1
|
Ali T, Klein AN, Vu A, Arifin MI, Hannaoui S, Gilch S. Peptide aptamer targeting Aβ-PrP-Fyn axis reduces Alzheimer's disease pathologies in 5XFAD transgenic mouse model. Cell Mol Life Sci 2023; 80:139. [PMID: 37149826 PMCID: PMC10164677 DOI: 10.1007/s00018-023-04785-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AβO), a main neurotoxic species mediating AD pathology. The interaction of AβO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AβO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AβO with PrPC and reduces AβO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AβO levels and Aβ plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AβO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AβO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.
Collapse
Affiliation(s)
- Tahir Ali
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Antonia N Klein
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alex Vu
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Maria I Arifin
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Samia Hannaoui
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
The Role of Vesicle Trafficking Defects in the Pathogenesis of Prion and Prion-Like Disorders. Int J Mol Sci 2020; 21:ijms21197016. [PMID: 32977678 PMCID: PMC7582986 DOI: 10.3390/ijms21197016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases are fatal and transmissible neurodegenerative diseases in which the cellular form of the prion protein ‘PrPc’, misfolds into an infectious and aggregation prone isoform termed PrPSc, which is the primary component of prions. Many neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases, such as Huntington’s disease, are considered prion-like disorders because of the common characteristics in the propagation and spreading of misfolded proteins that they share with the prion diseases. Unlike prion diseases, these are non-infectious outside experimental settings. Many vesicular trafficking impairments, which are observed in prion and prion-like disorders, favor the accumulation of the pathogenic amyloid aggregates. In addition, many of the vesicular trafficking impairments that arise in these diseases, turn out to be further aggravating factors. This review offers an insight into the currently known vesicular trafficking defects in these neurodegenerative diseases and their implications on disease progression. These findings suggest that these impaired trafficking pathways may represent similar therapeutic targets in these classes of neurodegenerative disorders.
Collapse
|
3
|
Colini Baldeschi A, Vanni S, Zattoni M, Legname G. Novel regulators of PrP C expression as potential therapeutic targets in prion diseases. Expert Opin Ther Targets 2020; 24:759-776. [PMID: 32631090 DOI: 10.1080/14728222.2020.1782384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prion diseases are rare and fatal neurodegenerative disorders. The key molecular event in these disorders is the misfolding of the physiological form of the cellular prion protein, PrPC, leading to the accumulation of a pathological isoform, PrPSc, with unique features. Both isoforms share the same primary sequence, lacking detectable differences in posttranslational modification, a major hurdle for their biochemical or biophysical independent characterization. The mechanism underlying the conversion of PrPC to PrPSc is not completely understood, so finding an effective therapy to cure prion disorders is extremely challenging. AREAS COVERED This review discusses the strategies for decreasing prion replication and throws a spotlight on the relevance of PrPC in the prion accumulation process. EXPERT OPINION PrPC is the key substrate for prion pathology; hence, the most promising therapeutic approach appears to be the targeting of PrPC to block the production of the infectious isoform. The use of RNA interference and antisense oligonucleotide technologies may offer opportunities for treatment because of their success in clinical trials for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio E La Cura Dei Tumori (IRST) IRCCS , Meldola, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
4
|
Castle AR, Daude N, Gilch S, Westaway D. Application of high-throughput, capillary-based Western analysis to modulated cleavage of the cellular prion protein. J Biol Chem 2018; 294:2642-2650. [PMID: 30578300 DOI: 10.1074/jbc.ra118.006367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
The cellular prion protein (PrPC) is a glycoprotein that is processed through several proteolytic pathways. Modulators of PrPC proteolysis are of interest because full-length PrPC and its cleavage fragments differ in their propensity to misfold, a process that plays a key role in the pathogenesis of prion diseases. PrPC may also act as a receptor for neurotoxic, oligomeric species of other proteins that are linked to neurodegeneration. Importantly, the PrPC C-terminal fragment C1 does not contain the reported binding sites for these oligomers. Western blotting would be a simple end point detection method for cell-based screening of compound libraries for effects on PrPC proteolysis or overall expression level. However, traditional Western blotting methods provide unreliable quantification and have only low throughput. Consequently, we explored capillary-based Western technology as a potential alternative; we believe that this study is the first to report analysis of PrPC using such an approach. We successfully optimized the detection and quantification of the deglycosylated forms of full-length PrPC and its C-terminal cleavage fragments C1 and C2, including simultaneous quantification of β-tubulin levels to control for loading error. We also developed and tested a method for performing all cell culture, lysis, and deglycosylation steps in 96-well microplates prior to capillary Western analysis. These advances represent steps along the way to the development of an automated, high-throughput screening pipeline to identify modulators of PrPC expression levels or proteolysis.
Collapse
Affiliation(s)
- Andrew R Castle
- From the Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Nathalie Daude
- From the Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Calgary Prion Research Unit, Faculty of Veterinary Medicine and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada, and
| | - David Westaway
- From the Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada .,Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
5
|
Interaction of Peptide Aptamers with Prion Protein Central Domain Promotes α-Cleavage of PrP C. Mol Neurobiol 2018; 55:7758-7774. [PMID: 29460268 PMCID: PMC6132731 DOI: 10.1007/s12035-018-0944-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/31/2018] [Indexed: 11/03/2022]
Abstract
Prion diseases are infectious and fatal neurodegenerative diseases affecting humans and animals. Transmission is possible within and between species with zoonotic potential. Currently, no prophylaxis or treatment exists. Prions are composed of the misfolded isoform PrPSc of the cellular prion protein PrPC. Expression of PrPC is a prerequisite for prion infection, and conformational conversion of PrPC is induced upon its direct interaction with PrPSc. Inhibition of this interaction can abrogate prion propagation, and we have previously established peptide aptamers (PAs) binding to PrPC as new anti-prion compounds. Here, we mapped the interaction site of PA8 in PrP and modeled the complex in silico to design targeted mutations in PA8 which presumably enhance binding properties. Using these PA8 variants, we could improve PA-mediated inhibition of PrPSc replication and de novo infection of neuronal cells. Furthermore, we demonstrate that binding of PA8 and its variants increases PrPC α-cleavage and interferes with its internalization. This gives rise to high levels of the membrane-anchored PrP-C1 fragment, a transdominant negative inhibitor of prion replication. PA8 and its variants interact with PrPC at its central and most highly conserved domain, a region which is crucial for prion conversion and facilitates toxic signaling of Aβ oligomers characteristic for Alzheimer's disease. Our strategy allows for the first time to induce α-cleavage, which occurs within this central domain, independent of targeting the responsible protease. Therefore, interaction of PAs with PrPC and enhancement of α-cleavage represent mechanisms that can be beneficial for the treatment of prion and other neurodegenerative diseases.
Collapse
|
6
|
Klein AN, Corda E, Gilch S. Peptide aptamer-mediated modulation of prion protein α-cleavage as treatment strategy for prion and other neurodegenerative diseases. Neural Regen Res 2018; 13:2108-2110. [PMID: 30323138 PMCID: PMC6199927 DOI: 10.4103/1673-5374.241460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Antonia N Klein
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine; Calgary Prion Research Unit; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Erica Corda
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine; Calgary Prion Research Unit; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine; Calgary Prion Research Unit; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Jung IY, Lee EH, Suh AY, Lee SJ, Lee H. Oligonucleotide-based biosensors for in vitro diagnostics and environmental hazard detection. Anal Bioanal Chem 2016; 408:2383-406. [PMID: 26781106 DOI: 10.1007/s00216-015-9212-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
Oligonucleotide-based biosensors have drawn much attention because of their broad applications in in vitro diagnostics and environmental hazard detection. They are particularly of interest to many researchers because of their high specificity as well as excellent sensitivity. Recently, oligonucleotide-based biosensors have been used to achieve not only genetic detection of targets but also the detection of small molecules, peptides, and proteins. This has further broadened the applications of these sensors in the medical and health care industry. In this review, we highlight various examples of oligonucleotide-based biosensors for the detection of diseases, drugs, and environmentally hazardous chemicals. Each example is provided with detailed schematics of the detection mechanism in addition to the supporting experimental results. Furthermore, future perspectives and new challenges in oligonucleotide-based biosensors are discussed.
Collapse
Affiliation(s)
- Il Young Jung
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Hee Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ah Young Suh
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
8
|
Peptide Scaffolds: Flexible Molecular Structures With Diverse Therapeutic Potentials. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-011-9286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Gilch S, Schätzl HM. Aptamers against prion proteins and prions. Cell Mol Life Sci 2009; 66:2445-55. [PMID: 19396399 PMCID: PMC11115877 DOI: 10.1007/s00018-009-0031-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/19/2022]
Abstract
Prion diseases are fatal neurodegenerative and infectious disorders of humans and animals, characterized by structural transition of the host-encoded cellular prion protein (PrP(c)) into the aberrantly folded pathologic isoform PrP(Sc). RNA, DNA or peptide aptamers are classes of molecules which can be selected from complex combinatorial libraries for high affinity and specific binding to prion proteins and which might therefore be useful in diagnosis and therapy of prion diseases. Nucleic acid aptamers, which can be chemically synthesized, stabilized and immobilized, appear more suitable for diagnostic purposes, allowing use of PrP(Sc) as selection target. Peptide aptamers facilitate appropriate intracellular expression, targeting and re-routing without losing their binding properties to PrP, a requirement for potential therapeutic gene transfer experiments in vivo. Elucidation of structural properties of peptide aptamers might be used as basis for rational drug design, providing another attractive application of peptide aptamers in the search for effective anti-prion strategies.
Collapse
Affiliation(s)
- Sabine Gilch
- Institute of Virology, Technische Universität München, Trogerstr. 30, 81675 Munich, Germany
| | - Hermann M. Schätzl
- Institute of Virology, Technische Universität München, Trogerstr. 30, 81675 Munich, Germany
| |
Collapse
|
10
|
Abstract
The transmissible spongiform encephalopathies are rapidly progressive and invariably fatal neurodegenerative diseases for which there are no proven efficacious treatments. Many approaches have been undertaken to find ways to prevent, halt, or reverse these prion diseases, with limited success to date. However, as both our understanding of pathogenesis and our ability to detect early disease increases, so do our potential therapeutic targets and our chances of finding effective drugs. There is increasing pressure to find effective decontaminants for blood supplies, as variant Creutzfeldt Jakob Disease (vCJD) has been shown to be transmissible by blood, and to find non-toxic preventative therapies, with ongoing cases of Bovine Spongiform Encephalopathy (BSE) and the spread of Chronic Wasting Disease (CWD). Within the realm of chemotherapeutic approaches, much research has focussed on blocking the conversion of the normal form of prion protein (PrP(c)) to its abnormal counterpart (PrP(res)). Structurally, these chemotherapeutic agents are often polyanionic or polycyclic and may directly bind PrP(c) or PrP(res), or act by redistributing, sequestering, or down-regulating PrP(c), thus preventing its conversion. There are also some polycationic compounds which proport to enhance the clearance of PrP(res). Other targets include accessory molecules such as the laminin receptor precursor which influences conversion, or cell signalling molecules which may be required for pathogenesis. Of recent interest are the possible neuroprotective effects of some drugs. Importantly, there is evidence that combining compounds may provide synergistic responses. This review provides an update on current testing methods, therapeutic targets, and promising candidates for chemical-based therapy.
Collapse
Affiliation(s)
- Valerie L Sim
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | |
Collapse
|
11
|
Gilch S, Krammer C, Schätzl HM. Targeting prion proteins in neurodegenerative disease. Expert Opin Biol Ther 2008; 8:923-40. [PMID: 18549323 DOI: 10.1517/14712598.8.7.923] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Spongiform neurodegeneration is the pathological hallmark of individuals suffering from prion disease. These disorders, whose manifestation is sporadic, familial or acquired by infection, are caused by accumulation of the aberrantly folded isoform of the cellular prion protein (PrP(c)), termed PrP(Sc). Although usually rare, prion disorders are inevitably fatal and transferrable by infection. OBJECTIVE Pathology is restricted to the central nervous system and premortem diagnosis is usually not possible. Yet, promising approaches towards developing therapeutic regimens have been made recently. METHODS The biology of prion proteins and current models of neurotoxicity are discussed and prophylactic and therapeutic concepts are introduced. RESULTS/CONCLUSIONS Although various promising drug candidates with antiprion activity have been identified, this proof-of-concept cannot be transferred into translational medicine yet.
Collapse
Affiliation(s)
- Sabine Gilch
- Technische Universität München, Institute of Virology, Prion Research Group, Trogerstreet 30, 81675 Munich, Germany
| | | | | |
Collapse
|
12
|
The potential of intracellular antibodies for therapeutic targeting of protein-misfolding diseases. Trends Mol Med 2008; 14:373-80. [DOI: 10.1016/j.molmed.2008.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/04/2008] [Accepted: 07/04/2008] [Indexed: 12/25/2022]
|
13
|
Tribouillard-Tanvier D, Dos Reis S, Gug F, Voisset C, Béringue V, Sabate R, Kikovska E, Talarek N, Bach S, Huang C, Desban N, Saupe SJ, Supattapone S, Thuret JY, Chédin S, Vilette D, Galons H, Sanyal S, Blondel M. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PLoS One 2008; 3:e2174. [PMID: 18478094 PMCID: PMC2374897 DOI: 10.1371/journal.pone.0002174] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/04/2008] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. METHODOLOGY/PRINCIPAL FINDINGS Here we report the identification of cellular targets of these drugs. Using affinity chromatography matrices for both drugs, we demonstrate an RNA-dependent interaction of 6AP and GA with the ribosome. These specific interactions have no effect on the peptidyl transferase activity of the ribosome or on global translation. In contrast, 6AP and GA specifically inhibit the ribosomal RNA-mediated protein folding activity of the ribosome. CONCLUSION/SIGNIFICANCE 6AP and GA are therefore the first compounds to selectively inhibit the protein folding activity of the ribosome. They thus constitute precious tools to study the yet largely unexplored biological role of this protein folding activity.
Collapse
Affiliation(s)
- Déborah Tribouillard-Tanvier
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- CNRS UPS2682, Station Biologique, Protein Phosphorylation & Disease Laboratory, Roscoff, France
| | - Suzana Dos Reis
- Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Fabienne Gug
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Cécile Voisset
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Raimon Sabate
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR CNRS 5095, Université de Bordeaux 2, Bordeaux, France
| | - Ema Kikovska
- Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nicolas Talarek
- Department of Medicine/Biochemistry, University of Fribourg, Fribourg, Switzerland
| | - Stéphane Bach
- CNRS UPS2682, Station Biologique, Protein Phosphorylation & Disease Laboratory, Roscoff, France
| | - Chenhui Huang
- Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Nathalie Desban
- CNRS UPS2682, Station Biologique, Protein Phosphorylation & Disease Laboratory, Roscoff, France
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR CNRS 5095, Université de Bordeaux 2, Bordeaux, France
| | - Surachai Supattapone
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | | | | | - Didier Vilette
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hervé Galons
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Suparna Sanyal
- Institute of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marc Blondel
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
14
|
Tribouillard-Tanvier D, Béringue V, Desban N, Gug F, Bach S, Voisset C, Galons H, Laude H, Vilette D, Blondel M. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 2008; 3:e1981. [PMID: 18431471 PMCID: PMC2291559 DOI: 10.1371/journal.pone.0001981] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/10/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Prion-based diseases are incurable transmissible neurodegenerative disorders affecting animals and humans. METHODOLOGY/PRINCIPAL FINDINGS Here we report the discovery of the in vivo antiprion activity of Guanabenz (GA), an agonist of alpha2-adrenergic receptors routinely used in human medicine as an antihypertensive drug. We isolated GA in a screen for drugs active in vivo against two different yeast prions using a previously described yeast-based two steps assay. GA was then shown to promote ovine PrP(Sc) clearance in a cell-based assay. These effects are very specific as evidenced by the lack of activity of some GA analogues that we generated. GA antiprion activity does not involve its agonist activity on alpha2-adrenergic receptors as other chemically close anti-hypertensive agents possessing related mechanism of action were found inactive against prions. Finally, GA showed activity in a transgenic mouse-based in vivo assay for ovine prion propagation, prolonging slightly but significantly the survival of treated animals. CONCLUSION/SIGNIFICANCE GA thus adds to the short list of compounds active in vivo in animal models for the treatment of prion-based diseases. Because it has been administrated for many years to treat hypertension on a daily basis, without major side-effects, our results suggest that it could be evaluated in human as a potential treatment for prion-based diseases.
Collapse
Affiliation(s)
- Déborah Tribouillard-Tanvier
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Vincent Béringue
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Nathalie Desban
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Fabienne Gug
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Stéphane Bach
- CNRS UPS2682, Station Biologique, Protein Phosphorylation and Disease Laboratory, Place Georges Teissier, Roscoff, France
| | - Cécile Voisset
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Hervé Galons
- INSERM U648, Laboratoire de Chimie Organique 2, Université Paris Descartes, Paris, France
| | - Hubert Laude
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Didier Vilette
- Institut National de la Recherche Agronomique (INRA), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Marc Blondel
- INSERM U613, Brest, France
- Univ Brest, Faculté de Médecine et des Sciences de la Santé, UMR-S613, Brest, France
- Etablissement Français du Sang (EFS) Bretagne, Brest, France
- CHU Brest, Hop Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
15
|
Abstract
Peptide aptamers are combinatorial recognition proteins that were introduced more than ten years ago. They have since found many applications in fundamental and therapeutic research, including their recent use in microarrays to detect individual proteins from complex mixtures.
Collapse
Affiliation(s)
- Pierre Colas
- Station Biologique, CNRS, UPS 2682, Place Georges Teissier, 29280 Roscoff, France.
| |
Collapse
|
16
|
Löfgren K, Wahlström A, Lundberg P, Langel Ö, Gräslund A, Bedecs K. Antiprion properties of prion protein‐derived cell‐penetrating peptides. FASEB J 2008; 22:2177-84. [DOI: 10.1096/fj.07-099549] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kajsa Löfgren
- Department of Biochemistry and Biophysics The Arrhenius Laboratories Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Anna Wahlström
- Department of Biochemistry and Biophysics The Arrhenius Laboratories Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Pontus Lundberg
- Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Ölo Langel
- Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics The Arrhenius Laboratories Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| | - Katarina Bedecs
- Department of Biochemistry and Biophysics The Arrhenius Laboratories Department of Neurochemistry and NeurotoxicologyStockholm UniversityStockholmSweden
| |
Collapse
|