1
|
Crack JC, Le Brun NE. Synergy of native mass spectrometry and other biophysical techniques in studies of iron‑sulfur cluster proteins and their assembly. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119865. [PMID: 39442807 DOI: 10.1016/j.bbamcr.2024.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The application of mass spectrometric methodologies has revolutionised biological chemistry, from identification through to structural and conformational studies of proteins and other macromolecules. Native mass spectrometry (MS), in which proteins retain their native structure, is a rapidly growing field. This is particularly the case for studies of metalloproteins, where non-covalently bound cofactors remain bound following ionisation. Such metalloproteins include those that contain an iron‑sulfur (FeS) cluster and, despite their fragility and O2 sensitivity, they have been a particular focus for applications of native MS because of its capacity to accurately monitor mass changes that reveal chemical changes at the cluster. Here we review recent advances in these applications of native MS, which, together with data from more traditionally applied biophysical methods, have yielded a remarkable breadth of information about the FeS species present, and provided key mechanistic insight not only for FeS cluster proteins themselves, but also their assembly.
Collapse
Affiliation(s)
- Jason C Crack
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK..
| |
Collapse
|
2
|
Dong H, Zhang J, Zhang K, Zhang F, Wang S, Wang Q, Xu C, Yin K, Gu L. The cAMP receptor protein from Gardnerella vaginalis is not regulated by ligands. Commun Biol 2024; 7:1233. [PMID: 39354127 PMCID: PMC11445507 DOI: 10.1038/s42003-024-06957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Overgrowth of Gardnerella vaginalis causes an imbalance in vaginal microecology. The pathogenicity of G. vaginalis is directly regulated by the cAMP receptor protein (CRP). In this study, we resolve the crystal structure of CRPGv at a resolution of 2.22 Å and find some significant differences from homologous proteins. The first 23 amino acids of CRPGv are inserted into the ligand binding pocket, creating a strong steric barrier to ligand entry that has not been seen previously in its homologues. In the absence of ligands, the two α helices used by CRPGv to bind oligonucleotide chains are exposed and can specifically bind TGTGA-N6-TCACA sequences. cAMP and other ligands of CRP homologs are not cofactors of CRPGv. There is no coding gene of the adenylate cyclase, and cAMP could not be identified in G. vaginalis by liquid chromatography tandem mass spectrometry. We speculate that CRPGv may achieve fine regulation through a conformational transformation different from that of its homologous proteins, and this conformational transformation is no longer dependent on small molecules, but may be aided by accessory proteins. CRPGv is the first discovered CRP that is not ligand-regulated, and its active conformation provides a structural basis for drug screening.
Collapse
Affiliation(s)
- Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Shuai Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, PR China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China.
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China.
| |
Collapse
|
3
|
Reynolds MF. New insights into the signal transduction mechanism of O 2-sensing FixL and other biological heme-based sensor proteins. J Inorg Biochem 2024; 259:112642. [PMID: 38908215 DOI: 10.1016/j.jinorgbio.2024.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Recent structural and biophysical studies of O2-sensing FixL, NO-sensing soluble guanylate cyclase, and other biological heme-based sensing proteins have begun to reveal the details of their molecular mechanisms and shed light on how nature regulates important biological processes such as nitrogen fixation, blood pressure, neurotransmission, photosynthesis and circadian rhythm. The O2-sensing FixL protein from S. meliloti, the eukaryotic NO-sensing protein sGC, and the CO-sensing CooA protein from R. rubrum transmit their biological signals through gas-binding to the heme domain of these proteins, which inhibits or activates the regulatory, enzymatic domain. These proteins appear to propagate their signal by specific structural changes in the heme sensor domain initiated by the appropriate gas binding to the heme, which is then propagated through a coiled-coil linker or other domain to the regulatory, enzymatic domain that sends out the biological signal. The current understanding of the signal transduction mechanisms of O2-sensing FixL, NO-sensing sGC, CO-sensing CooA and other biological heme-based gas sensing proteins and their mechanistic themes are discussed, with recommendations for future work to further understand this rapidly growing area of biological heme-based gas sensors.
Collapse
Affiliation(s)
- Mark F Reynolds
- Department of Chemistry and Biochemistry, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, United States of America.
| |
Collapse
|
4
|
Vos MH, Salman M, Liebl U. Early processes in heme-based CO-sensing proteins. Front Mol Biosci 2022; 9:1046412. [PMID: 36406263 PMCID: PMC9670170 DOI: 10.3389/fmolb.2022.1046412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Carbon monoxide has been recognized relatively recently as signaling molecule, and only very few dedicated natural CO sensor proteins have been identified so far. These include in particular heme-based transcription factors: the bacterial sensor proteins CooA and RcoM. In these 6-coordinated systems, exchange between an internal protein residue and CO as a heme ligand in the sensor domain affects the properties of the DNA-binding domain. Using light to dissociate heme-ligand bonds can in principle initiate this switching process. We review the efforts to use this method to investigate early processes in ligand switching and signaling, with an emphasis on the CO-“trappingˮ properties of the heme cavity. These features are unusual for most heme proteins, but common for heme-based CO sensors.
Collapse
|
5
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Sousa EH, Carepo MS, Moura JJ. Nitrate-nitrite fate and oxygen sensing in dormant Mycobacterium tuberculosis: A bioinorganic approach highlighting the importance of transition metals. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Ganesh I, Gwon DA, Lee JW. Gas-Sensing Transcriptional Regulators. Biotechnol J 2020; 15:e1900345. [PMID: 32362055 DOI: 10.1002/biot.201900345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Indexed: 11/10/2022]
Abstract
Gas molecules are ubiquitous in the environment and are used as nutrient and energy sources for living organisms. Many organisms, therefore, have developed gas-sensing systems to respond efficiently to changes in the atmospheric environment. In microorganisms and plants, two-component systems (TCSs) and transcription factors (TFs) are two primary mechanisms to sense gas molecules. In this review, gas-sensing transcriptional regulators, TCSs, and TFs, focusing on protein structures, mechanisms of gas molecule interaction, DNA binding regions of transcriptional regulators, signal transduction mechanisms, and gene expression regulation are discussed. At first, transcriptional regulators that directly sense gas molecules with the help of a prosthetic group is described and then gas-sensing systems that indirectly recognize the presence of gas molecules is explained. Overall, this review provides a comprehensive understanding of gas-sensing transcriptional regulators in microorganisms and plants, and proposes a future perspective on the use of gas-sensing transcriptional regulators.
Collapse
Affiliation(s)
- Irisappan Ganesh
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
8
|
Inoue M, Izumihara H, Fukuyama Y, Omae K, Yoshida T, Sako Y. Carbon monoxide-dependent transcriptional changes in a thermophilic, carbon monoxide-utilizing, hydrogen-evolving bacterium Calderihabitans maritimus KKC1 revealed by transcriptomic analysis. Extremophiles 2020; 24:551-564. [PMID: 32388815 PMCID: PMC7306483 DOI: 10.1007/s00792-020-01175-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/27/2020] [Indexed: 11/30/2022]
Abstract
Calderihabitans maritimus KKC1 is a thermophilic, carbon monoxide (CO)-utilizing, hydrogen-evolving bacterium that harbors seven cooS genes for anaerobic CO dehydrogenases and six hyd genes for [NiFe] hydrogenases and capable of using a variety of electron acceptors coupled to CO oxidation. To understand the relationships among these unique features and the transcriptional adaptation of the organism to CO, we performed a transcriptome analysis of C. maritimus KKC1 grown under 100% CO and N2 conditions. Of its 3114 genes, 58 and 32 genes were significantly upregulated and downregulated in the presence of CO, respectively. A cooS–ech gene cluster, an “orphan” cooS gene, and bidirectional hyd genes were upregulated under CO, whereas hydrogen-uptake hyd genes were downregulated. Transcriptional changes in anaerobic respiratory genes supported the broad usage of electron acceptors in C. maritimus KKC1 under CO metabolism. Overall, the majority of the differentially expressed genes were oxidoreductase-like genes, suggesting metabolic adaptation to the cellular redox change upon CO oxidation. Moreover, our results suggest a transcriptional response mechanism to CO that involves multiple transcription factors, as well as a CO-responsive transcriptional activator (CooA). Our findings shed light on the diverse mechanisms for transcriptional and metabolic adaptations to CO in CO-utilizing and hydrogen-evolving bacteria.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hikaru Izumihara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuto Fukuyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kimiho Omae
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
9
|
Tripathi S, Poulos TL. Testing the N-Terminal Velcro Model of CooA Carbon Monoxide Activation. Biochemistry 2018; 57:3059-3064. [DOI: 10.1021/acs.biochem.8b00359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarvind Tripathi
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
10
|
Stranava M, Man P, Skálová T, Kolenko P, Blaha J, Fojtikova V, Martínek V, Dohnálek J, Lengalova A, Rosůlek M, Shimizu T, Martínková M. Coordination and redox state-dependent structural changes of the heme-based oxygen sensor AfGcHK associated with intraprotein signal transduction. J Biol Chem 2017; 292:20921-20935. [PMID: 29092908 DOI: 10.1074/jbc.m117.817023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Indexed: 11/06/2022] Open
Abstract
The heme-based oxygen sensor histidine kinase AfGcHK is part of a two-component signal transduction system in bacteria. O2 binding to the Fe(II) heme complex of its N-terminal globin domain strongly stimulates autophosphorylation at His183 in its C-terminal kinase domain. The 6-coordinate heme Fe(III)-OH- and -CN- complexes of AfGcHK are also active, but the 5-coordinate heme Fe(II) complex and the heme-free apo-form are inactive. Here, we determined the crystal structures of the isolated dimeric globin domains of the active Fe(III)-CN- and inactive 5-coordinate Fe(II) forms, revealing striking structural differences on the heme-proximal side of the globin domain. Using hydrogen/deuterium exchange coupled with mass spectrometry to characterize the conformations of the active and inactive forms of full-length AfGcHK in solution, we investigated the intramolecular signal transduction mechanisms. Major differences between the active and inactive forms were observed on the heme-proximal side (helix H5), at the dimerization interface (helices H6 and H7 and loop L7) of the globin domain and in the ATP-binding site (helices H9 and H11) of the kinase domain. Moreover, separation of the sensor and kinase domains, which deactivates catalysis, increased the solvent exposure of the globin domain-dimerization interface (helix H6) as well as the flexibility and solvent exposure of helix H11. Together, these results suggest that structural changes at the heme-proximal side, the globin domain-dimerization interface, and the ATP-binding site are important in the signal transduction mechanism of AfGcHK. We conclude that AfGcHK functions as an ensemble of molecules sampling at least two conformational states.
Collapse
Affiliation(s)
- Martin Stranava
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Petr Man
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.,the Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic
| | - Tereza Skálová
- the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and
| | - Petr Kolenko
- the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and.,the Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1, Czech Republic
| | - Jan Blaha
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Veronika Fojtikova
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Václav Martínek
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Jan Dohnálek
- the Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic, and
| | - Alzbeta Lengalova
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Michal Rosůlek
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic.,the Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Biocev, 252 50 Vestec, Czech Republic
| | - Toru Shimizu
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic
| | - Markéta Martínková
- From the Department of Biochemistry, Faculty of Science, Charles University, Hlavova (Albertov) 2030/8, Prague 2, 128 43 Czech Republic,
| |
Collapse
|
11
|
Sim DW, Choi JW, Kim JH, Ryu KS, Kim M, Yu HW, Jo KS, Kim EH, Seo MD, Jeon YH, Lee BJ, Kim YP, Won HS. C-terminal dimerization of apo-cyclic AMP receptor protein validated in solution. FEBS Lett 2017; 591:1064-1070. [PMID: 28245055 DOI: 10.1002/1873-3468.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/28/2017] [Accepted: 02/23/2017] [Indexed: 11/07/2022]
Abstract
Although cyclic AMP receptor protein (CRP) has long served as a typical example of effector-mediated protein allostery, mechanistic details into its regulation have been controversial due to discrepancy between the known crystal structure and NMR structure of apo-CRP. Here, we report that the recombinant protein corresponding to its C-terminal DNA-binding domain (CDD) forms a dimer. This result, together with structural information obtained in the present NMR study, is consistent with the previous crystal structure and validates its relevance also in solution. Therefore, our findings suggest that dissociation of the CDD may be critically involved in cAMP-induced allosteric activation of CRP.
Collapse
Affiliation(s)
- Dae-Won Sim
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Jae Wan Choi
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Ji-Hun Kim
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Kyoung-Seok Ryu
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk, Korea
| | - Myeongkyu Kim
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Hee-Wan Yu
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Ku-Sung Jo
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| | - Eun-Hee Kim
- Protein Structure Group, Korea Basic Science Institute, Ochang, Chungbuk, Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi, Korea
- Research Institute of Pharmaceutical Science and Technology, College of Pharmacy, Ajou University, Suwon, Gyeonggi, Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young Pil Kim
- Department of Bio-Engineering, Life Science RD Center, Sinil Pharmaceutical Co., Seongnam, Gyeonggi, Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS) and College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk, Korea
| |
Collapse
|
12
|
Otomo A, Ishikawa H, Mizuno M, Kimura T, Kubo M, Shiro Y, Aono S, Mizutani Y. A Study of the Dynamics of the Heme Pocket and C-helix in CooA upon CO Dissociation Using Time-Resolved Visible and UV Resonance Raman Spectroscopy. J Phys Chem B 2016; 120:7836-43. [PMID: 27457181 DOI: 10.1021/acs.jpcb.6b05634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CooA is a CO-sensing transcriptional activator from the photosynthetic bacterium Rhodospirillum rubrum that binds CO at the heme iron. The heme iron in ferrous CooA has two axial ligands: His77 and Pro2. CO displaces Pro2 and induces a conformational change in CooA. The dissociation of CO and/or ligation of the Pro2 residue are believed to trigger structural changes in the protein. Visible time-resolved resonance Raman spectra obtained in this study indicated that the ν(Fe-His) mode, arising from the proximal His77-iron stretch, does not shift until 50 μs after the photodissociation of CO. Ligation of the Pro2 residue to the heme iron was observed around 50 μs after the photodissociation of CO, suggesting that the ν(Fe-His) band exhibits no shift until the ligation of Pro2. UV resonance Raman spectra suggested structural changes in the vicinity of Trp110 in the C-helix upon CO binding, but no or very small spectral changes in the time-resolved UV resonance Raman spectra were observed from 100 ns to 100 μs after the photodissociation of CO. These results strongly suggest that the conformational change of CooA is induced by the ligation of Pro2 to the heme iron.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tetsunari Kimura
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Minoru Kubo
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center , 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji, Okazaki 444-8786, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University , 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
13
|
Shimizu T, Huang D, Yan F, Stranava M, Bartosova M, Fojtíková V, Martínková M. Gaseous O2, NO, and CO in signal transduction: structure and function relationships of heme-based gas sensors and heme-redox sensors. Chem Rev 2015; 115:6491-533. [PMID: 26021768 DOI: 10.1021/acs.chemrev.5b00018] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Toru Shimizu
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
- §Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 983-8551, Japan
| | - Dongyang Huang
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fang Yan
- †Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Martin Stranava
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Martina Bartosova
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Veronika Fojtíková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| | - Markéta Martínková
- ‡Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague 2 128 43, Czech Republic
| |
Collapse
|
14
|
Abstract
From the catalytic reactions that sustain the global oxygen, nitrogen, and carbon cycles to the stabilization of DNA processing proteins, transition metal ions and metallocofactors play key roles in biology. Although the exquisite interplay between metal ions and protein scaffolds has been studied extensively, the fact that the biological roles of the metals often stem from their placement in the interfaces between proteins and protein subunits is not always recognized. Interfacial metal ions stabilize permanent or transient protein-protein interactions, enable protein complexes involved in cellular signaling to adopt distinct conformations in response to environmental stimuli, and catalyze challenging chemical reactions that are uniquely performed by multisubunit protein complexes. This review provides a structural survey of transition metal ions and metallocofactors found in protein-protein interfaces, along with a series of selected examples that illustrate their diverse biological utility and significance.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; emails: , ,
| | | | | | | |
Collapse
|
15
|
Shearer J. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics. Acc Chem Res 2014; 47:2332-41. [PMID: 24825124 DOI: 10.1021/ar500060s] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel superoxide dismutase (NiSOD) is a nickel-containing metalloenzyme that catalyzes the disproportionation of superoxide through a ping-pong mechanism that relies on accessing reduced Ni(II) and oxidized Ni(III) oxidation states. NiSOD is the most recently discovered SOD. Unlike the other known SODs (MnSOD, FeSOD, and (CuZn)SOD), which utilize "typical" biological nitrogen and oxygen donors, NiSOD utilizes a rather unexpected ligand set. In the reduced Ni(II) oxidation state, NiSOD utilizes nitrogen ligands derived from the N-terminal amine and an amidate along with two cysteinates sulfur donors. These are unusual biological ligands, especially for an SOD: amine and amidate donors are underrepresented as biological ligands, whereas cysteinates are highly susceptible to oxidative damage. An axial histidine imidazole binds to nickel upon oxidation to Ni(III). This bond is long (2.3-2.6 Å) owing to a tight hydrogen-bonding network. All of the ligating residues to Ni(II) and Ni(III) are found within the first 6 residues from the NiSOD N-terminus. Thus, small nickel-containing metallopeptides derived from the first 6-12 residues of the NiSOD sequence can reproduce many of the properties of NiSOD itself. Using these nickel-containing metallopeptide-based NiSOD mimics, we have shown that the minimal sequence needed for nickel binding and reproduction of the structural, spectroscopic, and functional properties of NiSOD is H2N-HCXXPC. Insight into how NiSOD avoids oxidative damage has also been gained. Using small NiN2S2 complexes and metallopeptide-based mimics, it was shown that the unusual nitrogen donor atoms protect the cysteinates from oxidative damage (both one-electron oxidation and oxygen atom insertion reactions) by fine-tuning the electronic structure of the nickel center. Changing the nitrogen donor set to a bis-amidate or bis-amine nitrogen donor led to catalytically nonviable species owing to nickel-cysteinate bond oxidative damage. Only the amine/amidate nitrogen donor atoms within the NiSOD ligand set produce a catalytically viable species. These metallopeptide-based mimics have also hinted at the detailed mechanism of SOD catalysis by NiSOD. One such aspect is that the axial imidazole likely remains ligated to the Ni center under rapid catalytic conditions (i.e., high superoxide loads). This reduces the degree of structural rearrangement about the nickel center, leading to higher catalytic rates. Metallopeptide-based mimics have also shown that, although an axial ligand to Ni(III) is required for catalysis, the rates are highest when this is a weak interaction, suggesting a reason for the long axial His-Ni(III) bond found in NiSOD. These mimics have also suggested a surprising mechanistic insight: O2(-) reduction via a "H(•)" tunneling event from a R-S(H(+))-Ni(II) moiety to O2(-) is possible. The importance of this mechanism in NiSOD has not been verified.
Collapse
Affiliation(s)
- Jason Shearer
- Department
of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
16
|
Linder D, Silvernail NJ, Barabanschikov A, Zhao J, Alp EE, Sturhahn W, Sage JT, Scheidt WR, Rodgers KR. The diagnostic vibrational signature of pentacoordination in heme carbonyls. J Am Chem Soc 2014; 136:9818-21. [PMID: 24950373 PMCID: PMC4120987 DOI: 10.1021/ja503191z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 11/28/2022]
Abstract
Heme-carbonyl complexes are widely exploited for the insight they provide into the structural basis of function in heme-based proteins, by revealing the nature of their bonded and nonbonded interactions with the protein. This report presents two novel results which clearly establish a FeCO vibrational signature for crystallographically verified pentacoordination. First, anisotropy in the NRVS density of states for ν(Fe-C) and δ(FeCO) in oriented single crystals of [Fe(OEP)(CO)] clearly reveals that the Fe-C stretch occurs at higher frequency than the FeCO bend and considerably higher than any previously reported heme carbonyl. Second, DFT calculations on a series of heme carbonyls reveal that the frequency crossover occurs near the weak trans O atom donor, furan. As ν(Fe-C) occurs at lower frequencies than δ(FeCO) in all heme protein carbonyls reported to date, the results reported herein suggest that they are all hexacoordinate.
Collapse
Affiliation(s)
- Douglas
P. Linder
- Department
of Chemistry and Biochemistry, North Dakota
State University, Fargo, North Dakota 58105, United States
| | - Nathan J. Silvernail
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | - Jiyong Zhao
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - E. Ercan Alp
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Wolfgang Sturhahn
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - J. Timothy Sage
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - W. Robert Scheidt
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kenton R. Rodgers
- Department
of Chemistry and Biochemistry, North Dakota
State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
17
|
Seok SH, Im H, Won HS, Seo MD, Lee YS, Yoon HJ, Cha MJ, Park JY, Lee BJ. Structures of inactive CRP species reveal the atomic details of the allosteric transition that discriminates cyclic nucleotide second messengers. ACTA ACUST UNITED AC 2014; 70:1726-42. [PMID: 24914983 DOI: 10.1107/s139900471400724x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/01/2014] [Indexed: 11/10/2022]
Abstract
The prokaryotic global transcription factor CRP has been considered to be an ideal model for in-depth study of both the allostery of the protein and the differential utilization of the homologous cyclic nucleotide second messengers cAMP and cGMP. Here, atomic details from the crystal structures of two inactive CRP species, an apo form and a cGMP-bound form, in comparison with a known active conformation, the cAMP-CRP complex, provide macroscopic and microscopic insights into CRP allostery, which is coupled to specific discrimination between the two effectors. The cAMP-induced conformational transition, including dynamic fluctuations, can be driven by the fundamental folding forces that cause water-soluble globular proteins to construct an optimized hydrophobic core, including secondary-structure formation. The observed conformational asymmetries underlie a negative cooperativity in the sequential binding of cyclic nucleotides and a stepwise manner of binding with discrimination between the effector molecules. Additionally, the finding that cGMP, which is specifically recognized in a syn conformation, induces an inhibitory conformational change, rather than a null effect, on CRP supports the intriguing possibility that cGMP signalling could be widely utilized in prokaryotes, including in aggressive inhibition of CRP-like proteins.
Collapse
Affiliation(s)
- Seung-Hyeon Seok
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hookang Im
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, RIBHS and RIID, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Min-Duk Seo
- College of Pharmacy, Ajou University, Suwon, Kyeonggi 443-749, Republic of Korea
| | - Yoo-Sup Lee
- Department of Biotechnology, RIBHS and RIID, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Jeong Cha
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jin-Young Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
18
|
Abstract
The haem-based sensors are chimeric multi-domain proteins responsible for the cellular adaptive responses to environmental changes. The signal transduction is mediated by the sensing capability of the haem-binding domain, which transmits a usable signal to the cognate transmitter domain, responsible for providing the adequate answer. Four major families of haem-based sensors can be recognized, depending on the nature of the haem-binding domain: (i) the haem-binding PAS domain, (ii) the CO-sensitive carbon monoxide oxidation activator, (iii) the haem NO-binding domain, and (iv) the globin-coupled sensors. The functional classification of the haem-binding sensors is based on the activity of the transmitter domain and, traditionally, comprises: (i) sensors with aerotactic function; (ii) sensors with gene-regulating function; and (iii) sensors with unknown function. We have implemented this classification with newly identified proteins, that is, the Streptomyces avermitilis and Frankia sp. that present a C-terminal-truncated globin fused to an N-terminal cofactor-free monooxygenase, the structural-related class of non-haem globins in Bacillus subtilis, Moorella thermoacetica, and Bacillus anthracis, and a haemerythrin-coupled diguanylate cyclase in Vibrio cholerae. This review summarizes the structures, the functions, and the structure-function relationships known to date on this broad protein family. We also propose unresolved questions and new possible research approaches.
Collapse
|
19
|
Martínková M, Kitanishi K, Shimizu T. Heme-based globin-coupled oxygen sensors: linking oxygen binding to functional regulation of diguanylate cyclase, histidine kinase, and methyl-accepting chemotaxis. J Biol Chem 2013; 288:27702-11. [PMID: 23928310 DOI: 10.1074/jbc.r113.473249] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An emerging class of novel heme-based oxygen sensors containing a globin fold binds and senses environmental O2 via a heme iron complex. Structure-function relationships of oxygen sensors containing a heme-bound globin fold are different from those containing heme-bound PAS and GAF folds. It is thus worth reconsidering from an evolutionary perspective how heme-bound proteins with a globin fold similar to that of hemoglobin and myoglobin could act as O2 sensors. Here, we summarize the molecular mechanisms of heme-based oxygen sensors containing a globin fold in an effort to shed light on the O2-sensing properties and O2-stimulated catalytic enhancement observed for these proteins.
Collapse
Affiliation(s)
- Markéta Martínková
- From the Department of Biochemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | | | | |
Collapse
|
20
|
Lin YW, Wang J. Structure and function of heme proteins in non-native states: a mini-review. J Inorg Biochem 2013; 129:162-71. [PMID: 23916118 DOI: 10.1016/j.jinorgbio.2013.07.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/12/2022]
Abstract
Heme proteins perform various biological functions ranging from electron transfer, oxygen binding and transport, catalysis, to signaling. Although adopting proper native states is very important for these functions, progresses in representative heme proteins, including cytochrome c (cyt c), cytochrome b5 (cyt b5), myoglobin (Mb), neuroglobin (Ngb), cytochrome P450 (CYP) and heme-based sensor proteins such as CO sensor CooA, showed that various native functions, or new functions evolved, are also closely associated with non-native states. The structure and function relationship of heme proteins in non-native states is thus as important as that in native states for elucidating the precise roles of heme proteins in biological systems.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | | |
Collapse
|
21
|
Liebl U, Lambry JC, Vos MH. Primary processes in heme-based sensor proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1684-92. [PMID: 23485911 DOI: 10.1016/j.bbapap.2013.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/08/2013] [Accepted: 02/16/2013] [Indexed: 12/22/2022]
Abstract
A wide and still rapidly increasing range of heme-based sensor proteins has been discovered over the last two decades. At the molecular level, these proteins function as bistable switches in which the catalytic activity of an enzymatic domain is altered mostly by binding or dissociation of small gaseous ligands (O2, NO or CO) to the heme in a sensor domain. The initial "signal" at the heme level is subsequently transmitted within the protein to the catalytic site, ultimately leading to adapted expression levels of specific proteins. Making use of the photolability of the heme-ligand bond that mimics thermal dissociation, early processes in this intra-protein signaling pathway can be followed using ultrafast optical spectroscopic techniques; they also occur on timescales accessible to molecular dynamics simulations. Experimental studies performed over the last decade on proteins including the sensors FixL (O2), CooA (CO) and soluble guanylate cyclase (NO) are reviewed with an emphasis on emerging general mechanisms. After heme-ligand bond breaking, the ligand can escape from the heme pocket and eventually from the protein, or rebind directly to the heme. Remarkably, in all sensor proteins the rebinding, specifically of the sensed ligand, is highly efficient. This "ligand trap" property possibly provides means to smoothen the effects of fast environmental fluctuations on the switching frequency. For 6-coordinate proteins, where exchange between an internal heme-bound residue and external gaseous ligands occurs, the study of early processes starting from the unliganded form indicates that mobility of the internal ligand may facilitate signal transfer. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Ursula Liebl
- Laboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, Palaiseau, France
| | | | | |
Collapse
|
22
|
Aono S. The Dos family of globin-related sensors using PAS domains to accommodate haem acting as the active site for sensing external signals. Adv Microb Physiol 2013; 63:273-327. [PMID: 24054799 DOI: 10.1016/b978-0-12-407693-8.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sensor proteins play crucial roles in maintaining homeostasis of cells by sensing changes in extra- and intracellular chemical and physical conditions to trigger biological responses. It has recently become clear that gas molecules function as signalling molecules in these biological regulatory systems responsible for transcription, chemotaxis, synthesis/hydrolysis of nucleotide second messengers, and other complex physiological processes. Haem-containing sensor proteins are widely used to sense gas molecules because haem can bind gas molecules reversibly. Ligand binding to the haem in the sensor proteins triggers conformational changes around the haem, which results in their functional regulation. Spectroscopic and crystallographic studies are essential to understand how these sensor proteins function in these biological regulatory systems. In this chapter, I discuss structural and functional relationships of haem-containing PAS and PAS-related families of the sensor proteins.
Collapse
|
23
|
Ishida T, Aono S. A model theoretical study on ligand exchange reactions of CooA. Phys Chem Chem Phys 2013; 15:6139-48. [DOI: 10.1039/c3cp43253j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Karunakaran V, Benabbas A, Youn H, Champion PM. Vibrational coherence spectroscopy of the heme domain in the CO-sensing transcriptional activator CooA. J Am Chem Soc 2011; 133:18816-27. [PMID: 21961804 DOI: 10.1021/ja206152m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Femtosecond vibrational coherence spectroscopy was used to investigate the low-frequency vibrational dynamics of the heme in the carbon monoxide oxidation activator protein (CooA) from the thermophilic anaerobic bacterium Carboxydothermus hydrogenoformans (Ch-CooA). Low frequency vibrational modes are important because they are excited by the ambient thermal bath (k(B)T = 200 cm(-1)) and participate in thermally activated barrier crossing events. However, such modes are nearly impossible to detect in the aqueous phase using traditional spectroscopic methods. Here, we present the low frequency coherence spectra of the ferric, ferrous, and CO-bound forms of Ch-CooA in order to compare the protein-induced heme distortions in its active and inactive states. Distortions take place predominantly along the coordinates of low-frequency modes because of their weak force constants, and such distortions are reflected in the intensity of the vibrational coherence signals. A strong mode near ~90 cm(-1) in the ferrous form of Ch-CooA is suggested to contain a large component of heme ruffling, consistent with the imidazole-bound ferrous heme crystal structure, which shows a significant protein-induced heme distortion along this coordinate. A mode observed at ~228 cm(-1) in the six-coordinate ferrous state is proposed to be the ν(Fe-His) stretching vibration. The observation of the Fe-His mode indicates that photolysis of the N-terminal α-amino axial ligand takes place. This is followed by a rapid (~8.5 ps) transient absorption recovery, analogous to methionine rebinding in photolyzed ferrous cytochrome c. We have also studied CO photolysis in CooA, which revealed very strong photoproduct state coherent oscillations. The observation of heme-CO photoproduct oscillations is unusual because most other heme systems have CO rebinding kinetics that are too slow to make the measurement possible. The low frequency coherence spectrum of the CO-bound form of Ch-CooA shows a strong vibration at ~230 cm(-1) that is broadened and up-shifted compared to the ν(Fe-His) of Rr-CooA (216 cm(-1)). We propose that the stronger Fe-His bond is related to the enhanced thermal stability of Ch-CooA and that there is a smaller (time dependent) tilt of the histidine ring with respect to the heme plane in Ch-CooA. The appearance of strong modes at ~48 cm(-1) in both the ferrous and CO-bound forms of Ch-CooA is consistent with coupling of the heme doming distortion to the photolysis reaction in both samples. Upon CO binding and protein activation, a heme mode near 112 ± 5 cm(-1) disappears, probably indicating a decreased heme saddling distortion. This reflects changes in the heme environment and geometry that must be associated with the conformational transition activating the DNA-binding domain. Protein-specific DNA binding to the CO-bound form of Ch-CooA was also investigated, and although the CO rebinding kinetics are significantly perturbed, there are negligible changes in the low-frequency vibrational spectrum of the heme.
Collapse
Affiliation(s)
- Venugopal Karunakaran
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
25
|
Bender G, Pierce E, Hill JA, Darty JE, Ragsdale SW. Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics 2011; 3:797-815. [PMID: 21647480 PMCID: PMC3964926 DOI: 10.1039/c1mt00042j] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO(2), for harnessing 'green' energy and producing biofuels. One strategy is to convert CO(2) into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO(2) and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO(2), we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO(2) and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe(4)S(4) clusters, catalyzes the addition and elimination of CO(2) during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron-sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B(12) and a Fe(4)S(4) cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co(3+) intermediate. Studies of CO and CO(2) enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C-C and C-S bond formations.
Collapse
Affiliation(s)
- Güneş Bender
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Elizabeth Pierce
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Jeffrey A. Hill
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Joseph E. Darty
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| |
Collapse
|
26
|
Affiliation(s)
- Taku YAMASHITA
- Laboratory of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
27
|
Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proc Natl Acad Sci U S A 2009; 106:16604-9. [PMID: 19805344 DOI: 10.1073/pnas.0908380106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The binding of cAMP to the Escherichia coli catabolite gene activator protein (CAP) produces a conformational change that enables it to bind specific DNA sequences and regulate transcription, which it cannot do in the absence of the nucleotide. The crystal structures of the unliganded CAP containing a D138L mutation and the unliganded WT CAP were determined at 2.3 and 3.6 A resolution, respectively, and reveal that the two DNA binding domains have dimerized into one rigid body and their two DNA recognition helices become buried. The WT structure shows multiple orientations of this rigid body relative to the nucleotide binding domain supporting earlier biochemical data suggesting that the inactive form exists in an equilibrium among different conformations. Comparison of the structures of the liganded and unliganded CAP suggests that cAMP stabilizes the active DNA binding conformation of CAP through the interactions that the N(6) of the adenosine makes with the C-helices. These interactions are associated with the reorientation and elongation of the C-helices that precludes the formation of the inactive structure.
Collapse
|
28
|
Qin Y, Keenan C, Farrand SK. N- and C-terminal regions of the quorum-sensing activator TraR cooperate in interactions with the alpha and sigma-70 components of RNA polymerase. Mol Microbiol 2009; 74:330-46. [PMID: 19732344 DOI: 10.1111/j.1365-2958.2009.06865.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positive control (PC) mutants defining 20 residues of the quorum-sensing activator TraR were isolated that bind DNA but show defects in activating transcription from class I, class II or both types of promoters. These PC residues, located in both the N- and C-terminal regions, combine to form three patches, one on the top (II) and two near the DNA binding domain on both lateral faces of the dimer (I and III). Patches I and II, but not patch III, involve residues from both protomers and are essential for activation. TraR-mediated activation in Escherichia coli requires expression of the alpha-subunit of Agrobacterium (alpha(At)). We report that TraR also activates a class II promoter in E. coli when coexpressed with sigma(70)(At). Analyses in E. coli expressing alpha(At), sigma(70)(At) or both subunits indicate that most of the PC residues are important for interactions with alpha(At) and that these interactions are predominant for activation of class II promoters. Using the E. coli system we identified nine residues in the C-terminal domain of alpha(At) that are required for stimulating TraR-mediated activation. We conclude that N- and C-terminal residues of TraR from both protomers cooperate to define regions of the protein important for interactions with RNAP.
Collapse
Affiliation(s)
- Yinping Qin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
29
|
Lee AJ, Clark RW, Youn H, Ponter S, Burstyn JN. Guanidine hydrochloride-induced unfolding of the three heme coordination states of the CO-sensing transcription factor, CooA. Biochemistry 2009; 48:6585-97. [PMID: 19594171 DOI: 10.1021/bi801827j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CooA is a heme-dependent CO-sensing transcription factor that has three observable heme coordination states. There is some evidence that each CooA heme state has a distinct protein conformation; the goal of this study was to characterize these conformations by measuring their structural stabilities through guanidine hydrochloride (GuHCl) denaturation. By studying the denaturation processes of the Fe(III) state of WT CooA and several variants, we were able to characterize independent unfolding processes for each domain of CooA. This information was used to compare the unfolding profiles of various CooA heme activation states [Fe(III), Fe(II), and Fe(II)-CO] to show that the heme coordination state changes the stability of the effector binding domain. A mechanism consistent with the data predicts that all CooA coordination states and variants undergo unfolding of the DNA-binding domain between 2 and 3 M GuHCl with a free energy of unfolding of approximately 17 kJ/mol, while unfolding of the heme domain is variable and dependent on the heme coordination state. The findings support a model in which changes in heme ligation alter the structural stability of the heme domain and dimer interface but do not alter the stability of the DNA-binding domain. These studies provide evidence that the domains of transcription factors are modular and that allosteric signaling occurs through changes in the relative positions of the protein domains without affecting the structure of the DNA-binding region.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
30
|
Structural overview on the allosteric activation of cyclic AMP receptor protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1299-308. [PMID: 19439203 DOI: 10.1016/j.bbapap.2009.04.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 11/23/2022]
Abstract
Cyclic AMP receptor protein (CRP) is a prokaryotic global transcription regulator that controls the expression of nearly 200 genes. The protein, allosterically activated by cAMP binding, binds to DNA and interacts with RNA polymerase. Current understanding on the allosteric process of the Escherichia coli CRP activation can be summarized into a rigid-body movement that involves subunit realignment and domain rearrangement. The main consequence of that overall transition is protrusion and adjustment of F-helices that recognize specific DNA sites. Although physicochemical and structural studies during the past decades have contributed to a comprehensive understanding of the CRP allostery, a paucity of structural information about the cAMP-free form (apo-CRP) has precluded a definite elucidation of the allosterism. In this respect, recent achievements of structures on other CRP-family proteins provide useful information to fill in the details of the allosteric transition of CRP. Thus, in this paper, accomplishments of CRP-family structures are summarized and inspected comparatively with new findings. This review not only provides a structural overview on the allosteric conformational change of CRP but also suggests a thoughtful discussion about unsolved issues or conflicting arguments. Solving those issues and the apo-CRP structure would enable us to finally define the CRP allostery.
Collapse
|
31
|
Techtmann SM, Colman AS, Robb FT. 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia. Environ Microbiol 2009; 11:1027-37. [PMID: 19239487 DOI: 10.1111/j.1462-2920.2009.01865.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon monoxide (CO), while a potent toxin, is also a key intermediate in major autotrophic pathways such as methanogenesis and acetogenesis. The ability of purple sulfur bacteria to use CO as an energy source was first described by Uffen in 1976. The prototype extremely thermophilic carboxydotroph Carboxydothermus hydrogenoformans was described in 1991. Eight bacteria and one archaeon that utilize CO have since been isolated and described from diverse geothermal environments. They derive energy from the oxidation of CO with water to form CO(2) and H(2). Most of these isolates thrive with headspace CO partial pressures around 1 atm, which is grossly elevated relative to CO concentrations in geothermal effluents. To account for this, we suggest that under consortial growth conditions the carboxydotrophs occupy microniches in which biogenic CO accumulates locally to high concentrations. CO oxidizers dissipate these potentially toxic CO hot spots with the production of H(2), CO(2) and acetate whose subsequent oxidation fuels other thermophiles. The identification of genes related to anaerobic CO oxidation in many metagenomic databases attests to widespread distribution of carboxydotrophs. Current evidence suggests that CO-oxidizing bacteria and archaea hold a vital niche in thermophilic ecosystems.
Collapse
Affiliation(s)
- Stephen M Techtmann
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA
| | | | | |
Collapse
|
32
|
Abstract
Diatomic gas molecules such as O2, CO and NO act as signaling molecules in many biological systems, where metal-containing gas sensor proteins sense their effector gas molecules by using prosthetic groups such as heme, iron-sulfur clusters and non-heme iron as the active center for gas sensing. When the gas sensor proteins sense their effector gas molecules, intramolecular and intermolecular signal transductions take place to regulate many physiological functions including gene expression, aerotaxis, and change in metabolic pathways, etc. The metal-containing prosthetic groups in these sensor proteins play a crucial role for selective sensing of their effectors. In this perspective, I will discuss the structure and function of some O2-, CO- and NO-sensor proteins, especially focussing on the structural, biochemical and biophysical properties of the active centers of these sensor proteins.
Collapse
Affiliation(s)
- Shigetoshi Aono
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Japan.
| |
Collapse
|
33
|
Sook BR, Block DR, Sumithran S, Montañez GE, Rodgers KR, Dawson JH, Eichenbaum Z, Dixon DW. Characterization of SiaA, a Streptococcal Heme-Binding Protein Associated with a Heme ABC Transport System. Biochemistry 2008; 47:2678-88. [DOI: 10.1021/bi701604y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brian R. Sook
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Darci R. Block
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Suganya Sumithran
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Griselle E. Montañez
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Kenton R. Rodgers
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - John H. Dawson
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Zehava Eichenbaum
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| | - Dabney W. Dixon
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098, Department of Chemistry, Biochemistry, and Molecular Biology, North Dakota State University, Fargo, North Dakota 58105-5516, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and Department of Biology, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
34
|
Ibrahim M, Kuchinskas M, Youn H, Kerby RL, Roberts GP, Poulos TL, Spiro TG. Mechanism of the CO-sensing heme protein CooA: new insights from the truncated heme domain and UVRR spectroscopy. J Inorg Biochem 2007; 101:1776-85. [PMID: 17720248 PMCID: PMC2096632 DOI: 10.1016/j.jinorgbio.2007.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/05/2007] [Accepted: 07/05/2007] [Indexed: 11/27/2022]
Abstract
The bacterial CO-sensing heme protein CooA activates expression of genes whose products perform CO-metabolism by binding its target DNA in response to CO binding. The required conformational change has been proposed to result from CO-induced displacement of the heme and of the adjacent C-helix, which connects the sensory and DNA-binding domains. Support for this proposal comes from UV Resonance Raman (UVRR) spectroscopy, which reveals a more hydrophobic environment for the C-helix residue Trp110 when CO binds. In addition, we find a tyrosine UVRR response, which is attributable to weakening of a Tyr55-Glu83 H-bond that anchors the proximal side of the heme. Both Trp and Tyr responses are augmented in the heme domain when the DNA-binding domain has been removed, apparently reflecting loss of the inter-domain restraint. This augmentation is abolished by a Glu83Gln substitution, which weakens the anchoring H-bond. The CO recombination rate following photolysis of the CO adduct is similar for truncated and full-length protein, though truncation does increase the rate of CO association in the absence of photolysis; together these data indicate that truncation causes a faster dissociation of the endogenous Pro2 ligand. These findings are discussed in the light of structural evidence that the N-terminal tail, once released from the heme, selects the proper orientation of the DNA-binding domain, via docking interactions.
Collapse
Affiliation(s)
- Mohammed Ibrahim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Michael Kuchinskas
- Department of Molecular Biology & Biochemistry, University of California - Irvine, Irvine, California 92697-3900
| | - Hwan Youn
- Department of Bacterology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Robert L. Kerby
- Department of Bacterology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Gary P. Roberts
- Department of Bacterology, University of Wisconsin - Madison, Madison, Wisconsin 53706
| | - Thomas L. Poulos
- Department of Molecular Biology & Biochemistry, University of California - Irvine, Irvine, California 92697-3900
| | - Thomas G. Spiro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|