1
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
2
|
Jiang Y, Li F, Wu J, Shi Y, Gong Q. Structural insights into substrate selectivity of ribosomal RNA methyltransferase RlmCD. PLoS One 2017; 12:e0185226. [PMID: 28949991 PMCID: PMC5614603 DOI: 10.1371/journal.pone.0185226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/09/2017] [Indexed: 11/22/2022] Open
Abstract
RlmCD has recently been identified as the S-adenosyl methionine (SAM)-dependent methyltransferase responsible for the formation of m5U at U747 and U1939 of 23S ribosomal RNA in Streptococcus pneumoniae. In this research, we determine the high-resolution crystal structures of apo-form RlmCD and its complex with SAH. Using an in-vitro methyltransferase assay, we reveal the crucial residues for its catalytic functions. Furthermore, structural comparison between RlmCD and its structural homologue RumA, which only catalyzes the m5U1939 in Escherichia coli, implicates that a unique long linker in the central domain of RlmCD is the key factor in determining its substrate selectivity. Its significance in the enzyme activity of RlmCD is further confirmed by in-vitro methyltransferase assay.
Collapse
Affiliation(s)
- Yiyang Jiang
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Fudong Li
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jihui Wu
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunyu Shi
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingguo Gong
- Hefei National Laboratory For Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
3
|
Arsic B, Aguilar JA, Bryce RA, Barber J. Conformational study of tylosin A in water and full assignments of 1 H and 13 C spectra of tylosin A in D 2 O and tylosin B in CDCl 3. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:367-373. [PMID: 27711991 DOI: 10.1002/mrc.4537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Biljana Arsic
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Juan A Aguilar
- School of Chemistry, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Richard A Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| | - Jill Barber
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, M13 9PT, Manchester, UK
| |
Collapse
|
4
|
Liu YL, Li DF, Xu HP, Xiao M, Cheng JW, Zhang L, Xu ZP, Chen XX, Zhang G, Kudinha T, Kong F, Gong YP, Wang XY, Zhang YX, Wu HL, Xu YC. Use of next generation sequence to investigate potential novel macrolide resistance mechanisms in a population of Moraxella catarrhalis isolates. Sci Rep 2016; 6:35711. [PMID: 27774989 PMCID: PMC5075928 DOI: 10.1038/srep35711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Although previous studies have confirmed that 23S rRNA gene mutation could be responsible for most of macrolide resistance in M. catarrhalis, a recent study suggested otherwise. Next generation sequence based comparative genomics has revolutionized the mining of potential novel drug resistant mechanisms. In this study, two pairs of resistant and susceptible M. catarrhalis isolates with different multilocus sequence types, were investigated for potential differential genes or informative single nucleotide polymorphisms (SNPs). The identified genes and SNPs were evaluated in 188 clinical isolates. From initially 12 selected differential genes and 12 informative SNPs, 10 differential genes (mboIA, mcbC, mcbI, mboIB, MCR_1794, MCR_1795, lgt2B/C, dpnI, mcbB, and mcbA) and 6 SNPs (C619T of rumA, T140C of rplF, G643A of MCR_0020, T270G of MCR_1465, C1348A of copB, and G238A of rrmA) were identified as possibly linked to macrolide resistance in M. catarrhalis. Most of the identified differential genes and SNPs are related to methylation of ribosomal RNA (rRNA) or DNA, especially MCR_0020 and rrmA. Further studies are needed to determine the function and/or evolution process, of the identified genes or SNPs, to establish whether some novel or combined mechanisms are truly involved in M. catarrhalis macrolide resistance mechanism.
Collapse
Affiliation(s)
- Ya-Li Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Dong-Fang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - He-Ping Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Jing-Wei Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Li Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Zhi-Peng Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Xin-Xin Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, New South Wales 2687, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales 2145, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales 2145, Australia
| | - Yan-Ping Gong
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Xin-Ying Wang
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Yin-Xin Zhang
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Hong-Long Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| |
Collapse
|
5
|
Shoji T, Takaya A, Sato Y, Kimura S, Suzuki T, Yamamoto T. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility. Nucleic Acids Res 2015; 43:8964-72. [PMID: 26365244 PMCID: PMC4605293 DOI: 10.1093/nar/gkv609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Adenine at position 752 in a loop of helix 35 from positions 745 to 752 in domain II of 23S rRNA is involved in binding to the ribosome of telithromycin (TEL), a member of ketolides. Methylation of guanine at position 748 by the intrinsic methyltransferase RlmAII enhances binding of telithromycin (TEL) to A752 in Streptococcus pneumoniae. We have found that another intrinsic methylation of the adjacent uridine at position 747 enhances G748 methylation by RlmAII, rendering TEL susceptibility. U747 and another nucleotide, U1939, were methylated by the dual-specific methyltransferase RlmCD encoded by SP_1029 in S. pneumoniae. Inactivation of RlmCD reduced N1-methylated level of G748 by RlmAIIin vivo, leading to TEL resistance when the nucleotide A2058, located in domain V of 23S rRNA, was dimethylated by the dimethyltransferase Erm(B). In vitro methylation of rRNA showed that RlmAII activity was significantly enhanced by RlmCD-mediated pre-methylation of 23S rRNA. These results suggest that RlmCD-mediated U747 methylation promotes efficient G748 methylation by RlmAII, thereby facilitating TEL binding to the ribosome.
Collapse
Affiliation(s)
- Tatsuma Shoji
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Takaya
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yoshiharu Sato
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Satoshi Kimura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoko Yamamoto
- Department of Microbiology and Molecular Genetics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| |
Collapse
|
6
|
Eisenstein M, Ben-Shimon A, Frankenstein Z, Kowalsman N. CAPRI targets T29-T42: proving ground for new docking procedures. Proteins 2011; 78:3174-81. [PMID: 20607697 DOI: 10.1002/prot.22793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The critical assessment of protein interactions (CAPRI) experiment provides a unique opportunity for unbiased assessment of docking procedures. The recent CAPRI targets T29-T42 entailed docking of bound, unbound, and modeled structures, presenting a wide range of prediction difficulty. We submitted accurate predictions for targets T40, T41, and T42, a good prediction for T32 and acceptable predictions for T29 and T34. The accuracy of our docking results generally matched the prediction difficulty; hence, docking of modeled proteins produced less accurate results. However, there were interesting exceptions: an accurate prediction was submitted for the dimer of modeled tetratricopeptide repeat (T42) and only an acceptable prediction for the bound/unbound case T29. The ensembles of docking models produced in the scans included an acceptable or better prediction for every target. We show here that our recently developed postscan reevaluation procedure, which tests propensity and solvation measures of the whole interface and the interface core, successfully distinguished these predictions from false docking models. For enzyme-inhibitor targets, we show that the distance of the interface from the enzyme's centroid ranked high native like docking models. Also, for one case we demonstrate that docking of an ensemble of conformers produced by normal modes analysis can improve the accuracy of the prediction.
Collapse
Affiliation(s)
- Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
7
|
Abstract
In CAPRI rounds 13-19, we submitted models that are of acceptable or higher quality for 6 of the total of 13 targets. This success builds on our record in previous CAPRI rounds. The docking problem can be divided into two steps. In the first, translational/rotational and conformational space is searched to generate a pool of docked poses; the success of this search step is measured by whether near-native poses are included in the pool. In the second step, the pool is selected for near-native poses. In our previous assessment of CAPRI results, we suggested that the search problem is largely solved; a remaining problem is to select near-native poses. Our work in these new rounds of CAPRI was guided by this assessment. To solve the selection problem, we used an assortment of criteria on the interfaces of candidate poses. In one extreme, represented by T29, with very little known interface information, our criterion for top models was based on interface prediction. Poses in which the predicted interface residues occurred in interfaces were selected. Our model 1 for T29 was of medium quality. In the other extreme, represented by T40, with reliably known interface information, our selection was solely based on such information. Nine of the ten models submitted for T40 were of high (3 models), medium (4 models), and acceptable (2 models) quality. Our strategy of mixing predicted and known interface information appears to be widely applicable for the selection of near-native poses.
Collapse
Affiliation(s)
- Sanbo Qin
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
8
|
Hwang H, Vreven T, Pierce BG, Hung JH, Weng Z. Performance of ZDOCK and ZRANK in CAPRI rounds 13-19. Proteins 2010; 78:3104-10. [PMID: 20936681 PMCID: PMC3936321 DOI: 10.1002/prot.22764] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the performance of the ZDOCK and ZRANK algorithms in CAPRI rounds 13-19 and introduce a novel measure atom contact frequency (ACF). To compute ACF, we identify the residues that most often make contact with the binding partner in the complete set of ZDOCK predictions for each target. We used ACF to predict the interface of the proteins, which, in combination with the biological data available in the literature, is a valuable addition to our docking pipeline. Furthermore, we incorporated a straightforward and efficient clustering algorithm with two purposes: (1) to determine clusters of similar docking poses (corresponding to energy funnels) and (2) to remove redundancies from the final set of predictions. With these new developments, we achieved at least one acceptable prediction for targets 29 and 36, at least one medium-quality prediction for targets 41 and 42, and at least one high-quality prediction for targets 37 and 40; thus, we succeeded for six out of a total of 12 targets.
Collapse
Affiliation(s)
- Howook Hwang
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
9
|
Lebars I, Legrand P, Aimé A, Pinaud N, Fribourg S, Di Primo C. Exploring TAR-RNA aptamer loop-loop interaction by X-ray crystallography, UV spectroscopy and surface plasmon resonance. Nucleic Acids Res 2008; 36:7146-56. [PMID: 18996893 PMCID: PMC2602780 DOI: 10.1093/nar/gkn831] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In HIV-1, trans-activation of transcription of the viral genome is regulated by an imperfect hairpin, the trans-activating responsive (TAR) RNA element, located at the 5′ untranslated end of all viral transcripts. TAR acts as a binding site for viral and cellular proteins. In an attempt to identify RNA ligands that would interfere with the virus life-cycle by interacting with TAR, an in vitro selection was previously carried out. RNA hairpins that formed kissing-loop dimers with TAR were selected [Ducongé F. and Toulmé JJ (1999) RNA, 5:1605–1614]. We describe here the crystal structure of TAR bound to a high-affinity RNA aptamer. The two hairpins form a kissing complex and interact through six Watson–Crick base pairs. The complex adopts an overall conformation with an inter-helix angle of 28.1°, thus contrasting with previously reported solution and modelling studies. Structural analysis reveals that inter-backbone hydrogen bonds between ribose 2′ hydroxyl and phosphate oxygens at the stem-loop junctions can be formed. Thermal denaturation and surface plasmon resonance experiments with chemically modified 2′-O-methyl incorporated into both hairpins at key positions, clearly demonstrate the involvement of this intermolecular network of hydrogen bonds in complex stability.
Collapse
Affiliation(s)
- Isabelle Lebars
- CNRS-Université Bordeaux 1-ENITAB, UMR 5248 CBMN, Institut Européen de Chimie et Biologie, Pessac, F-33607, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, INSERM U869, Institut Européen de Chimie et Biologie, Pessac, F-33607 and Université de Bordeaux, Bordeaux, F-33076, France
| | - Pierre Legrand
- CNRS-Université Bordeaux 1-ENITAB, UMR 5248 CBMN, Institut Européen de Chimie et Biologie, Pessac, F-33607, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, INSERM U869, Institut Européen de Chimie et Biologie, Pessac, F-33607 and Université de Bordeaux, Bordeaux, F-33076, France
| | - Ahissan Aimé
- CNRS-Université Bordeaux 1-ENITAB, UMR 5248 CBMN, Institut Européen de Chimie et Biologie, Pessac, F-33607, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, INSERM U869, Institut Européen de Chimie et Biologie, Pessac, F-33607 and Université de Bordeaux, Bordeaux, F-33076, France
| | - Noël Pinaud
- CNRS-Université Bordeaux 1-ENITAB, UMR 5248 CBMN, Institut Européen de Chimie et Biologie, Pessac, F-33607, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, INSERM U869, Institut Européen de Chimie et Biologie, Pessac, F-33607 and Université de Bordeaux, Bordeaux, F-33076, France
| | - Sébastien Fribourg
- CNRS-Université Bordeaux 1-ENITAB, UMR 5248 CBMN, Institut Européen de Chimie et Biologie, Pessac, F-33607, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, INSERM U869, Institut Européen de Chimie et Biologie, Pessac, F-33607 and Université de Bordeaux, Bordeaux, F-33076, France
- *To whom correspondence should be addressed. Tel: +33 5 40 00 30 63; Fax: +33 5 40 00 30 68;
| | - Carmelo Di Primo
- CNRS-Université Bordeaux 1-ENITAB, UMR 5248 CBMN, Institut Européen de Chimie et Biologie, Pessac, F-33607, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, INSERM U869, Institut Européen de Chimie et Biologie, Pessac, F-33607 and Université de Bordeaux, Bordeaux, F-33076, France
| |
Collapse
|
10
|
Douthwaite S, Jakobsen L, Yoshizawa S, Fourmy D. Interaction of the tylosin-resistance methyltransferase RlmA II at its rRNA target differs from the orthologue RlmA I. J Mol Biol 2008; 378:969-75. [PMID: 18406425 DOI: 10.1016/j.jmb.2008.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 11/25/2022]
Abstract
RlmA(II) methylates the N1-position of nucleotide G748 in hairpin 35 of 23 S rRNA. The resultant methyl group extends into the peptide channel of the 50 S ribosomal subunit and confers resistance to tylosin and other mycinosylated macrolide antibiotics. Methylation at G748 occurs in several groups of Gram-positive bacteria, including the tylosin-producer Streptomyces fradiae and the pathogen Streptococcus pneumoniae. Recombinant S. pneumoniae RlmA(II) was purified and shown to retain its activity and specificity in vitro when tested on unmethylated 23 S rRNA substrates. RlmA(II) makes multiple footprint contacts with nucleotides in stem-loops 33, 34 and 35, and does not interact elsewhere in the rRNA. Binding of RlmA(II) to the rRNA is dependent on the cofactor S-adenosylmethionine (or S-adenosylhomocysteine). RlmA(II) interacts with the same rRNA region as the orthologous enzyme RlmA(I) that methylates at nucleotide G745. Differences in nucleotide contacts within hairpin 35 indicate how the two methyltransferases recognize their distinct targets.
Collapse
Affiliation(s)
- Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|