here is well suited for identifying GAG-binding proteins and for comparing human subproteomes with respect to binding to different GAG classes.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Rupert Derler
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | | | - Elisabeth Seles
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Andreas J Kungl
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria.,ProtAffin Biotechnologie AG, Graz, Austria
| |
Collapse
|
4
|
Rona GB, Eleutherio ECA, Pinheiro AS. PWWP domains and their modes of sensing DNA and histone methylated lysines. Biophys Rev 2016; 8:63-74. [PMID: 28510146 DOI: 10.1007/s12551-015-0190-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
Chromatin plays an important role in gene transcription control, cell cycle progression, recombination, DNA replication and repair. The fundamental unit of chromatin, the nucleosome, is formed by a DNA duplex wrapped around an octamer of histones. Histones are susceptible to various post-translational modifications, covalent alterations that change the chromatin status. Lysine methylation is one of the major post-translational modifications involved in the regulation of chromatin function. The PWWP domain is a member of the Royal superfamily that functions as a chromatin methylation reader by recognizing both DNA and histone methylated lysines. The PWWP domain three-dimensional structure is based on an N-terminal hydrophobic β-barrel responsible for histone methyl-lysine binding, and a C-terminal α-helical domain. In this review, we set out to discuss the most recent literature on PWWP domains, focusing on their structural features and the mechanisms by which they specifically recognize DNA and histone methylated lysines at the level of the nucleosome.
Collapse
Affiliation(s)
- Germana B Rona
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Elis C A Eleutherio
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
| |
Collapse
|
5
|
Bao C, Wang J, Ma W, Wang X, Cheng Y. HDGF: a novel jack-of-all-trades in cancer. Future Oncol 2015; 10:2675-85. [PMID: 25236340 DOI: 10.2217/fon.14.194] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HDGF is an important regulator of a broad range of cancer cell activities and plays important roles in cancer cell transformation, apoptosis, angiogenesis and metastasis. Such a divergent influence of HDGF on cancer cell activities derives from its multiple inter- and sub-cellular localizations where it interacts with a range of different binding partners. Interestingly, high levels of HDGF could be detected in patients' serum of some cancers. This review is focused on the role of HDGF in tumorigenesis and metastasis, and provides insight for application in clinical cancer therapy as well as its clinical implications as a prognostic marker in cancer progression.
Collapse
Affiliation(s)
- Cihang Bao
- Department of Radiation Oncology, Qilu Hospital of Shandong University, 107 Wenhua Road West, Jinan 250012, China
| | | | | | | | | |
Collapse
|
6
|
NMR characterization of the electrostatic interaction of the basic residues in HDGF and FGF2 during heparin binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1851-9. [DOI: 10.1016/j.bbapap.2014.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022]
|
7
|
Qin S, Min J. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 2014; 39:536-47. [PMID: 25277115 DOI: 10.1016/j.tibs.2014.09.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/26/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
PWWP domain-containing proteins are often involved in chromatin-associated biological processes, such as transcriptional regulation and DNA repair, and recent studies have shown that the PWWP domain specifies chromatin localization. Mutations in the PWWP domain, a 100-150 amino acid motif, have been linked to various human diseases, emphasizing its importance. Structural studies reveal that PWWP domains possess a conserved aromatic cage for histone methyl-lysine recognition, and synergistically bind both histone and DNA, which contributes to their nucleosome-binding ability and chromatin localization. Furthermore, the PWWP domain often cooperates with other histone and DNA 'reader' or 'modifier' domains to evoke crosstalk between various epigenetic marks. Here, we discuss these recent advances in understanding the structure and function of the PWWP domain.
Collapse
Affiliation(s)
- Su Qin
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Jinrong Min
- Structural Genomics Consortium, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
8
|
Ghasriani H, Kwok JKC, Sherratt AR, Foo ACY, Qureshi T, Goto NK. Micelle-Catalyzed Domain Swapping in the GlpG Rhomboid Protease Cytoplasmic Domain. Biochemistry 2014; 53:5907-15. [DOI: 10.1021/bi500919v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Houman Ghasriani
- Department of Chemistry and ‡Department of Biochemistry, Microbiology
and
Immunology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Jason K. C. Kwok
- Department of Chemistry and ‡Department of Biochemistry, Microbiology
and
Immunology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Allison R. Sherratt
- Department of Chemistry and ‡Department of Biochemistry, Microbiology
and
Immunology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Alexander C. Y. Foo
- Department of Chemistry and ‡Department of Biochemistry, Microbiology
and
Immunology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Tabussom Qureshi
- Department of Chemistry and ‡Department of Biochemistry, Microbiology
and
Immunology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Natalie K. Goto
- Department of Chemistry and ‡Department of Biochemistry, Microbiology
and
Immunology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
9
|
Vanderlinden W, Lipfert J, Demeulemeester J, Debyser Z, De Feyter S. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy. NANOSCALE 2014; 6:4611-4619. [PMID: 24632996 DOI: 10.1039/c4nr00022f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study--based on scanning force microscopy (SFM) imaging--is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease.
Collapse
Affiliation(s)
- Willem Vanderlinden
- Department of Chemistry, Laboratory of Photochemistry and Spectroscopy, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Morchikh M, Naughtin M, Di Nunzio F, Xavier J, Charneau P, Jacob Y, Lavigne M. TOX4 and NOVA1 proteins are partners of the LEDGF PWWP domain and affect HIV-1 replication. PLoS One 2013; 8:e81217. [PMID: 24312278 PMCID: PMC3842248 DOI: 10.1371/journal.pone.0081217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
PWWP domains are involved in the chromatin attachment of several proteins. They bind to both DNA and proteins and their interaction with specific histone methylation marks define them as a new class of histone code readers. The lens epithelium derived growth factor (LEDGF/p75) contains an N-terminal PWWP domain necessary for its interaction with chromatin but also a C-terminal domain which interacts with several proteins, such as lentiviral integrases. These two domains confer a chromatin-tethering function to LEDGF/p75 and in the case of lentiviral integrases, this tethering participates in the efficiency and site selectivity of integration. Although proteins interacting with LEDGF/p75 C-terminal domain have been extensively studied, no data exist about partners of its PWWP domain regulating its interaction with chromatin. In this study, we report the identification by yeast-two-hybrid of thirteen potential partners of the LEDGF PWWP domain. Five of these interactions were confirmed in mammalian cells, using both a protein complementation assay and co-immunoprecipitation approaches. Three of these partners interact with full length LEDGF/p75, they are specific for PWWP domains of the HDGF family and they require PWWP amino acids essential for the interaction with chromatin. Among them, the transcription activator TOX4 and the splicing cofactor NOVA1 were selected for a more extensive study. These two proteins or their PWWP interacting regions (PIR) colocalize with LEDGF/p75 in Hela cells and interact in vitro in the presence of DNA. Finally, single round VSV-G pseudotyped HIV-1 but not MLV infection is inhibited in cells overexpressing these two PIRs. The observed inhibition of infection can be attributed to a defect in the integration step. Our data suggest that a regulation of LEDGF interaction with chromatin by cellular partners of its PWWP domain could be involved in several processes linked to LEDGF tethering properties, such as lentiviral integration, DNA repair or transcriptional regulation.
Collapse
Affiliation(s)
- Mehdi Morchikh
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Monica Naughtin
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Francesca Di Nunzio
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Johan Xavier
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
| | - Pierre Charneau
- Institut Pasteur, Unité de Virologie Moléculaire et Vaccinologie, Centre National de la Recherche Scientifique, Paris, France
| | - Yves Jacob
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Centre National de la Recherche Scientifique, Paris, France
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Marc Lavigne
- Ecole Normale Supérieure, Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique, Lyon, France
- Institut Pasteur, Unité de Virologie Structurale, Centre National de la Recherche Scientifique, Unité de recherche associée, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Thakar K, Votteler I, Kelkar D, Shidore T, Gupta S, Kelm S, Dietz F. Interaction of HRP-2 isoforms with HDGF. Chromatin binding of a specific heteromer. FEBS J 2012; 279:737-51. [DOI: 10.1111/j.1742-4658.2011.08464.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Chen FF, Lin WH, Lin SC, Kuo JH, Chu HY, Huang WC, Chuang YJ, Lee SC, Sue SC. Significance of heparin binding to basic residues in homologous to the amino terminus of hepatoma-derived growth factor and related proteins. Glycobiology 2012; 22:649-61. [DOI: 10.1093/glycob/cwr191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
13
|
Abstract
Among thousands of homo-oligomeric protein structures, there is a small but growing subset of ‘domain-swapped’ proteins. The term ‘domain swapping,’ originally coined by D. Eisenberg, describes a scenario in which two or more polypeptide chains exchange identical units for oligomerization. This type of assembly could play a role in disease-related aggregation and amyloid formation or as a specific mechanism for regulating function. This chapter introduces terms and features concerning domain swapping, summarizes ideas about its putative mechanisms, reports on domain-swapped structures collected from the literature, and describes a few notable examples in detail.
Collapse
|
14
|
Zhao J, Yu H, Lin L, Tu J, Cai L, Chen Y, Zhong F, Lin C, He F, Yang P. Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF). J Proteomics 2011; 75:588-602. [DOI: 10.1016/j.jprot.2011.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/14/2011] [Accepted: 08/25/2011] [Indexed: 02/05/2023]
|
15
|
Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 2011; 433:127-38. [PMID: 20964630 DOI: 10.1042/bj20100589] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
HDGF (hepatoma-derived growth factor) stimulates cell proliferation by functioning on both sides of the plasma membrane as a ligand for membrane receptor binding to trigger cell signalling and as a stimulator for DNA synthesis in the nucleus. Although HDGF was initially identified as a secretory heparin-binding protein, the biological significance of its heparin-binding ability remains to be determined. In the present study we demonstrate that cells devoid of surface HS (heparan sulfate) were unable to internalize HDGF, HATH (N-terminal domain of HDGF consisting of amino acid residues 1-100, including the PWWP motif) and HATH(K96A) (single-site mutant form of HATH devoid of receptor binding activity), suggesting that the binding of HATH to surface HS is important for HDGF internalization. We further demonstrate that both HATH and HATH(K96A) could be internalized through macropinocytosis after binding to the cell surface HS. Interestingly, HS-mediated HATH(K96A) internalization is found to exhibit an inhibitory effect on cell migration and proliferation in contrast with that observed for HATH action on NIH 3T3 cells, suggesting that HDGF exploits the innate properties of both cell surface HS and membrane receptor via the HATH domain to affect related cell signalling processes. The present study indicates that MAPK (mitogen-activated protein kinase) signalling pathways could be affected by the HS-mediated HATH internalization to regulate cell migration in NIH 3T3 fibroblasts, as judged from the differential effect of HATH and HATH(K96A) treatment on the expression level of matrix metalloproteases.
Collapse
|
16
|
Thakar K, Kröcher T, Savant S, Gollnast D, Kelm S, Dietz F. Secretion of hepatoma-derived growth factor is regulated by N-terminal processing. Biol Chem 2010; 391:1401-10. [DOI: 10.1515/bc.2010.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Hepatoma-derived growth factor (HDGF) was first purified as a growth factor secreted by hepatoma cells. It promotes angiogenesis and has been related to tumorigenesis. To date, little is known about the molecular mechanisms of HDGF functions and especially its routes or regulation of secretion. Here we show that secretion of HDGF requires the N-terminal 10 amino acids and that this peptide can mediate secretion of other proteins, such as enhanced green fluorescent protein, if fused to their N-terminus. Our results further demonstrate that cysteine residues at positions 12 and 108 are linked via an intramolecular disulfide bridge. Surprisingly, phosphorylation of serine 165 in the C-terminal part of HDGF plays a critical role in the secretion process. If this serine is replaced by alanine, the N-terminus is truncated, the intramolecular disulfide bridge is not formed and the protein is not secreted. In summary, these observations provide a model of how phosphorylation, a disulfide bridge and proteolytic cleavage are involved in HDGF secretion.
Collapse
|
17
|
Hendrix J, Gijsbers R, De Rijck J, Voet A, Hotta JI, McNeely M, Hofkens J, Debyser Z, Engelborghs Y. The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. Nucleic Acids Res 2010; 39:1310-25. [PMID: 20974633 PMCID: PMC3045605 DOI: 10.1093/nar/gkq933] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nearly all cellular and disease related functions of the transcriptional co-activator lens epithelium-derived growth factor (LEDGF/p75) involve tethering of interaction partners to chromatin via its conserved integrase binding domain (IBD), but little is known about the mechanism of in vivo chromatin binding and tethering. In this work we studied LEDGF/p75 in real-time in living HeLa cells combining different quantitative fluorescence techniques: spot fluorescence recovery after photobleaching (sFRAP) and half-nucleus fluorescence recovery after photobleaching (hnFRAP), continuous photobleaching, fluorescence correlation spectroscopy (FCS) and an improved FCS method to study diffusion dependence of chromatin binding, tunable focus FCS. LEDGF/p75 moves about in nuclei of living cells in a chromatin hopping/scanning mode typical for transcription factors. The PWWP domain of LEDGF/p75 is necessary, but not sufficient for in vivo chromatin binding. After interaction with HIV-1 integrase via its IBD, a general protein–protein interaction motif, kinetics of LEDGF/p75 shift to 75-fold larger affinity for chromatin. The PWWP is crucial for locking the complex on chromatin. We propose a scan-and-lock model for LEDGF/p75, unifying paradoxical notions of transcriptional co-activation and lentiviral integration targeting.
Collapse
Affiliation(s)
- Jelle Hendrix
- Laboratory for Biomolecular Dynamics, University of Leuven, Leuven, Flanders, B-3000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yap KL, Zhou MM. Keeping it in the family: diverse histone recognition by conserved structural folds. Crit Rev Biochem Mol Biol 2010; 45:488-505. [PMID: 20923397 DOI: 10.3109/10409238.2010.512001] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epigenetic regulation of gene transcription relies on an array of recurring structural domains that have evolved to recognize post-translational modifications on histones. The roles of bromodomains, PHD fingers, and the Royal family domains in the recognition of histone modifications to direct transcription have been well characterized. However, only through recent structural studies has it been realized that these basic folds are capable of interacting with increasingly more complex histone modification landscapes, illuminating how nature has concocted a way to accomplish more with less. Here we review the recent biochemical and structural studies of several conserved folds that recognize modified as well as unmodified histone sequences, and discuss their implications on gene expression.
Collapse
Affiliation(s)
- Kyoko L Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, USA
| | | |
Collapse
|
19
|
Abouzied MM, El-Tahir HM, Gieselmann V, Franken S. Hepatoma-derived growth factor-related protein-3: a new neurotrophic and neurite outgrowth-promoting factor for cortical neurons. J Neurosci Res 2010; 88:3610-20. [PMID: 20890995 DOI: 10.1002/jnr.22507] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/22/2010] [Accepted: 08/12/2010] [Indexed: 01/15/2023]
Abstract
Hepatoma-derived growth factor-related proteins (HRPs) make up a family of six members. Hepatoma-derived growth factor-related protein-3 (HRP-3) is the only family member whose expression is almost restricted to nervous tissue. Here we show that soluble HRP-3 acts as a novel neurotrophic factor for cultured primary cortical neurons. Antibody-mediated neutralization of HRP-3 function results in neuronal degeneration. In contrast, HRP-3 as the only addition to a culture medium not supporting neuronal survival rescues neurons to an extent comparable to the addition of FCS. Besides this neuroprotective capability, the protein exerts a neurite outgrowth-promoting effect when it is presented as a coated substrate but not as a soluble factor. This study points to an important role of HRP-3 during the development of the nervous system.
Collapse
Affiliation(s)
- Mekky M Abouzied
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | | | | | | |
Collapse
|
20
|
El-Tahir HM, Abouzied MM, Gallitzendoerfer R, Gieselmann V, Franken S. Hepatoma-derived growth factor-related protein-3 interacts with microtubules and promotes neurite outgrowth in mouse cortical neurons. J Biol Chem 2009; 284:11637-51. [PMID: 19237540 DOI: 10.1074/jbc.m901101200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatoma-derived growth factor-related proteins (HRP) comprise a family of 6 members, which the biological functions are still largely unclear. Here we show that during embryogenesis HRP-3 is strongly expressed in the developing nervous system. At early stages of development HRP-3 is located in the cytoplasm and neurites of cortical neurons. Upon maturation HRP-3 relocalizes continuously to the nuclei and in the majority of neurons of adult mice it is located exclusively in the nucleus. This redistribution from neurites to nuclei is also found in embryonic cortical neurons maturing in cell culture. We show that HRP-3 is necessary for proper neurite outgrowth in primary cortical neurons. To identify possible mechanisms of how HRP-3 modulate neuritogenesis we isolated HRP-3 interaction partners and demonstrate that it binds tubulin through the N-terminal so called HATH region, which is strongly conserved among members of the HRP family. It promotes tubulin polymerization, stabilizes and bundles microtubules. This activity depends on the extranuclear localization of HRP-3. HRP-3 thus could play an important role during neuronal development by its modulation of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Heba M El-Tahir
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität, Nussallee 11, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
21
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Albè E, Chang JH, Azar NF, Ivanov AR, Azar DT. Proteomic analysis of the hyaloid vascular system regression during ocular development. J Proteome Res 2008; 7:4904-13. [PMID: 18841878 DOI: 10.1021/pr800551m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe a proteomic approach to investigate the differential protein expression patterns and identify the physiologically relevant angiogenic and antiangiogenic factors involved in the hyaloid vascular system regression. Differentially expressed proteins were identified using two-dimensional gel electrophoresis followed by nanoflow chromatography coupled with tandem mass spectrometry. These proteins are expected to provide insight as to their function in the early maintenance and eventual regression of the hyaloid vascular system.
Collapse
Affiliation(s)
- Elena Albè
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
23
|
Thakar K, Niedenthal R, Okaz E, Franken S, Jakobs A, Gupta S, Kelm S, Dietz F. SUMOylation of the hepatoma-derived growth factor negatively influences its binding to chromatin. FEBS J 2008; 275:1411-1426. [PMID: 18331345 DOI: 10.1111/j.1742-4658.2008.06303.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatoma-derived growth factor is a nuclear targeted mitogen containing a PWWP domain that mediates binding to DNA. To date, almost nothing is known about the molecular mechanisms of the functions of hepatoma-derived growth factor, its routes of secretion and internalization or post-translational modifications. In the present study, we show for the first time that hepatoma-derived growth factor is modified by the covalent attachment of small ubiquitin-related modifier 1 (SUMO-1), a post-translational modification with regulatory functions for an increasing number of proteins. Using a basal SUMOylation system in Escherichia coli followed by a MALDI-TOF-MS based peptide analysis, we identified the lysine residue SUMOylated located in the N-terminal part of the protein adjacent to the PWWP domain. Surprisingly, this lysine residue is not part of the consensus motif described for SUMOylation. With a series of hepatoma-derived growth factor mutants, we then confirmed that this unusual location is also used in mammalian cells and that SUMOylation of hepatoma-derived growth factor takes place in the nucleus. Finally, we demonstrate that SUMOylated hepatoma-derived growth factor is not binding to chromatin, in contrast to its unSUMOylated form. These observations potentially provide new perspectives for a better understanding of the functions of hepatoma-derived growth factor.
Collapse
Affiliation(s)
- Ketan Thakar
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| | | | - Elwy Okaz
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| | - Sebastian Franken
- Department of Physiological Chemistry, Rheinische-Friedrich-Wilhelm University of Bonn, Germany
| | - Astrid Jakobs
- Department of Biochemistry, Hannover Medical School, Germany
| | - Shivangi Gupta
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| | - Sørge Kelm
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| | - Frank Dietz
- Department of Biochemistry, Centre for Biomolecular Interactions Bremen (CBIB), University of Bremen, Germany
| |
Collapse
|
24
|
Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol 2007; 8:101. [PMID: 17974029 PMCID: PMC2176068 DOI: 10.1186/1471-2199-8-101] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 10/31/2007] [Indexed: 11/16/2022] Open
Abstract
Background Hepatoma Derived Growth Factor (HDGF) is a nuclear protein with nuclear targeting required for mitogenic activity. Recently we demonstrated that HDGF is a transcriptional repressor, but whether HDGF binds DNA, the specificity of DNA binding and what protein domain is required are still unknown. In this study, we aimed to identify if HDGF is a DNA binding protein, map the functional DNA binding domain and DNA binding element for HDGF. Results Using chromatin immunoprecipitation (ChIP) of human DNA, we isolated 10 DNA sequences sharing a conserved ~200 bp element. Homology analysis identified the binding sequences as a motif within the promoter of the SMYD1 gene, a HDGF target gene. Electrophoretic Mobility Shift Assays (EMSA) confirmed the binding of HDGF to this conserved sequence. As a result, an 80 bp conserved sequence located in the SMYD1 promoter bound GST-HDGF tightly. The binding core sequence for HDGF was narrowed down to 37 bp using a deletion mapping strategy from both the 5' and 3' ends. Moreover, ChIP and DNase I footprinting analysis revealed that HDGF binds this 80 bp DNA fragment specifically. Functionally overexpression of HDGF represses a reporter gene which is controlled by an SV-40 promoter containing the 80 bp DNA element. Using serial truncations of GST-HDGF, we mapped the DNA binding domain of HDGF to the N-terminal PWWP domain. Conclusion HDGF is a DNA binding protein, binds DNA specifically, and prefers a minimum of 37 bp long DNA fragment. The N-terminal PWWP domain of HDGF is required for DNA binding. HDGF exerts its transcription repressive effect through binding to a conserved DNA element in the promoter of target genes.
Collapse
|