1
|
Chaminade F, Darlix JL, Fossé P. RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation. Viruses 2022; 14:606. [PMID: 35337013 PMCID: PMC8953772 DOI: 10.3390/v14030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Retroviruses package two copies of their genomic RNA (gRNA) as non-covalently linked dimers. Many studies suggest that the retroviral nucleocapsid protein (NC) plays an important role in gRNA dimerization. The upper part of the L3 RNA stem-loop in the 5' leader of the avian leukosis virus (ALV) is converted to the extended dimer by ALV NC. The L3 hairpin contains three stems and two internal loops. To investigate the roles of internal loops and stems in the NC-mediated extended dimer formation, we performed site-directed mutagenesis, gel electrophoresis, and analysis of thermostability of dimeric RNAs. We showed that the internal loops are necessary for efficient extended dimer formation. Destabilization of the lower stem of L3 is necessary for RNA dimerization, although it is not involved in the linkage structure of the extended dimer. We found that NCs from ALV, human immunodeficiency virus type 1 (HIV-1), and Moloney murine leukemia virus (M-MuLV) cannot promote the formation of the extended dimer when the apical stem contains ten consecutive base pairs. Five base pairs correspond to the maximum length for efficient L3 dimerization induced by the three NCs. L3 dimerization was less efficient with M-MuLV NC than with ALV NC and HIV-1 NC.
Collapse
Affiliation(s)
- Françoise Chaminade
- LBPA, UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Jean-Luc Darlix
- Laboratoire de Bioimagerie et Pathologies, UMR7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67400 Illkirch, France;
| | - Philippe Fossé
- LBPA, UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
2
|
Chen Y, Maskri O, Chaminade F, René B, Benkaroun J, Godet J, Mély Y, Mauffret O, Fossé P. Structural Insights into the HIV-1 Minus-strand Strong-stop DNA. J Biol Chem 2016; 291:3468-82. [PMID: 26668324 DOI: 10.1074/jbc.m115.708099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/06/2022] Open
Abstract
An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3'-end of the genomic RNA with the complementary r region at the 3'-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex).
Collapse
Affiliation(s)
- Yingying Chen
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France, the School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China, and
| | - Ouerdia Maskri
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Françoise Chaminade
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Brigitte René
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Jessica Benkaroun
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Julien Godet
- the Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Yves Mély
- the Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Olivier Mauffret
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Philippe Fossé
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France,
| |
Collapse
|
3
|
Transcription analysis of the response of chicken bursa of Fabricius to avian leukosis virus subgroup J strain JS09GY3. Virus Res 2014; 188:8-14. [DOI: 10.1016/j.virusres.2014.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 01/04/2023]
|
4
|
Rein A, Datta SAK, Jones CP, Musier-Forsyth K. Diverse interactions of retroviral Gag proteins with RNAs. Trends Biochem Sci 2011; 36:373-80. [PMID: 21550256 PMCID: PMC3130074 DOI: 10.1016/j.tibs.2011.04.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/31/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
Retrovirus particles are constructed from a single virus-encoded protein, termed Gag. Given that assembly is an essential step in the viral replication cycle, it is a potential target for antiviral therapy. However, such an approach has not yet been exploited because of the lack of fundamental knowledge concerning the structures and interactions responsible for assembly. Assembling an infectious particle entails a remarkably diverse array of interactions, both specific and nonspecific, between Gag proteins and RNAs. These interactions are essential for the construction of the particle, for packaging of the viral RNA into the particle, and for placement of the primer for viral DNA synthesis. Recent results have provided some new insights into each of these interactions. In the case of HIV-1 Gag, it is clear that more than one domain of the protein contributes to Gag-RNA interaction.
Collapse
Affiliation(s)
- Alan Rein
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
5
|
Kanevsky I, Chaminade F, Chen Y, Godet J, René B, Darlix JL, Mély Y, Mauffret O, Fossé P. Structural determinants of TAR RNA-DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. Nucleic Acids Res 2011; 39:8148-62. [PMID: 21724607 PMCID: PMC3185427 DOI: 10.1093/nar/gkr526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Annealing of the TAR RNA hairpin to the cTAR DNA hairpin is required for the minus-strand transfer step of HIV-1 reverse transcription. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. To gain insight into the mechanism of NC-mediated TAR RNA–DNA annealing, we used structural probes (nucleases and potassium permanganate), gel retardation assays, fluorescence anisotropy and cTAR mutants under conditions allowing strand transfer. In the absence of NC, cTAR DNA-TAR RNA annealing depends on nucleation through the apical loops. We show that the annealing intermediate of the kissing pathway is a loop–loop kissing complex involving six base-pairs and that the apical stems are not destabilized by this loop–loop interaction. Our data support a dynamic structure of the cTAR hairpin in the absence of NC, involving equilibrium between both the closed conformation and the partially open ‘Y’ conformation. This study is the first to show that the apical and internal loops of cTAR are weak and strong binding sites for NC, respectively. NC slightly destabilizes the lower stem that is adjacent to the internal loop and shifts the equilibrium toward the ‘Y’ conformation exhibiting at least 12 unpaired nucleotides in its lower part.
Collapse
Affiliation(s)
- Igor Kanevsky
- LBPA, ENS de Cachan, CNRS, 61 avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Grigorov B, Bocquin A, Gabus C, Avilov S, Mély Y, Agopian A, Divita G, Gottikh M, Witvrouw M, Darlix JL. Identification of a methylated oligoribonucleotide as a potent inhibitor of HIV-1 reverse transcription complex. Nucleic Acids Res 2011; 39:5586-96. [PMID: 21447560 PMCID: PMC3141241 DOI: 10.1093/nar/gkr117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Upon HIV-1 infection of a target cell, the viral reverse transcriptase (RT) copies the genomic RNA to synthesize the viral DNA. The genomic RNA is within the incoming HIV-1 core where it is coated by molecules of nucleocapsid (NC) protein that chaperones the reverse transcription process. Indeed, the RT chaperoning properties of NC extend from the initiation of cDNA synthesis to completion of the viral DNA. New and effective drugs against HIV-1 continue to be required, which prompted us to search for compounds aimed at inhibiting NC protein. Here, we report that the NC chaperoning activity is extensively inhibited in vitro by small methylated oligoribonucleotides (mODN). These mODNs were delivered intracellularly using a cell-penetrating-peptide and found to impede HIV-1 replication in primary human cells at nanomolar concentrations. Extensive analysis showed that viral cDNA synthesis was severely impaired by mODNs. Partially resistant viruses with mutations in NC and RT emerged after months of passaging in cell culture. A HIV-1 molecular clone (NL4.3) bearing these mutations was found to replicate at high concentrations of mODN, albeit with a reduced fitness. Small, methylated ODNs such as mODN-11 appear to be a new type of highly potent inhibitor of HIV-1.
Collapse
Affiliation(s)
- Boyan Grigorov
- Laboretro, INSERM #758, ENS Lyon, 46 allée d'Italie, 69364 Lyon, Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasboug, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rajabzadeh M, Dadras H, Mohammadi A. Detection of avian leukosis virus subgroups in albumen of commercial and native fowl eggs using RT-PCR in Iran. Trop Anim Health Prod 2010; 42:1829-36. [PMID: 20640887 DOI: 10.1007/s11250-010-9645-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2010] [Indexed: 11/30/2022]
Abstract
Avian leukosis viruses (ALVs) belong to Alpharetrovirus genus of the family Retroviridae that are widespread in nature. Different subgroups of ALV commonly infect egg-laying hens. They are responsible for economic losses due to both mortality and depressed performance in chickens. To investigate the presence of these viruses in chickens in Iran, 560 egg albumens were selected from different farms of Fars province, Iran. These eggs were obtained from flocks of two research centers of native fowl production (60 eggs), a broiler grandparent farm (100 eggs), three broiler breeder farms (300 eggs), and a commercial layer flock (100 eggs). Firstly, for primary screening a degenerative primer set (PU1 and PU2) were used in reverse transcriptase-polymerase chain reaction (RT-PCR). Positive cases were detected in 47 of 300 (15.7%) samples from three broiler breeders, 40 of 100 (40%) samples from commercial layer, 53 of 60 (88.3%) samples from flocks of two research centers of native fowl production, and none from the samples of broiler grandparent. Then RT-PCR was undertaken with primers PA1 and PA2 on the positive samples. RT-PCR analysis detected ALVs in two of 47 (4.3%) samples from three broiler breeders, 13 of 40 (32.5%) samples from commercial layer, and 19 of 53 (35.8%) samples from flocks of two research centers of native fowl production. The sequencing results showed that subgroup E of ALV was the most detected virus among chicken eggs and subgroup B was more prevalent in the eggs of native fowls. This is the first report of the ALV subgroup B and E in egg albumen in Iran.
Collapse
Affiliation(s)
- Mostafa Rajabzadeh
- Department of Veterinary Medicine, Islamic Azad University, Birjand Branch, Birjand, Iran.
| | | | | |
Collapse
|