Koonce MP, Gräf R. Dictyostelium discoideum: a model system for ultrastructural analyses of cell motility and development.
Methods Cell Biol 2010;
96:197-216. [PMID:
20869524 DOI:
10.1016/s0091-679x(10)96009-3]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dictyostelium occupies an interesting niche in the grand scheme of model organisms. On the one hand, it is a compact, highly motile single cell that presents numerous opportunities to investigate the fundamental mechanisms of signal transduction, cell movement, and pathogen infection. However, upon starvation, individual cells enter a developmental pathway that involves cell aggregation, cell-cell adhesion, pattern formation, and differentiation. Thus, Dictyostelium is also well known as a basic model for studying developmental processes. Electron microscopy (EM) has played a large role in both the unicellular and the multicellular life stages, for example, providing image detail for structure/function relationships of cytoskeletal proteins, the deposition of cellulose fibrils in maturing spores, and the identification of intercellular junctional complexes. Powerful combinations of robust molecular genetic tools, high-resolution light microscopy, and EM methods make this organism an attractive model for imaging dynamic cell processes. This chapter serves to highlight the past and current EM approaches that have advanced our understanding of how cells and proteins function.
Collapse