1
|
Nandi S, Dey D, Srinivas P, Dunham CM, Conn GL. Distant Ribose 2'-O-Methylation of 23S rRNA Helix 69 Pre-Orders the Capreomycin Drug Binding Pocket at the Ribosome Subunit Interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.619916. [PMID: 39574593 PMCID: PMC11580936 DOI: 10.1101/2024.11.05.619916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Loss of ribosomal RNA (rRNA) modifications incorporated by the intrinsic methyltransferase TlyA results in reduced sensitivity to tuberactinomycin antibiotics such as capreomycin. However, the mechanism by which rRNA methylation alters drug binding, particularly at the distant but functionally more important site in 23S rRNA Helix 69 (H69), is currently unknown. We determined high-resolution cryo-electron microscopy structures of the Mycolicibacterium smegmatis 70S ribosome with or without the two ribose 2'-O-methyl modifications incorporated by TlyA. In the unmodified ribosome, the tip of H69 adopts a more compact conformation, positioning two key nucleotides (A2137 and C2138) such that interactions with capreomycin would be lost and the binding pocket partially occluded. In contrast, methylation of 23S rRNA nucleotide C2144 results in conformational changes that propagate from the site of modification to the H69 tip, resulting in its movement away from h44, a more favorable positioning of C2138 and adoption of a more open conformation to enable capreomycin binding. Methylation of h44 also results in structural rearrangements at the H69-h44 interface that further support antibiotic binding. These structures thus reveal the effect and regulation of distant rRNA methylation on ribosome-targeting antibiotic binding.
Collapse
Affiliation(s)
- Suparno Nandi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Pooja Srinivas
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, USA
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, 30322, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, Georgia, 30322, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
2
|
Liu Q, Zhang L, Wang Y, Zhang C, Liu T, Duan C, Bian X, Guo Z, Long Q, Tang Y, Du J, Liu A, Dai L, Li D, Chen W. Enhancement of edeine production in Brevibacillus brevis X23 via in situ promoter engineering. Microb Biotechnol 2022; 15:577-589. [PMID: 34310825 PMCID: PMC8867987 DOI: 10.1111/1751-7915.13825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022] Open
Abstract
Edeines, a group of cationic antimicrobial peptides produced by the soil bacterium Brevibacillus, have broad biological effects, such as antimicrobial, anticancer and immunosuppressive activities. However, the yield of edeines in wild-type (WT) Brevibacillus is extremely low, and chemical synthesis of edeines is a time-consuming process. Genetic engineering has proven to be an effective approach to produce antibiotics with high yield. In this study, the edeine biosynthetic gene cluster (ede BGC), which is involved in edeine production, was identified and characterized in Brevibacillus brevis X23. To improve edeine production in B. brevis X23, the ede BGC promoter was replaced with six different promoters, Pmwp , Pspc , PxylA , Pshuttle-09 , Pgrac or P43 , through double-crossover homologous recombination. The new promoters significantly increased the expression of the ede BGC as well as edeine production by 2.9 ± 0.4 to 20.5 ± 1.2-fold and 3.6 ± 0.1to 8.7 ± 0.7-fold respectively. The highest yield of edeines (83.6 mg l-1 ) was obtained in B. brevis X23 with the Pmwp promoter. This study provides a practical approach for producing high yields of edeines in B. brevis.
Collapse
Affiliation(s)
- Qingshu Liu
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Liang Zhang
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
- College of AgronomyHunan Agricultural UniversityChangsha410128China
| | - Yunsheng Wang
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
| | - Cuiyang Zhang
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Tianbo Liu
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
| | - Caichen Duan
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti‐Infectives, Shandong University‐Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial TechnologyShandong UniversityQingdao266237China
| | - Zhaohui Guo
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Qingshan Long
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Ying Tang
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Jie Du
- Hunan Province Engineering Research Center for Agricultural Microbiology ApplicationHunan Institute of MicrobiologyChangsha410009China
| | - Aiyu Liu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
| | - Liangying Dai
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
| | - Dingjun Li
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
- Hunan University of Technology and BusinessChangsha410205China
| | - Wu Chen
- College of Plant ProtectionHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
3
|
Laughlin ZT, Conn GL. Tuberactinomycin antibiotics: Biosynthesis, anti-mycobacterial action, and mechanisms of resistance. Front Microbiol 2022; 13:961921. [PMID: 36033858 PMCID: PMC9403184 DOI: 10.3389/fmicb.2022.961921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
The tuberactinomycins are a family of cyclic peptide ribosome-targeting antibiotics with a long history of use as essential second-line treatments for drug-resistant tuberculosis. Beginning with the identification of viomycin in the early 1950s, this mini-review briefly describes tuberactinomycin structures and biosynthesis, as well as their past and present application in the treatment of tuberculosis caused by infection with Mycobacterium tuberculosis. More recent studies are also discussed that have revealed details of tuberactinomycin action on the ribosome as well as resistance mechanisms that have emerged since their introduction into the clinic. Finally, future applications of these drugs are considered in the context of their recent removal from the World Health Organization's List of Essential Medicines.
Collapse
Affiliation(s)
- Zane T Laughlin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Graduate Program in Biochemistry, Cell and Developmental Biology (BCDB), Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Willi J, Küpfer P, Evéquoz D, Fernandez G, Katz A, Leumann C, Polacek N. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Res 2019; 46:1945-1957. [PMID: 29309687 PMCID: PMC5829716 DOI: 10.1093/nar/gkx1308] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023] Open
Abstract
Intracellular levels of reactive oxygen species (ROS) increase as a consequence of oxidative stress and represent a major source of damage to biomolecules. Due to its high cellular abundance RNA is more frequently the target for oxidative damage than DNA. Nevertheless the functional consequences of damage on stable RNA are poorly understood. Using a genome-wide approach, based on 8-oxo-guanosine immunoprecipitation, we present evidence that the most abundant non-coding RNA in a cell, the ribosomal RNA (rRNA), is target for oxidative nucleobase damage by ROS. Subjecting ribosomes to oxidative stress, we demonstrate that oxidized 23S rRNA inhibits the ribosome during protein biosynthesis. Placing single oxidized nucleobases at specific position within the ribosome's catalytic center by atomic mutagenesis resulted in markedly different functional outcomes. While some active site nucleobases tolerated oxidative damage well, oxidation at others had detrimental effects on protein synthesis by inhibiting different sub-steps of the ribosomal elongation cycle. Our data provide molecular insight into the biological consequences of RNA oxidation in one of the most central cellular enzymes and reveal mechanistic insight on the role of individual active site nucleobases during translation.
Collapse
Affiliation(s)
- Jessica Willi
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Pascal Küpfer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Damien Evéquoz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Guillermo Fernandez
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Assaf Katz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Christian Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
6
|
Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position. Molecules 2017; 22:molecules22091427. [PMID: 28850078 PMCID: PMC5753802 DOI: 10.3390/molecules22091427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023] Open
Abstract
Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5′- and 3′-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix.
Collapse
|
7
|
Das D, Samanta D, Bhattacharya A, Basu A, Das A, Ghosh J, Chakrabarti A, Das Gupta C. A Possible Role of the Full-Length Nascent Protein in Post-Translational Ribosome Recycling. PLoS One 2017; 12:e0170333. [PMID: 28099529 PMCID: PMC5242463 DOI: 10.1371/journal.pone.0170333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/03/2017] [Indexed: 11/30/2022] Open
Abstract
Each cycle of translation initiation in bacterial cell requires free 50S and 30S ribosomal subunits originating from the post-translational dissociation of 70S ribosome from the previous cycle. Literature shows stable dissociation of 70S from model post-termination complexes by the concerted action of Ribosome Recycling Factor (RRF) and Elongation Factor G (EF-G) that interact with the rRNA bridge B2a/B2b joining 50S to 30S. In such experimental models, the role of full-length nascent protein was never considered seriously. We observed relatively slow release of full-length nascent protein from 50Sof post translation ribosome, and in that process, its toe prints on the rRNA in vivo and in in vitro translation with E.coli S30 extract. We reported earlier that a number of chemically unfolded proteins like bovine carbonic anhydrase (BCA), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), lysozyme, ovalbumin etc., when added to free 70Sin lieu of the full length nascent proteins, also interact with identical RNA regions of the 23S rRNA. Interestingly the rRNA nucleotides that slow down release of the C-terminus of full-length unfolded protein were found in close proximity to the B2a/B2b bridge. It indicated a potentially important chemical reaction conserved throughout the evolution. Here we set out to probe that conserved role of unfolded protein conformation in splitting the free or post-termination 70S. How both the RRF-EFG dependent and the plausible nascent protein–EFG dependent ribosome recycling pathways might be relevant in bacteria is discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Dibyendu Samanta
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Arpita Bhattacharya
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Arunima Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
- Department of Microbiology, Raidighi College, Raidighi, 24 Parganas (S), West Bengal, India
| | - Anindita Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| | - Jaydip Ghosh
- Department of Microbiology, St. Xavier’s College, Kolkata, India
| | - Abhijit Chakrabarti
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, Kolkata, India
| | - Chanchal Das Gupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, India
- * E-mail:
| |
Collapse
|
8
|
Schrode P, Huter P, Clementi N, Erlacher M. Atomic mutagenesis at the ribosomal decoding site. RNA Biol 2017; 14:104-112. [PMID: 27841727 PMCID: PMC5270523 DOI: 10.1080/15476286.2016.1256535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/21/2016] [Accepted: 10/30/2016] [Indexed: 10/26/2022] Open
Abstract
Ribosomal decoding is an essential process in every living cell. During protein synthesis the 30S ribosomal subunit needs to accomplish binding and accurate decoding of mRNAs. From mutational studies and high-resolution crystal structures nucleotides G530, A1492 and A1493 of the 16S rRNA came into focus as important elements for the decoding process. Recent crystallographic data challenged the so far accepted model for the decoding mechanism. To biochemically investigate decoding in greater detail we applied an in vitro reconstitution approach to modulate single chemical groups at A1492 and A1493. The modified ribosomes were subsequently tested for their ability to efficiently decode the mRNA. Unexpectedly, the ribosome was rather tolerant toward modifications of single groups either at the base or at the sugar moiety in terms of translation activity. Concerning translation fidelity, the elimination of single chemical groups involved in a hydrogen bonding network between the tRNA, mRNA and rRNA did not change the accuracy of the ribosome. These results indicate that the contribution of those chemical groups and the formed hydrogen bonds are not crucial for ribosomal decoding.
Collapse
Affiliation(s)
- Pius Schrode
- Division of Genomics and RNomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Huter
- Division of Genomics and RNomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Erlacher
- Division of Genomics and RNomics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Luidalepp H, Berger S, Joss O, Tenson T, Polacek N. Ribosome Shut-Down by 16S rRNA Fragmentation in Stationary-Phase Escherichia coli. J Mol Biol 2016; 428:2237-47. [PMID: 27067112 DOI: 10.1016/j.jmb.2016.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/06/2016] [Indexed: 11/26/2022]
Abstract
Stationary-phase bacterial cells are characterized by vastly reduced metabolic activities yielding a dormant-like phenotype. Several hibernation programs ensure the establishment and maintenance of this resting growth state. Some of the stationary phase-specific modulations affect the ribosome and its translational activity directly. In stationary-phase Escherichia coli, we observed the appearance of a 16S rRNA fragmentation event at the tip of helix 6 within the small ribosomal subunit (30S). Stationary-phase 30S subunits showed markedly reduced activities in protein biosynthesis. On the other hand, the functional performance of stationary-phase large ribosomal subunits (50S) was indistinguishable from particles isolated from exponentially growing cells. Introduction of the 16S rRNA cut in vitro at helix 6 of exponential phase 30S subunits renders them less efficient in protein biosynthesis. This indicates that the helix 6 fragmentation is necessary and sufficient to attenuate translational activities of 30S ribosomal subunits. These results suggest that stationary phase-specific cleavage of 16S rRNA within the 30S subunit is an efficient means to reduce global translation activities under non-proliferating growth conditions.
Collapse
Affiliation(s)
- Hannes Luidalepp
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Stefan Berger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oliver Joss
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|
10
|
Koch M, Clementi N, Rusca N, Vögele P, Erlacher M, Polacek N. The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis. RNA Biol 2015; 12:70-81. [PMID: 25826414 PMCID: PMC4615901 DOI: 10.1080/15476286.2015.1017218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During the elongation cycle of protein biosynthesis, tRNAs traverse through the ribosome by consecutive binding to the 3 ribosomal binding sites (A-, P-, and E- sites). While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Previous studies suggested an important functional interaction of the terminal residue A76 of E-tRNA with the nucleobase of the universally conserved 23S rRNA residue C2394. Using an atomic mutagenesis approach to introduce non-natural nucleoside analogs into the 23S rRNA, we could show that removal of the nucleobase or the ribose 2'-OH at C2394 had no effect on protein synthesis. On the other hand, our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.
Collapse
Affiliation(s)
- Miriam Koch
- a Department of Chemistry and Biochemistry; University of Bern ; Bern , Switzerland
| | | | | | | | | | | |
Collapse
|
11
|
Ruehle MD, Zhang H, Sheridan RM, Mitra S, Chen Y, Gonzalez RL, Cooperman BS, Kieft JS. A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation. eLife 2015; 4. [PMID: 26523395 PMCID: PMC4709265 DOI: 10.7554/elife.08146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/01/2015] [Indexed: 01/06/2023] Open
Abstract
Internal ribosome entry sites (IRESs) are powerful model systems to understand how the translation machinery can be manipulated by structured RNAs and for exploring inherent features of ribosome function. The intergenic region (IGR) IRESs from the Dicistroviridae family of viruses are structured RNAs that bind directly to the ribosome and initiate translation by co-opting the translation elongation cycle. These IRESs require an RNA pseudoknot that mimics a codon-anticodon interaction and contains a conformationally dynamic loop. We explored the role of this loop and found that both the length and sequence are essential for translation in different types of IGR IRESs and from diverse viruses. We found that loop 3 affects two discrete elongation factor-dependent steps in the IRES initiation mechanism. Our results show how the IRES directs multiple steps after 80S ribosome placement and highlights the often underappreciated significance of discrete conformationally dynamic elements within the context of structured RNAs. DOI:http://dx.doi.org/10.7554/eLife.08146.001 Many viruses store their genetic information in the form of strands of ribonucleic acid (RNA), which contain building blocks called nucleotides. Once inside an infected cell, the virus hijacks the cellular structures that build proteins (called ribosomes), which forces the cell to start making viral proteins. Many RNA viruses manipulate the cell’s ribosomes using RNA elements called Internal Ribosome Entry Sites, or IRESs. In a family of viruses called Dicistroviridae, which infect a number of insects, a section of the IRES RNA binds directly to the ribosome. Proteins called elongation factors then trigger a series of events that lead to the cell starting to make the viral proteins. By mutating the RNA of many different Dicistroviridae viruses that infect a variety of invertebrates, Ruehle et al. have now investigated how a particular loop in the structure of the IRES helps to make cells build the viral proteins. This loop is flexible, and interacts with the ribosome to enable the IRES to move through the ribosome. Mutations that shorten the loop or alter the sequence of nucleotides in the loop prevent the occurrence of two of the steps that need to occur for the cell to make viral proteins. Both of these steps depend on elongation factors. Determining how the entire IRES might change shape as it moves through the ribosome is an important next step, since the ribosome is exquisitely sensitive to the shape and motions of its binding partners. DOI:http://dx.doi.org/10.7554/eLife.08146.002
Collapse
Affiliation(s)
- Marisa D Ruehle
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Haibo Zhang
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States
| | - Somdeb Mitra
- Department of Chemistry, Columbia University, New York, United States
| | - Yuanwei Chen
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, United States
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Pennsylvania, United States
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States.,Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, United States
| |
Collapse
|
12
|
Abstract
Mg(2+) and K(+) are the prevalent di- and monovalent cations inside the cells in all three domains, playing a dominant role in structure and function of biological macromolecules. Ribosomes bind a substantial fraction of total Mg(2+) and K(+) cations. In this issue of the Journal of Bacteriology, Akanuma and coworkers (G. Akanuma et al., J. Bacteriol. 196:3820-3830, 2014, doi:10.1128/JB.01896-14) report a surprising genetic link between ribosome amounts per cell and the intracellular Mg(2+) concentrations.
Collapse
|
13
|
Yamamoto H, Qin Y, Achenbach J, Li C, Kijek J, Spahn CMT, Nierhaus KH. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat Rev Microbiol 2013; 12:89-100. [PMID: 24362468 DOI: 10.1038/nrmicro3176] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribosomes translate the codon sequence of an mRNA into the amino acid sequence of the corresponding protein. One of the most crucial events is the translocation reaction, which involves movement of both the mRNA and the attached tRNAs by one codon length and is catalysed by the GTPase elongation factor G (EF-G). Interestingly, recent studies have identified a structurally related GTPase, EF4, that catalyses movement of the tRNA2-mRNA complex in the opposite direction when the ribosome stalls, which is known as back-translocation. In this Review, we describe recent insights into the mechanistic basis of both translocation and back-translocation.
Collapse
Affiliation(s)
- Hiroshi Yamamoto
- 1] Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. [2]
| | - Yan Qin
- 1] Laboratory of noncoding RNA, Institute of Biophysics, Chinese Academy of Science; 15 Datun Road, Beijing 100101, China. [2]
| | - John Achenbach
- 1] NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany. [2]
| | - Chengmin Li
- Laboratory of noncoding RNA, Institute of Biophysics, Chinese Academy of Science; 15 Datun Road, Beijing 100101, China
| | - Jaroslaw Kijek
- Max Planck Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Knud H Nierhaus
- 1] Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany. [2] Max Planck Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| |
Collapse
|
14
|
Liu W, Shin D, Tor Y, Cooperman BS. Monitoring translation with modified mRNAs strategically labeled with isomorphic fluorescent guanosine mimetics. ACS Chem Biol 2013; 8:2017-23. [PMID: 23865809 DOI: 10.1021/cb400256h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we examine three mRNAs, site-specifically modified at codon positions 4, 5, and 6 with a new emissive and responsive isosteric guanosine mimetic ((th)G), with the goal of developing real time assays for monitoring translation-related events at nucleotide resolution. All three emissive mRNAs tested form initiation (70SIC), pretranslocation (PRE), and posttranslocation (POST) complexes. In most cases spectral differences are seen on binding of the mRNA to the ribosome during 70SIC formation and on conversion of 70SIC to PRE complexes and PRE complexes to POST complexes. These differences allow measurement of the kinetics of such conversions by changes in the fluorescence of labeled mRNAs. Such measurements directly identify a specific step during PRE complex formation, provisionally assigned to codon:anticodon-loop base pair formation, that follows aa-tRNA.EF-Tu.GTP ternary complex binding to the ribosome and precedes aa-tRNA accommodation into the A-site of the ribosome. These observations demonstrate not only the functionality of mRNAs modified with the emissive guanosine mimetic but also the potential this mimetic offers for observing the formation and disappearance of discrete intermediates during the polypeptide elongation cycle.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia,
Pennsylvania 19104, United States
| | - Dongwon Shin
- Department of Chemistry and
Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yitzhak Tor
- Department of Chemistry and
Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia,
Pennsylvania 19104, United States
| |
Collapse
|
15
|
Self Resistance to the Atypical Cationic Antimicrobial Peptide Edeine of Brevibacillus brevis Vm4 by the N-Acetyltransferase EdeQ. ACTA ACUST UNITED AC 2013; 20:983-90. [DOI: 10.1016/j.chembiol.2013.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/17/2013] [Accepted: 06/23/2013] [Indexed: 11/19/2022]
|
16
|
The paradox of elongation factor 4: highly conserved, yet of no physiological significance? Biochem J 2013; 452:173-81. [DOI: 10.1042/bj20121792] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
LepA [EF4 (elongation factor 4)] is a highly conserved protein found in nearly all known genomes. EF4 triggers back-translocation of the elongating ribosome, causing the translation machinery to move one codon backwards along the mRNA. Knockout of the corresponding gene in various bacteria results in different phenotypes; however, the physiological function of the factor in vivo is unclear. Although functional research on Guf1 (GTPase of unknown function 1), the eukaryotic homologue of EF4, showed that it plays a critical role under suboptimal translation conditions in vivo, its detailed mechanism has yet to be identified. In the present review we briefly cover recent advances in our understanding of EF4, including in vitro structural and biochemical studies, and research on its physiological role in vivo. Lastly, we present a hypothesis for back-translocation and discuss the directions future EF4 research should focus on.
Collapse
|
17
|
Zhang D, Liu G, Xue J, Lou J, Nierhaus KH, Gong W, Qin Y. Common chaperone activity in the G-domain of trGTPase protects L11-L12 interaction on the ribosome. Nucleic Acids Res 2012; 40:10851-65. [PMID: 22965132 PMCID: PMC3505967 DOI: 10.1093/nar/gks833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases-regardless of their different specific functions-use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.
Collapse
Affiliation(s)
- Dandan Zhang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Erlacher MD, Polacek N. Probing functions of the ribosomal peptidyl transferase center by nucleotide analog interference. Methods Mol Biol 2012; 848:215-26. [PMID: 22315072 DOI: 10.1007/978-1-61779-545-9_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ribosome is a huge ribonucleoprotein complex in charge of protein synthesis in every living cell. The catalytic center of this dynamic molecular machine is entirely built up of 23S ribosomal RNA and therefore the ribosome can be referred to as the largest natural ribozyme known so far. The in vitro reconstitution approach of large ribosomal subunits described herein allows nucleotide analog interference studies to be performed. The approach is based on the site-specific introduction of nonnatural nucleotide analogs into the peptidyl transferase center, the active site located on the interface side of the large ribosomal subunit. This method combined with standard tests of ribosomal functions broadens the biochemical repertoire to investigate the mechanism of diverse aspects of translation considerably and adds another layer of molecular information on top of structural and mutational studies of the ribosome.
Collapse
Affiliation(s)
- Matthias D Erlacher
- Division of Genomics and RNomics, Innsbruck Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
19
|
A ribosomal misincorporation of Lys for Arg in human triosephosphate isomerase expressed in Escherichia coli gives rise to two protein populations. PLoS One 2011; 6:e21035. [PMID: 21738601 PMCID: PMC3125179 DOI: 10.1371/journal.pone.0021035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/17/2011] [Indexed: 11/20/2022] Open
Abstract
We previously observed that human homodimeric triosephosphate isomerase (HsTIM) expressed in Escherichia coli and purified to apparent homogeneity exhibits two significantly different thermal transitions. A detailed exploration of the phenomenon showed that the preparations contain two proteins; one has the expected theoretical mass, while the mass of the other is 28 Da lower. The two proteins were separated by size exclusion chromatography in 3 M urea. Both proteins correspond to HsTIM as shown by Tandem Mass Spectrometry (LC/ESI-MS/MS). The two proteins were present in nearly equimolar amounts under certain growth conditions. They were catalytically active, but differed in molecular mass, thermostability, susceptibility to urea and proteinase K. An analysis of the nucleotides in the human TIM gene revealed the presence of six codons that are not commonly used in E. coli. We examined if they were related to the formation of the two proteins. We found that expression of the enzyme in a strain that contains extra copies of genes that encode for tRNAs that frequently limit translation of heterologous proteins (Arg, Ile, Leu), as well as silent mutations of two consecutive rare Arg codons (positions 98 and 99), led to the exclusive production of the more stable protein. Further analysis by LC/ESI-MS/MS showed that the 28 Da mass difference is due to the substitution of a Lys for an Arg residue at position 99. Overall, our work shows that two proteins with different biochemical and biophysical properties that coexist in the same cell environment are translated from the same nucleotide sequence frame.
Collapse
|
20
|
Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis. Nat Protoc 2011; 6:580-92. [PMID: 21527916 DOI: 10.1038/nprot.2011.306] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The protocol describes the site-specific chemical modification of 23S rRNA of Thermus aquaticus ribosomes. The centerpiece of this 'atomic mutagenesis' approach is the site-specific incorporation of non-natural nucleoside analogs into 23S rRNA in the context of the entire 70S ribosome. This technique exhaustively makes use of the available crystallographic structures of the ribosome for designing detailed biochemical experiments aiming at unraveling molecular insights of ribosomal functions. The generation of chemically engineered ribosomes carrying a particular non-natural 23S rRNA residue at the site of interest, a procedure that typically takes less than 2 d, allows the study of translation at the molecular level and goes far beyond the limits of standard mutagenesis approaches. This methodology, in combination with the presented tests for ribosomal functions adapted to chemically engineered ribosomes, allows unprecedented molecular insight into the mechanisms of protein biosynthesis.
Collapse
|
21
|
Elongation factor 4 (EF4/LepA) accelerates protein synthesis at increased Mg2+ concentrations. Proc Natl Acad Sci U S A 2011; 108:3199-203. [PMID: 21300907 DOI: 10.1073/pnas.1012994108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elongation factor 4 (EF4) is one of the most conserved proteins present in bacteria as well as in mitochondria and chloroplasts of eukaryotes. Although EF4 has the unique ability to catalyze the back-translocation reaction on posttranslocation state ribosomes, the physiological role of EF4 remains unclear. Here we demonstrate that EF4 is stored at the membrane of Escherichia coli cells and released into the cytoplasm upon conditions of high ionic strength or low temperature. Under such conditions, wild-type E. coli cells overgrow mutant cells lacking the EF4 gene within 5-10 generations. Elevated intracellular Mg(2+) concentrations or low temperature retard bacterial growth and inhibit protein synthesis, probably because of formation of aberrant elongating ribosomal states. We suggest that EF4 binds to these stuck ribosomes and remobilizes them, consistent with the EF4-dependent enhancement (fivefold) in protein synthesis observed under these unfavorable conditions. The strong selective advantage conferred by the presence of EF4 at high intracellular ionic strength or low temperatures explains the ubiquitous distribution and high conservation of EF4.
Collapse
|
22
|
Handa Y, Inaho N, Nameki N. YaeJ is a novel ribosome-associated protein in Escherichia coli that can hydrolyze peptidyl-tRNA on stalled ribosomes. Nucleic Acids Res 2010; 39:1739-48. [PMID: 21051357 PMCID: PMC3061065 DOI: 10.1093/nar/gkq1097] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In bacteria, ribosomes often become stalled and are released by a trans-translation process mediated by transfer-messenger RNA (tmRNA). In the absence of tmRNA, however, there is evidence that stalled ribosomes are released from non-stop mRNAs. Here, we show a novel ribosome rescue system mediated by a small basic protein, YaeJ, from Escherichia coli, which is similar in sequence and structure to the catalytic domain 3 of polypeptide chain release factor (RF). In vitro translation experiments using the E. coli-based reconstituted cell-free protein synthesis system revealed that YaeJ can hydrolyze peptidyl-tRNA on ribosomes stalled by both non-stop mRNAs and mRNAs containing rare codon clusters that extend downstream from the P-site and prevent Ala-tmRNA•SmpB from entering the empty A-site. In addition, YaeJ had no effect on translation of a normal mRNA with a stop codon. These results suggested a novel tmRNA-independent rescue system for stalled ribosomes in E. coli. YaeJ was almost exclusively found in the 70S ribosome and polysome fractions after sucrose density gradient sedimentation, but was virtually undetectable in soluble fractions. The C-terminal basic residue-rich extension was also found to be required for ribosome binding. These findings suggest that YaeJ functions as a ribosome-attached rescue device for stalled ribosomes.
Collapse
Affiliation(s)
- Yoshihiro Handa
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | | | | |
Collapse
|
23
|
Chadani Y, Ono K, Ozawa SI, Takahashi Y, Takai K, Nanamiya H, Tozawa Y, Kutsukake K, Abo T. Ribosome rescue by Escherichia coli ArfA (YhdL) in the absence of trans-translation system. Mol Microbiol 2010; 78:796-808. [PMID: 21062370 DOI: 10.1111/j.1365-2958.2010.07375.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although SsrA(tmRNA)-mediated trans-translation is thought to maintain the translation capacity of bacterial cells by rescuing ribosomes stalled on messenger RNA lacking an in-frame stop codon, single disruption of ssrA does not crucially hamper growth of Escherichia coli. Here, we identified YhdL (renamed ArfA for alternative ribosome-rescue factor) as a factor essential for the viability of E. coli in the absence of SsrA. The ssrA-arfA synthetic lethality was alleviated by SsrA(DD) , an SsrA variant that adds a proteolysis-refractory tag through trans-translation, indicating that ArfA-deficient cells require continued translation, rather than subsequent proteolysis of the truncated polypeptide. In accordance with this notion, depletion of SsrA in the ΔarfA background led to reduced translation of a model protein without affecting transcription, and puromycin, a codon-independent mimic of aminoacyl-tRNA, rescued the bacterial growth under such conditions. That ArfA takes over the role of SsrA was suggested by the observation that its overexpression enabled detection of the polypeptide encoded by a model non-stop mRNA, which was otherwise SsrA-tagged and degraded. In vitro, purified ArfA acted on a ribosome-nascent chain complex to resolve the peptidyl-tRNA. These results indicate that ArfA rescues the ribosome stalled at the 3' end of a non-stop mRNA without involving trans-translation.
Collapse
Affiliation(s)
- Yuhei Chadani
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Clementi N, Chirkova A, Puffer B, Micura R, Polacek N. Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation. Nat Chem Biol 2010; 6:344-51. [PMID: 20348921 DOI: 10.1038/nchembio.341] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/21/2010] [Indexed: 11/09/2022]
Abstract
Following ribosomal peptide bond formation, the reaction products, peptidyl-tRNA and deacylated tRNA, need to be translocated from the A- and P-sites to the P- and E-sites, respectively. This process is facilitated by the GTPase elongation factor G (EF-G). The mechanism describing how the ribosome activates GTP hydrolysis is poorly understood in molecular terms. By using an 'atomic mutagenesis' approach, which allows the manipulation of specific functional groups on 23S rRNA nucleotides in the context of the entire ribosome, we disclose the adenine exocyclic N6 amino group at A2660 of the sarcin-ricin loop as a key determinant for triggering GTP hydrolysis on EF-G. We show that the purine pi system-expanding characteristics of the exocyclic functional group at the C6 position of A2660 are essential. We propose that stacking interactions of A2660 with EF-G may act as a molecular trigger to induce repositioning of suspected functional amino acids in EF-G that in turn promote GTP hydrolysis.
Collapse
Affiliation(s)
- Nina Clementi
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
25
|
Starosta AL, Karpenko VV, Shishkina AV, Mikolajka A, Sumbatyan NV, Schluenzen F, Korshunova GA, Bogdanov AA, Wilson DN. Interplay between the Ribosomal Tunnel, Nascent Chain, and Macrolides Influences Drug Inhibition. ACTA ACUST UNITED AC 2010; 17:504-14. [DOI: 10.1016/j.chembiol.2010.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/22/2010] [Accepted: 04/02/2010] [Indexed: 12/01/2022]
|
26
|
Chirkova A, Erlacher MD, Clementi N, Zywicki M, Aigner M, Polacek N. The role of the universally conserved A2450-C2063 base pair in the ribosomal peptidyl transferase center. Nucleic Acids Res 2010; 38:4844-55. [PMID: 20375101 PMCID: PMC2919715 DOI: 10.1093/nar/gkq213] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the fact that all 23S rRNA nucleotides that build the ribosomal peptidyl transferase ribozyme are universally conserved, standard and atomic mutagenesis studies revealed the nucleobase identities being non-critical for catalysis. This indicates that these active site residues are highly conserved for functions distinct from catalysis. To gain insight into potential contributions, we have manipulated the nucleobases via an atomic mutagenesis approach and have utilized these chemically engineered ribosomes for in vitro translation reactions. We show that most of the active site nucleobases could be removed without significant effects on polypeptide production. Our data however highlight the functional importance of the universally conserved non-Watson-Crick base pair at position A2450-C2063. Modifications that disrupt this base pair markedly impair translation activities, while having little effects on peptide bond formation, tRNA drop-off and ribosome-dependent EF-G GTPase activity. Thus it seems that disruption of the A2450-C2063 pair inhibits a reaction following transpeptidation and EF-G action during the elongation cycle. Cumulatively our data are compatible with the hypothesis that the integrity of this A-C wobble base pair is essential for effective tRNA translocation through the peptidyl transferase center during protein synthesis.
Collapse
Affiliation(s)
- Anna Chirkova
- Innsbruck Biocenter, Medical University Innsbruck, Division of Genomics and RNomics, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Palaniappan N, Dhote V, Ayers S, Starosta AL, Wilson DN, Reynolds KA. Biosynthesis of the aminocyclitol subunit of hygromycin A in Streptomyces hygroscopicus NRRL 2388. ACTA ACUST UNITED AC 2010; 16:1180-9. [PMID: 19942141 DOI: 10.1016/j.chembiol.2009.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 09/25/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
The antibacterial activity of hygromycin A (HA) arises from protein synthesis inhibition and is dependent upon a methylenedioxy bridged-aminocyclitol moiety. Selective gene deletions and chemical complementation in Streptomyces hygroscopicus NRRL 2388 showed that the hyg18 and hyg25 gene products, proposed to generate a myo-inositol intermediate, are dispensable for HA biosynthesis but contribute to antibiotic yields. Hyg8 and Hyg17, proposed to introduce the amine functionality, are essential for HA biosynthesis. Hyg6 is a methyltransferase acting on the aminocyclitol, and a Deltahyg6 mutant produces desmethylenehygromycin A. Deletion of hyg7, a metallo-dependant hydrolase homolog gene, resulted in methoxyhygromycin A production, demonstrating that the corresponding gene product is responsible for the proposed oxidative cyclization step of methylenedioxy bridge formation. The methyl/methylene group is not required for in vitro protein synthesis inhibition but is essential for activity against Escherichia coli.
Collapse
|
28
|
The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol 2010; 17:289-93. [PMID: 20154709 PMCID: PMC2917106 DOI: 10.1038/nsmb.1755] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 11/18/2022]
Abstract
Viomycin and capreomycin belong to the tuberactinomycin family of antibiotics, which are among the most effective antibiotics against multidrug-resistant tuberculosis. Here we present two crystal structures of the 70S ribosome complexed with three tRNAs and bound to either viomycin or capreomycin at 3.3 and 3.5 Å resolution, respectively. Both antibiotics bind to the same site on the ribosome, which lies at the interface between helix 44 (h44) of the small ribosomal subunit and Helix 69 (H69) of the large ribosomal subunit. The structures of these complexes suggest that the tuberactinomycins inhibit translocation by stabilizing the tRNA in the A site in the pre-translocation state. In addition these structures show that the tuberactinomycins bind adjacent to the paromomycin and hygromycin B antibiotics, which may enable the development of new derivatives of tuberactinomycins that are effective against drug resistant strains.
Collapse
|
29
|
Liu H, Pan D, Pech M, Cooperman BS. Interrupted catalysis: the EF4 (LepA) effect on back-translocation. J Mol Biol 2010; 396:1043-52. [PMID: 20045415 DOI: 10.1016/j.jmb.2009.12.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/17/2022]
Abstract
EF4, although structurally similar to the translocase EF-G, promotes back-translocation of tRNAs on the ribosome and is important for bacterial growth under certain conditions. Here, using a coordinated set of in vitro kinetic measures, including changes in the puromycin reactivity of peptidyl-tRNA and in the fluorescence of labeled tRNAs and mRNA, we elucidate the kinetic mechanism of EF4-catalyzed back-translocation and determine the effects of the translocation inhibitors spectinomycin and viomycin on the process. EF4-dependent back-translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex via a four-step kinetic scheme (i.e., POST-->I(1)-->I(2)-->I(3)-->PRE, which is not the simple reverse of translocation). During back-translocation, movements of the tRNA core regions and of mRNA are closely coupled to one another but are sometimes decoupled from movement of the 3'-end of peptidyl-tRNA. EF4 may be thought of as performing an interrupted catalysis of back-translocation, stopping at the formation of I(3) rather than catalyzing the complete process of back-translocation culminating in PRE complex formation. The delay in polypeptide elongation resulting from transient accumulation of I(3) is likely to be important for optimizing functional protein biosynthesis.
Collapse
MESH Headings
- Base Sequence
- Catalysis
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Kinetics
- Models, Biological
- Peptide Initiation Factors
- Puromycin/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomes/metabolism
- Spectrometry, Fluorescence
- Transcriptional Elongation Factors/genetics
- Transcriptional Elongation Factors/metabolism
Collapse
Affiliation(s)
- Hanqing Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
30
|
Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett 2009; 584:413-9. [PMID: 19914241 DOI: 10.1016/j.febslet.2009.11.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 11/23/2022]
Abstract
tmRNA is a unique bi-functional RNA that acts as both a tRNA and an mRNA to enter stalled ribosomes and direct the addition of a peptide tag to the C terminus of nascent polypeptides. Despite a reasonably clear understanding of tmRNA activity, the reason for its absolute conservation throughout the eubacteria is unknown. Although tmRNA plays many physiological roles in different bacterial systems, recent studies suggest a general role for trans-translation in monitoring protein folding and perhaps other co-translational processes. This review will focus on these new hypotheses and the data that support them.
Collapse
|
31
|
Abstract
Protein synthesis is one of the major targets in the cell for antibiotics. This review endeavors to provide a comprehensive "post-ribosome structure" A-Z of the huge diversity of antibiotics that target the bacterial translation apparatus, with an emphasis on correlating the vast wealth of biochemical data with more recently available ribosome structures, in order to understand function. The binding site, mechanism of action, and modes of resistance for 26 different classes of protein synthesis inhibitors are presented, ranging from ABT-773 to Zyvox. In addition to improving our understanding of the process of translation, insight into the mechanism of action of antibiotics is essential to the development of novel and more effective antimicrobial agents to combat emerging bacterial resistance to many clinically-relevant drugs.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, LMU, Munich, Germany.
| |
Collapse
|
32
|
Starosta AL, Qin H, Mikolajka A, Leung GYC, Schwinghammer K, Chen DYK, Cooperman BS, Wilson DN. Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays. CHEMISTRY & BIOLOGY 2009; 16:1087-96. [PMID: 19875082 PMCID: PMC3117328 DOI: 10.1016/j.chembiol.2009.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/06/2009] [Accepted: 09/10/2009] [Indexed: 11/20/2022]
Abstract
Most thiopeptide antibiotics target the translational machinery: thiostrepton (ThS) and nosiheptide (NoS) target the ribosome and inhibit translation factor function, whereas GE2270A/T binds to the elongation factor EF-Tu and prevents ternary complex formation. We have used several in vitro translational machinery assays to screen a library of thiopeptide antibiotic precursor compounds and identified four families of precursor compounds that are either themselves inhibitory or are able to relieve the inhibitory effects of ThS, NoS, or GE2270T. Some of these precursors represent distinct compounds with respect to their ability to bind to ribosomes. The results not only provide insight into the mechanism of action of thiopeptide compounds but also demonstrate the potential of such assays for identifying lead compounds that might be missed using conventional inhibitory screening protocols.
Collapse
Affiliation(s)
- Agata L. Starosta
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - Haiou Qin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Aleksandra Mikolajka
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - Gulice Y. C. Leung
- Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03–08 Singapore 138667
| | - Kathrin Schwinghammer
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - David Y.-K. Chen
- Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03–08 Singapore 138667
| | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Daniel N. Wilson
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| |
Collapse
|
33
|
The final step of hygromycin A biosynthesis, oxidation of C-5''-dihydrohygromycin A, is linked to a putative proton gradient-dependent efflux. Antimicrob Agents Chemother 2009; 53:5163-72. [PMID: 19770276 DOI: 10.1128/aac.01069-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hygromycin A (HA) is an aminocyclitol antibiotic produced and excreted by Streptomyces hygroscopicus. Deletion of hyg26 from the hygromycin A biosynthetic gene cluster has previously been shown to result in a mutant that produces 5''-dihydrohygromycin A (DHHA). We report herein on the purification and characterization of Hyg26 expressed in Escherichia coli. The enzyme catalyzes an NAD(H)-dependent reversible interconversion of HA and DHHA, supporting the role of the reduced HA as the penultimate biosynthetic pathway intermediate and not a shunt product. The equilibrium for the Hyg26-catalyzed reaction heavily favors the DHHA intermediate. The high-titer production of the HA product by S. hygroscopicus must be dependent upon a subsequent energetically favorable enzyme-catalyzed process, such as the selective and efficient export of HA. hyg19 encodes a putative proton gradient-dependent transporter, and a mutant lacking this gene was observed to produce less HA and to produce the DHHA intermediate. The DHHA produced by either the Deltahyg19 or the Deltahyg26 mutant had slightly reduced activity against E. coli and reduced protein synthesis-inhibitory activity in vitro. The data indicate that Hyg26 and Hyg19 have evolved to produce and export the final potent HA product in a coordinated fashion.
Collapse
|
34
|
Janssen BD, Hayes CS. Kinetics of paused ribosome recycling in Escherichia coli. J Mol Biol 2009; 394:251-67. [PMID: 19761774 DOI: 10.1016/j.jmb.2009.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/09/2009] [Accepted: 09/09/2009] [Indexed: 11/29/2022]
Abstract
The bacterial tmRNA.SmpB system recycles stalled translation complexes in a process termed 'ribosome rescue.' tmRNA.SmpB specifically recognizes ribosomes that are paused at or near the 3' end of truncated mRNA; therefore, nucleolytic mRNA processing is required before paused ribosomes can be rescued from full-length transcripts. Here, we examine the recycling of ribosomes paused on both full-length and truncated mRNAs. Peptidyl-tRNAs corresponding to each paused translation complex were identified, and their turnover kinetics was used to estimate the half-lives of paused ribosomes in vivo. Ribosomes were paused at stop codons on full-length mRNA using a nascent peptide motif that interferes with translation termination and elicits tmRNA.SmpB activity. Peptidyl-tRNA turnover from these termination-paused ribosomes was slightly more rapid in tmRNA(+) cells (T(1/2)=22+/-2.2 s) than in DeltatmRNA cells (T(1/2)=32+/-1.6 s). Overexpression of release factor (RF) 1 greatly accelerated peptidyl-tRNA turnover from termination-paused ribosomes in both tmRNA(+) and DeltatmRNA cells, whereas other termination factors had little or no effect on recycling. In contrast to inefficient translation termination, ribosome recycling from truncated transcripts lacking in-frame stop codons was dramatically accelerated by tmRNA.SmpB. However, peptidyl-tRNA still turned over from nonstop-paused ribosomes at a significant rate (t(1/2)=61+/-7.3 s) in DeltatmRNA cells. Overexpression of RF-1, RF-3, and ribosome recycling factor in DeltatmRNA cells failed to accelerate ribosome recycling from nonstop mRNA. These results indicate that tmRNA.SmpB activity is rate limited by mRNA cleavage, and that RF-3 and ribosome recycling factor do not constitute a tmRNA-independent rescue pathway, as previously suggested. Peptidyl-tRNA turnover from nonstop-paused ribosomes in DeltatmRNA cells suggests the existence of another uncharacterized ribosome rescue pathway.
Collapse
Affiliation(s)
- Brian D Janssen
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
35
|
Quality control by the ribosome following peptide bond formation. Nature 2008; 457:161-6. [PMID: 19092806 DOI: 10.1038/nature07582] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/24/2008] [Indexed: 11/08/2022]
Abstract
The overall fidelity of protein synthesis has been thought to rely on the combined accuracy of two basic processes: the aminoacylation of transfer RNAs with their cognate amino acid by the aminoacyl-tRNA synthetases, and the selection of cognate aminoacyl-tRNAs by the ribosome in cooperation with the GTPase elongation factor EF-Tu. These two processes, which together ensure the specific acceptance of a correctly charged cognate tRNA into the aminoacyl (A) site, operate before peptide bond formation. Here we report the identification of an additional mechanism that contributes to high fidelity protein synthesis after peptidyl transfer, using a well-defined in vitro bacterial translation system. In this retrospective quality control step, the incorporation of an amino acid from a non-cognate tRNA into the growing polypeptide chain leads to a general loss of specificity in the A site of the ribosome, and thus to a propagation of errors that results in abortive termination of protein synthesis.
Collapse
|
36
|
Petropoulos AD, Kouvela EC, Starosta AL, Wilson DN, Dinos GP, Kalpaxis DL. Time-resolved binding of azithromycin to Escherichia coli ribosomes. J Mol Biol 2008; 385:1179-92. [PMID: 19071138 DOI: 10.1016/j.jmb.2008.11.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/13/2008] [Accepted: 11/18/2008] [Indexed: 11/19/2022]
Abstract
Azithromycin is a semisynthetic derivative of erythromycin that inhibits bacterial protein synthesis by binding within the peptide exit tunnel of the 50S ribosomal subunit. Nevertheless, there is still debate over what localization is primarily responsible for azithromycin binding and as to how many molecules of the drug actually bind per ribosome. In the present study, kinetic methods and footprinting analysis are coupled together to provide time-resolved details of the azithromycin binding process. It is shown that azithromycin binds to Escherichia coli ribosomes in a two-step process: The first-step involves recognition of azithromycin by the ribosomal machinery and places the drug in a low-affinity site located in the upper part of the exit tunnel. The second step corresponds to the slow formation of a final complex that is both much tighter and more potent in hindering the progression of the nascent peptide through the exit tunnel. Substitution of uracil by cytosine at nucleoside 2609 of 23S rRNA, a base implicated in the high-affinity site, facilitates the shift of azithromycin to this site. In contrast, mutation U754A hardly affects the binding process. Binding of azithromycin to both sites is hindered by high concentrations of Mg(2+) ions. Unlike Mg(2+) ions, polyamines do not significantly affect drug binding to the low-affinity site but attenuate the formation of the final complex. The low- and high-affinity sites of azithromycin binding are mutually exclusive, which means that one molecule of the drug binds per E. coli ribosome at a time. In contrast, kinetic and binding data indicate that in Deinococcus radiodurans, two molecules of azithromycin bind cooperatively to the ribosome. This finding confirms previous crystallographic results and supports the notion that species-specific structural differences may primarily account for the apparent discrepancies between the antibiotic binding modes obtained for different organisms.
Collapse
|
37
|
Shine-Dalgarno interaction prevents incorporation of noncognate amino acids at the codon following the AUG. Proc Natl Acad Sci U S A 2008; 105:10715-20. [PMID: 18667704 DOI: 10.1073/pnas.0801974105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During translation, usually only one in approximately 400 misincorporations affects the function of a nascent protein, because only chemically similar near-cognate amino acids are misincorporated in place of the cognate one. The deleterious misincorporation of a chemically dissimilar noncognate amino acid during the selection process is precluded by the presence of a tRNA at the ribosomal E-site. However, the selection of first aminoacyl-tRNA, directly after initiation, occurs without an occupied E-site, i.e., when only the P-site is filled with the initiator tRNA and thus should be highly error-prone. Here, we show how bacterial ribosomes have solved this accuracy problem: In the absence of a Shine-Dalgarno (SD) sequence, the first decoding step at the A-site after initiation is extremely error-prone, even resulting in the significant incorporation of noncognate amino acids. In contrast, when a SD sequence is present, the incorporation of noncognate amino acids is not observed. This is precisely the effect that the presence of a cognate tRNA at the E-site has during the elongation phase. These findings suggest that during the initiation phase, the SD interaction functionally compensates for the lack of codon-anticodon interaction at the E-site by reducing the misincorporation of near-cognate amino acids and prevents noncognate misincorporation.
Collapse
|
38
|
Budkevich TV, El'skaya AV, Nierhaus KH. Features of 80S mammalian ribosome and its subunits. Nucleic Acids Res 2008; 36:4736-44. [PMID: 18632761 PMCID: PMC2504317 DOI: 10.1093/nar/gkn424] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is generally believed that basic features of ribosomal functions are universally valid, but a systematic test still stands out for higher eukaryotic 80S ribosomes. Here we report: (i) differences in tRNA and mRNA binding capabilities of eukaryotic and bacterial ribosomes and their subunits. Eukaryotic 40S subunits bind mRNA exclusively in the presence of cognate tRNA, whereas bacterial 30S do bind mRNA already in the absence of tRNA. 80S ribosomes bind mRNA efficiently in the absence of tRNA. In contrast, bacterial 70S interact with mRNA more productively in the presence rather than in the absence of tRNA. (ii) States of initiation (Pi), pre-translocation (PRE) and post-translocation (POST) of the ribosome were checked and no significant functional differences to the prokaryotic counterpart were observed including the reciprocal linkage between A and E sites. (iii) Eukaryotic ribosomes bind tetracycline with an affinity 15 times lower than that of bacterial ribosomes (Kd 30 μM and 1–2 μM, respectively). The drug does not effect enzymatic A-site occupation of 80S ribosomes in contrast to non-enzymatic tRNA binding to the A-site. Both observations explain the relative resistance of eukaryotic ribosomes to this antibiotic.
Collapse
Affiliation(s)
- Tatyana V Budkevich
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, D-14195 Berlin, Germany
| | | | | |
Collapse
|