1
|
Lim SJ, Choi M, Yun I, Lee S, Chang N, Lee CY. Development of Fluorescent Bacteria with Lux and Riboflavin Genes. Int J Mol Sci 2023; 24:ijms24065096. [PMID: 36982169 PMCID: PMC10049116 DOI: 10.3390/ijms24065096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Lumazine protein from marine luminescent bacteria of Photobacterium species bind with very high affinity to the fluorescent chromophore 6,7-dimethyl-8-ribitylumazine. The light emission of bacterial luminescent systems is used as a sensitive, rapid, and safe assay for an ever-increasing number of biological systems. Plasmid pRFN4, containing the genes encoding riboflavin from the rib operon of Bacillus subtilis, was designed for the overproduction of lumazine. To construct fluorescent bacteria for use as microbial sensors, novel recombinant plasmids (pRFN4-Pp N-lumP and pRFN4-Pp luxLP N-lumP) were constructed by amplifying the DNA encoding the N-lumP gene (luxL) from P. phosphoreum and the promoter region (luxLP) present upstream of the lux operon of the gene by PCR and ligating into the pRFN4-Pp N-lumP plasmid. A new recombinant plasmid, pRFN4-Pp luxLP-N-lumP, was constructed with the expectation that the fluorescence intensity would be further increased when transformed into Escherichia coli. When this plasmid was transformed into E. coli 43R, the fluorescence intensity of transformants was 500 times greater than that of E. coli alone. As a result, the recombinant plasmid in which the gene encoding N-LumP and DNA containing the lux promoter exhibited expression that was so high as to show fluorescence in single E. coli cells. The fluorescent bacterial systems developed in the present study using lux and riboflavin genes can be utilized in the future as biosensors with high sensitivity and rapid analysis times.
Collapse
Affiliation(s)
- Sun-Joo Lim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Miae Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Inseop Yun
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seulgi Lee
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ny Chang
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chan-Yong Lee
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
Lim S, Oh E, Choi M, Lee E, Lee CY. Generation of Fluorescent Bacteria with the Genes Coding for Lumazine Protein and Riboflavin Biosynthesis. SENSORS 2021; 21:s21134506. [PMID: 34209387 PMCID: PMC8272222 DOI: 10.3390/s21134506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. The pRFN4 plasmid, which contains the riboflavin synthesis genes from Bacillus subtilis, was originally designed for overproduction of the fluorescent ligand of 6,7-dimethyl 8-ribityllumazine. To provide the basis for a biosensor based on the lux gene from bioluminescent bacteria of Photobacterium leiognathi, the gene coding for N-terminal domain half of the lumazine protein extending to amino acid 112 (N-LumP) and the gene for whole lumazine protein (W-LumP) from P. leiognathi were introduced by polymerase chain reaction (PCR) and ligated into pRFN4 vector, to construct the recombinant plasmids of N-lumP-pRFN4 and W-lumP-pRFN4 as well as their modified plasmids by insertion of the lux promoter. The expression of the genes in the recombinant plasmids was checked in various Escherichia coli strains, and the fluorescence intensity in Escherichia coli 43R can even be observed in a single cell. These results concerning the co-expression of the genes coding for lumazine protein and for riboflavin synthesis raise the possibility to generate fluorescent bacteria which can be used in the field of bio-imaging.
Collapse
|
3
|
Xu G, Yang S. Diverse evolutionary origins of microbial [4 + 2]-cyclases in natural product biosynthesis. Int J Biol Macromol 2021; 182:154-161. [PMID: 33836196 DOI: 10.1016/j.ijbiomac.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Natural [4 + 2]-cyclases catalyze concerted cycloaddition during biosynthesis of over 400 natural products reported. Microbial [4 + 2]-cyclases are structurally diverse with a broad range of substrates. Thus far, about 52 putative microbial [4 + 2]-cyclases of 13 different types have been characterized, with over 20 crystal structures. However, how these cyclases have evolved during natural product biosynthesis remains elusive. Structural and phylogenetic analyses suggest that these different types of [4 + 2]-cyclases might have diverse evolutionary origins, such as reductases, dehydratases, methyltransferases, oxidases, etc. Divergent evolution of enzyme function might have occurred in these different families. Understanding the independent evolutionary history of these cyclases would provide new insights into their catalysis mechanisms and the biocatalyst design.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Lee J, Müller F, Visser AJWG. The Sensitized Bioluminescence Mechanism of Bacterial Luciferase. Photochem Photobiol 2018; 95:679-704. [PMID: 30485901 DOI: 10.1111/php.13063] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/17/2018] [Indexed: 11/27/2022]
Abstract
After more than one-half century of investigations, the mechanism of bioluminescence from the FMNH2 assisted oxygen oxidation of an aliphatic aldehyde on bacterial luciferase continues to resist elucidation. There are many types of luciferase from species of bioluminescent bacteria originating from both marine and terrestrial habitats. The luciferases all have close sequence homology, and in vitro, a highly efficient light generation is obtained from these natural metabolites as substrates. Sufficient exothermicity equivalent to the energy of a blue photon is available in the chemical oxidation of the aldehyde to the corresponding carboxylic acid, and a luciferase-bound FMNH-OOH is a key player. A high energy species, the source of the exothermicity, is unknown except that it is not a luciferin cyclic peroxide, a dioxetanone, as identified in the pathway of the firefly and the marine bioluminescence systems. Besides these natural substrates, variable bioluminescence properties are found using other reactants such as flavin analogs or aldehydes, but results also depend on the luciferase type. Some rationalization of the mechanism has resulted from spatial structure determination, NMR of intermediates and dynamic optical spectroscopy. The overall light path appears to fall into the sensitized class of chemiluminescence mechanism, distinct from the dioxetanone types.
Collapse
Affiliation(s)
- John Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | | | - Antonie J W G Visser
- Laboratory of Biochemistry Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
5
|
Brodl E, Winkler A, Macheroux P. Molecular Mechanisms of Bacterial Bioluminescence. Comput Struct Biotechnol J 2018; 16:551-564. [PMID: 30546856 PMCID: PMC6279958 DOI: 10.1016/j.csbj.2018.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023] Open
Abstract
Bioluminescence refers to the production of light by living organisms. Bioluminescent bacteria with a variety of bioluminescence emission characteristics have been identified in Vibrionaceae, Shewanellaceae and Enterobacteriaceae. Bioluminescent bacteria are mainly found in marine habitats and they are either free-floating, sessile or have specialized to live in symbiosis with other marine organisms. On the molecular level, bioluminescence is enabled by a cascade of chemical reactions catalyzed by enzymes encoded by the lux operon with the gene order luxCDABEG. The luxA and luxB genes encode the α- and β- subunits, respectively, of the enzyme luciferase producing the light emitting species. LuxC, luxD and luxE constitute the fatty acid reductase complex, responsible for the synthesis of the long-chain aldehyde substrate and luxG encodes a flavin reductase. In bacteria, the heterodimeric luciferase catalyzes the monooxygenation of long-chain aliphatic aldehydes to the corresponding acids utilizing reduced FMN and molecular oxygen. The energy released as a photon results from an excited state flavin-4a-hydroxide, emitting light centered around 490 nm. Advances in the mechanistic understanding of bacterial bioluminescence have been spurred by the structural characterization of protein encoded by the lux operon. However, the number of available crystal structures is limited to LuxAB (Vibrio harveyi), LuxD (Vibrio harveyi) and LuxF (Photobacterium leiognathi). Based on the crystal structure of LuxD and homology models of LuxC and LuxE, we provide a hypothetical model of the overall structure of the LuxCDE fatty acid reductase complex that is in line with biochemical observations.
Collapse
Affiliation(s)
| | | | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
6
|
Lee J. Perspectives on Bioluminescence Mechanisms. Photochem Photobiol 2016; 93:389-404. [PMID: 27748947 DOI: 10.1111/php.12650] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/24/2016] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms of the bioluminescence systems of the firefly, bacteria and those utilizing imidazopyrazinone luciferins such as coelenterazine are gradually being uncovered using modern biophysical methods such as dynamic (ns-ps) fluorescence spectroscopy, NMR, X-ray crystallography and computational chemistry. The chemical structures of all reactants are well defined, and the spatial structures of the luciferases are providing important insight into interactions within the active cavity. It is generally accepted that the firefly and coelenterazine systems, although proceeding by different chemistries, both generate a dioxetanone high-energy species that undergoes decarboxylation to form directly the product in its S1 state, the bioluminescence emitter. More work is still needed to establish the structure of the products completely. In spite of the bacterial system receiving the most research attention, the chemical pathway for excitation remains mysterious except that it is clearly not by a decarboxylation. Both the coelenterazine and bacterial systems have in common of being able to employ "antenna proteins," lumazine protein and the green-fluorescent protein, for tuning the color of the bioluminescence. Spatial structure information has been most valuable in informing the mechanism of the Ca2+ -regulated photoproteins and the antenna protein interactions.
Collapse
Affiliation(s)
- John Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| |
Collapse
|
7
|
Genetically encoded sensors of protein hydrodynamics and molecular proximity. Proc Natl Acad Sci U S A 2015; 112:E2569-74. [PMID: 25931526 DOI: 10.1073/pnas.1424021112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specialized light organ of the ponyfish supports the growth of the bioluminescent symbiont Photobacterium leiognathi. The bioluminescence of P. leiognathi is generated within a heteromeric protein complex composed of the bacterial luciferase and a 20-kDa lumazine binding protein (LUMP), which serves as a Förster resonance energy transfer (FRET) acceptor protein, emitting a cyan-colored fluorescence with an unusually long excited state lifetime of 13.6 ns. The long fluorescence lifetime and small mass of LUMP are exploited for the design of highly optimized encoded sensors for quantitative fluorescence anisotropy (FA) measurements of protein hydrodynamics. In particular, large differences in the FA values of the free and target-bound states of LUMP fusions appended with capture sequences of up to 20 kDa are used in quantitative FA imaging and analysis of target proteins. For example, a fusion protein composed of LUMP and a 5-kDa G protein binding domain is used as an FA sensor to quantify the binding of the GTP-bound cell division control protein 42 homolog (Cdc42) (21 kDa) in solution and within Escherichia coli. Additionally, the long fluorescence lifetime and the surface-bound fluorescent cofactor 6,7-dimethyl-8- (1'-dimethyl-ribityl) lumazine in LUMP are utilized in the design of highly optimized FRET probes that use Venus as an acceptor probe. The efficiency of FRET in a zero-length LUMP-Venus fusion is 62% compared to ∼ 31% in a related CFP-Venus fusion. The improved FRET efficiency obtained by using LUMP as a donor probe is used in the design of a FRET-optimized genetically encoded LUMP-Venus substrate for thrombin.
Collapse
|
8
|
Haase I, Gräwert T, Illarionov B, Bacher A, Fischer M. Recent advances in riboflavin biosynthesis. Methods Mol Biol 2014; 1146:15-40. [PMID: 24764086 DOI: 10.1007/978-1-4939-0452-5_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Riboflavin is biosynthesized from GTP and ribulose 5-phosphate. Whereas the early reactions conducing to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione 5'-phosphate show significant taxonomic variation, the subsequent reaction steps are universal in all taxonomic kingdoms. With the exception of a hitherto elusive phosphatase, all enzymes of the pathway have been characterized in some detail at the structural and mechanistic level. Some of the pathway enzymes (GTP cycloyhdrolase II, 3,4-dihydroxy-2-butanone 4-phosphate synthase, riboflavin synthase) have exceptionally complex reaction mechanisms. The commercial production of the vitamin is now entirely based on highly productive fermentation processes. Due to their absence in animals, the pathway enzymes are potential targets for the development of novel anti-infective drugs.
Collapse
Affiliation(s)
- Ilka Haase
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146, Hamburg, Germany
| | | | | | | | | |
Collapse
|
9
|
Paulus B, Illarionov B, Nohr D, Roellinger G, Kacprzak S, Fischer M, Weber S, Bacher A, Schleicher E. One Protein, Two Chromophores: Comparative Spectroscopic Characterization of 6,7-Dimethyl-8-ribityllumazine and Riboflavin Bound to Lumazine Protein. J Phys Chem B 2014; 118:13092-105. [DOI: 10.1021/jp507618f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bernd Paulus
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Boris Illarionov
- Institute for Biochemistry & Food Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Daniel Nohr
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Guillaume Roellinger
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Sylwia Kacprzak
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Markus Fischer
- Institute for Biochemistry & Food Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Stefan Weber
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| | - Adelbert Bacher
- Institute for Biochemistry & Food Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
- Chemistry
Department, Technical University Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Erik Schleicher
- Institute
of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstrasse
21, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Kang KS, Kim SY, Lee JH, Nam KS, Lee EH, Lee CY. Spectrofluorometric Properties of N-Terminal Domain of Lumazine Protein from Photobacterium leiognathi. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.6.1673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Ladenstein R, Fischer M, Bacher A. The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system. FEBS J 2013; 280:2537-63. [PMID: 23551830 DOI: 10.1111/febs.12255] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/30/2022]
Abstract
The xylene ring of riboflavin (vitamin B2 ) is assembled from two molecules of 3,4-dihydroxy-2-butanone 4-phosphate by a mechanistically complex process that is jointly catalyzed by lumazine synthase and riboflavin synthase. In Bacillaceae, these enzymes form a structurally unique complex comprising an icosahedral shell of 60 lumazine synthase subunits and a core of three riboflavin synthase subunits, whereas many other bacteria have empty lumazine synthase capsids, fungi, Archaea and some eubacteria have pentameric lumazine synthases, and the riboflavin synthases of Archaea are paralogs of lumazine synthase. The structures of the molecular ensembles have been studied in considerable detail by X-ray crystallography, X-ray small-angle scattering and electron microscopy. However, certain mechanistic aspects remain unknown. Surprisingly, the quaternary structure of the icosahedral β subunit capsids undergoes drastic changes, resulting in formation of large, quasi-spherical capsids; this process is modulated by sequence mutations. The occurrence of large shells consisting of 180 or more lumazine synthase subunits has recently generated interest for protein engineering topics, particularly the construction of encapsulation systems.
Collapse
Affiliation(s)
- Rudolf Ladenstein
- Department of Bioscience and Nutrition, Karolinska Institutet NOVUM, SE-14183 Huddinge, Sweden.
| | | | | |
Collapse
|
12
|
Titushin MS, Feng Y, Lee J, Vysotski ES, Liu ZJ. Protein-protein complexation in bioluminescence. Protein Cell 2012; 2:957-72. [PMID: 22231355 DOI: 10.1007/s13238-011-1118-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022] Open
Abstract
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca(2+)-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of Xray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
Collapse
Affiliation(s)
- Maxim S Titushin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
13
|
Kim SY, Kim RR, Choi JS, Kim YD, Lee CY. Purification and Characterization of the Amino-Terminal Domain of Lumazine Protein from Photobacterium leiognathi. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.04.1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Crystal structures of the lumazine protein from Photobacterium kishitanii in complexes with the authentic chromophore, 6,7-dimethyl- 8-(1'-D-ribityl) lumazine, and its analogues, riboflavin and flavin mononucleotide, at high resolution. J Bacteriol 2010; 192:127-33. [PMID: 19854891 DOI: 10.1128/jb.01015-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lumazine protein (LumP) is a fluorescent accessory protein having 6,7-dimethyl-8-(1'-d-ribityl) lumazine (DMRL) as its authentic chromophore. It modulates the emission of bacterial luciferase to shorter wavelengths with increasing luminous strength. To obtain structural information on the native structure as well as the interaction with bacterial luciferase, we have determined the crystal structures of LumP from Photobacterium kishitanii in complexes with DMRL and its analogues, riboflavin (RBF) and flavin mononucleotide (FMN), at resolutions of 2.00, 1.42, and 2.00 A. LumP consists of two beta barrels that have nearly identical folds, the N-terminal and C-terminal barrels. The structures of LumP in complex with all of the chromophores studied are all essentially identical, except around the chromophores. In all of the structures, the chromophore is tethered to the narrow cavity via many hydrogen bonds in the N-terminal domain. These are absent in the C-terminal domain. Hydrogen bonding in LumP-FMN is decreased in comparison with that in LumP-RBF because the phosphate moiety of FMN protrudes out of the narrow cavity. In LumP-DMRL, the side chain of Gln65 is close to the ring system, and a new water molecule that stabilizes the ligand is observed near Ser48. Therefore, DMRL packs more tightly in the ligand-binding site than RBF or FMN. A docking simulation of bacterial luciferase and LumP suggests that the chromophore is located close enough for direct energy transfer to occur. Moreover, the surface potentials around the ligand-binding sites of LumP and bacterial luciferase exhibit complementary charge distributions, which would have a significant effect on the interaction between LumP and luciferase.
Collapse
|