1
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Biofuel production with a stress-resistant and growth phase-independent promoter: mechanism revealed by in vitro transcription assays. Appl Microbiol Biotechnol 2018; 102:2929-2940. [DOI: 10.1007/s00253-018-8809-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
|
3
|
Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, Matondo M, Norel F. Proteome remodelling by the stress sigma factor RpoS/σ S in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 2017; 7:2127. [PMID: 28522802 PMCID: PMC5437024 DOI: 10.1038/s41598-017-02362-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
The RpoS/σS sigma subunit of RNA polymerase is the master regulator of the general stress response in many Gram-negative bacteria. Extensive studies have been conducted on σS-regulated gene expression at the transcriptional level. In contrast, very limited information regarding the impact of σS on global protein production is available. In this study, we used a mass spectrometry-based proteomics approach to explore the wide σS-dependent proteome of the human pathogen Salmonella enterica serovar Typhimurium. Our present goals were twofold: (1) to survey the protein changes associated with the ΔrpoS mutation and (2) to assess the coding capacity of σS-dependent small RNAs. Our proteomics data, and complementary assays, unravelled the large impact of σS on the Salmonella proteome, and validated expression and σS regulation of twenty uncharacterized small proteins of 27 to 96 amino acids. Furthermore, a large number of genes regulated at the protein level only were identified, suggesting that post-transcriptional regulation is an important component of the σS response. Novel aspects of σS in the control of important catabolic pathways such as myo-inositol, L-fucose, propanediol, and ethanolamine were illuminated by this work, providing new insights into the physiological remodelling involved in bacterial adaptation to a non-actively growing state.
Collapse
Affiliation(s)
- Magali Lago
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, rue du Dr. Roux, 75015, Paris, France
| | - Véronique Monteil
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Julien Guglielmini
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Françoise Norel
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France.
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France.
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
4
|
Genome-Wide Transcriptional Response to Varying RpoS Levels in Escherichia coli K-12. J Bacteriol 2017; 199:JB.00755-16. [PMID: 28115545 DOI: 10.1128/jb.00755-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/12/2017] [Indexed: 01/31/2023] Open
Abstract
The alternative sigma factor RpoS is a central regulator of many stress responses in Escherichia coli The level of functional RpoS differs depending on the stress. The effect of these differing concentrations of RpoS on global transcriptional responses remains unclear. We investigated the effect of RpoS concentration on the transcriptome during stationary phase in rich media. We found that 23% of genes in the E. coli genome are regulated by RpoS, and we identified many RpoS-transcribed genes and promoters. We observed three distinct classes of response to RpoS by genes in the regulon: genes whose expression changes linearly with increasing RpoS level, genes whose expression changes dramatically with the production of only a little RpoS ("sensitive" genes), and genes whose expression changes very little with the production of a little RpoS ("insensitive"). We show that sequences outside the core promoter region determine whether an RpoS-regulated gene is sensitive or insensitive. Moreover, we show that sensitive and insensitive genes are enriched for specific functional classes and that the sensitivity of a gene to RpoS corresponds to the timing of induction as cells enter stationary phase. Thus, promoter sensitivity to RpoS is a mechanism to coordinate specific cellular processes with growth phase and may also contribute to the diversity of stress responses directed by RpoS.IMPORTANCE The sigma factor RpoS is a global regulator that controls the response to many stresses in Escherichia coli Different stresses result in different levels of RpoS production, but the consequences of this variation are unknown. We describe how changing the level of RpoS does not influence all RpoS-regulated genes equally. The cause of this variation is likely the action of transcription factors that bind the promoters of the genes. We show that the sensitivity of a gene to RpoS levels explains the timing of expression as cells enter stationary phase and that genes with different RpoS sensitivities are enriched for specific functional groups. Thus, promoter sensitivity to RpoS is a mechanism that coordinates specific cellular processes in response to stresses.
Collapse
|
5
|
Métris A, George SM, Ropers D. Piecewise linear approximations to model the dynamics of adaptation to osmotic stress by food-borne pathogens. Int J Food Microbiol 2016; 240:63-74. [PMID: 27377009 DOI: 10.1016/j.ijfoodmicro.2016.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 06/09/2016] [Accepted: 06/19/2016] [Indexed: 01/08/2023]
Abstract
Addition of salt to food is one of the most ancient and most common methods of food preservation. However, little is known of how bacterial cells adapt to such conditions. We propose to use piecewise linear approximations to model the regulatory adaptation of Escherichiacoli to osmotic stress. We apply the method to eight selected genes representing the functions known to be at play during osmotic adaptation. The network is centred on the general stress response factor, sigma S, and also includes a module representing the catabolic repressor CRP-cAMP. Glutamate, potassium and supercoiling are combined to represent the intracellular regulatory signal during osmotic stress induced by salt. The output is a module where growth is represented by the concentration of stable RNAs and the transcription of the osmotic gene osmY. The time course of gene expression of transport of osmoprotectant represented by the symporter proP and of the osmY is successfully reproduced by the network. The behaviour of the rpoS mutant predicted by the model is in agreement with experimental data. We discuss the application of the model to food-borne pathogens such as Salmonella; although the genes considered have orthologs, it seems that supercoiling is not regulated in the same way. The model is limited to a few selected genes, but the regulatory interactions are numerous and span different time scales. In addition, they seem to be condition specific: the links that are important during the transition from exponential to stationary phase are not all needed during osmotic stress. This model is one of the first steps towards modelling adaptation to stress in food safety and has scope to be extended to other genes and pathways, other stresses relevant to the food industry, and food-borne pathogens. The method offers a good compromise between systems of ordinary differential equations, which would be unmanageable because of the size of the system and for which insufficient data are available, and the more abstract Boolean methods.
Collapse
Affiliation(s)
- Aline Métris
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Susie M George
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Delphine Ropers
- Inria Grenoble - Rhône-Alpes Research Center, Saint Ismier, France.
| |
Collapse
|
6
|
Abstract
Escherichia coli and Salmonella encounter osmotic pressure variations in natural environments that include host tissues, food, soil, and water. Osmotic stress causes water to flow into or out of cells, changing their structure, physics, and chemistry in ways that perturb cell functions. E. coli and Salmonella limit osmotically induced water fluxes by accumulating and releasing electrolytes and small organic solutes, some denoted compatible solutes because they accumulate to high levels without disturbing cell functions. Osmotic upshifts inhibit membrane-based energy transduction and macromolecule synthesis while activating existing osmoregulatory systems and specifically inducing osmoregulatory genes. The osmoregulatory response depends on the availability of osmoprotectants (exogenous organic compounds that can be taken up to become compatible solutes). Without osmoprotectants, K+ accumulates with counterion glutamate, and compatible solute trehalose is synthesized. Available osmoprotectants are taken up via transporters ProP, ProU, BetT, and BetU. The resulting compatible solute accumulation attenuates the K+ glutamate response and more effectively restores cell hydration and growth. Osmotic downshifts abruptly increase turgor pressure and strain the cytoplasmic membrane. Mechanosensitive channels like MscS and MscL open to allow nonspecific solute efflux and forestall cell lysis. Research frontiers include (i) the osmoadaptive remodeling of cell structure, (ii) the mechanisms by which osmotic stress alters gene expression, (iii) the mechanisms by which transporters and channels detect and respond to osmotic pressure changes, (iv) the coordination of osmoregulatory programs and selection of available osmoprotectants, and (v) the roles played by osmoregulatory mechanisms as E. coli and Salmonella survive or thrive in their natural environments.
Collapse
|
7
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
8
|
Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 2011; 78:13-34. [PMID: 20923416 DOI: 10.1111/j.1365-2958.2010.07332.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increases in the environmental osmolarity are key determinants for the growth of microorganisms. To ensure a physiologically acceptable level of cellular hydration and turgor at high osmolarity, many bacteria accumulate compatible solutes. Osmotically controlled uptake systems allow the scavenging of these compounds from scarce environmental sources as effective osmoprotectants. A number of these systems belong to the BCCT family (betaine-choline-carnitine-transporter), sodium- or proton-coupled transporters (e.g. BetP and BetT respectively) that are ubiquitous in microorganisms. The BCCT family also contains CaiT, an L-carnitine/γ-butyrobetaine antiporter that is not involved in osmotic stress responses. The glycine betaine transporter BetP from Corynebacterium glutamicum is a representative for osmoregulated symporters of the BCCT family and functions both as an osmosensor and osmoregulator. The crystal structure of BetP in an occluded conformation in complex with its substrate glycine betaine and two crystal structures of CaiT in an inward-facing open conformation in complex with L-carnitine and γ-butyrobetaine were reported recently. These structures and the wealth of biochemical data on the activity control of BetP in response to osmotic stress enable a correlation between the sensing of osmotic stress by a transporter protein with the ensuing regulation of transport activity. Molecular determinants governing the high-affinity binding of the compatible solutes by BetP and CaiT, the coupling in symporters and antiporters, and the osmoregulatory properties are discussed in detail for BetP and various BCCT carriers.
Collapse
Affiliation(s)
- Christine Ziegler
- Max-Planck Institute for Biophysics, Max-von-Laue Street 3, D-60438 Frankfurt, Germany
| | | | | |
Collapse
|
9
|
Khodak YA, Koroleva ON, Drutsa VL. Purification of core enzyme of Escherichia coli RNA polymerase by affinity chromatography. BIOCHEMISTRY (MOSCOW) 2010; 75:769-76. [DOI: 10.1134/s000629791006012x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Kontur WS, Capp MW, Gries TJ, Saecker RM, Record MT. Probing DNA binding, DNA opening, and assembly of a downstream clamp/jaw in Escherichia coli RNA polymerase-lambdaP(R) promoter complexes using salt and the physiological anion glutamate. Biochemistry 2010; 49:4361-73. [PMID: 20201585 DOI: 10.1021/bi100092a] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transcription by all RNA polymerases (RNAPs) requires a series of large-scale conformational changes to form the transcriptionally competent open complex RP(o). At the lambdaP(R) promoter, Escherichia coli sigma(70) RNAP first forms a wrapped, closed 100 bp complex I(1). The subsequent step opens the entire DNA bubble, creating the relatively unstable (open) complex I(2). Additional conformational changes convert I(2) to the stable RP(o). Here we probe these events by dissecting the effects of Na(+) salts of Glu(-), F(-), and Cl(-) on each step in this critical process. Rapid mixing and nitrocellulose filter binding reveal that the binding constant for I(1) at 25 degrees C is approximately 30-fold larger in Glu(-) than in Cl(-) at the same Na(+) concentration, with the same log-log salt concentration dependence for both anions. In contrast, both the rate constant and equilibrium constant for DNA opening (I(1) to I(2)) are only weakly dependent on salt concentration, and the opening rate constant is insensitive to replacement of Cl(-) with Glu(-). These very small effects of salt concentration on a process (DNA opening) that is strongly dependent on salt concentration in solution may indicate that the backbones of both DNA strands interact with polymerase throughout the process and/or that compensation is present between ion uptake and release. Replacement of Cl(-) with Glu(-) or F(-) at 25 degrees C greatly increases the lifetime of RP(o) and greatly reduces its salt concentration dependence. By analogy to Hofmeister salt effects on protein folding, we propose that the excluded anions Glu(-) and F(-) drive the folding and assembly of the RNAP clamp/jaw domains in the conversion of I(2) to RP(o), while Cl(-) does not. Because the Hofmeister effect of Glu(-) or F(-) largely compensates for the destabilizing Coulombic effect of any salt on the binding of this assembly to downstream promoter DNA, RP(o) remains long-lived even at 0.5 M Na(+) in Glu(-) or F(-) salts. The observation that Esigma(70) RP(o) complexes are exceedingly long-lived at moderate to high Glu(-) concentrations argues that Esigma(70) RNAP does not dissociate from strong promoters in vivo when the cytoplasmic glutamate concentration increases during osmotic stress.
Collapse
Affiliation(s)
- Wayne S Kontur
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
11
|
Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R. Regulator trafficking on bacterial transcription units in vivo. Mol Cell 2009; 33:97-108. [PMID: 19150431 DOI: 10.1016/j.molcel.2008.12.021] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/13/2008] [Accepted: 12/17/2008] [Indexed: 11/30/2022]
Abstract
The trafficking patterns of the bacterial regulators of transcript elongation sigma(70), rho, NusA, and NusG on genes in vivo and the explanation for promoter-proximal peaks of RNA polymerase (RNAP) are unknown. Genome-wide, E. coli ChIP-chip revealed distinct association patterns of regulators as RNAP transcribes away from promoters (rho first, then NusA, then NusG). However, the interactions of elongating complexes with these regulators did not differ significantly among most transcription units. A modest variation of NusG signal among genes reflected increased NusG interaction as transcription progresses, rather than functional specialization of elongating complexes. Promoter-proximal RNAP peaks were offset from sigma(70) peaks in the direction of transcription and co-occurred with NusA and rho peaks, suggesting that the RNAP peaks reflected elongating, rather than initiating, complexes. However, inhibition of rho did not increase RNAP levels within genes downstream from the RNAP peaks, suggesting the peaks are caused by a mechanism other than rho-dependent attenuation.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
12
|
Gralla JD, Huo YX. Remodeling and activation of Escherichia coli RNA polymerase by osmolytes. Biochemistry 2009; 47:13189-96. [PMID: 19053283 DOI: 10.1021/bi801075x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of bacteria to survive environmental stresses and colonize the gastrointestinal tract depends on adaptation to high osmolarity. The adaptation involves global reprogramming of gene expression, including inhibition of bulk sigma70 RNA polymerase transcription and activation of bulk sigma38 transcription. The activating signal transduction pathways that originate with osmolytes remain to be established. Experiments here confirm that accumulation of a simple signaling molecule, glutamate, can reprogram RNA polymerase in vitro without the need for specific protein receptors. During osmotic activation, glutamate appears to act as a Hofmeister series osmolyte to facilitate promoter escape. Escape is accompanied by a remodeling of the key interaction between the sigma38 stress protein and the beta-flap of the bacterial core RNA polymerase. This activation event contrasts with the established mechanism of inhibition in which glutamate, by virtue of its electrostatic properties, helps to inhibit binding to ribosomal promoters after osmotic shock. Overall, Escherichia coli survival in natural hosts and reservoirs is expected to rely on the accumulation of simple ions that trigger changes in protein conformation that lead to global changes in transcription.
Collapse
Affiliation(s)
- Jay D Gralla
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Box 951569, Los Angeles, California 90095, USA.
| | | |
Collapse
|
13
|
Huo YX, Rosenthal AZ, Gralla JD. General stress response signalling: unwrapping transcription complexes by DNA relaxation via the sigma38 C-terminal domain. Mol Microbiol 2008; 70:369-78. [PMID: 18761624 DOI: 10.1111/j.1365-2958.2008.06412.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli responds to stress by a combination of specific and general transcription signalling pathways. The general pathways typically require the master stress regulator sigma38 (rpoS). Here we show that the signalling from multiple stresses that relax DNA is processed by a non-conserved eight-amino-acid tail of the sigma 38 C-terminal domain. By contrast, responses to two stresses that accumulate potassium glutamate do not rely on this short tail, but still require the overall C-terminal domain. In vitro transcription and footprinting studies suggest that multiple stresses can target a poised RNA polymerase and activate it by unwrapping DNA from a nucleosome-like state, allowing the RNA polymerase to escape into productive mode. This transition can be accomplished by either the DNA relaxation or potassium glutamate accumulation that characterizes many stresses.
Collapse
Affiliation(s)
- Yi-Xin Huo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, PO Box 951569, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
14
|
Rosenthal AZ, Kim Y, Gralla JD. Regulation of transcription by acetate in Escherichia coli: in vivo and in vitro comparisons. Mol Microbiol 2008; 68:907-17. [DOI: 10.1111/j.1365-2958.2008.06186.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|