1
|
Sivaloganathan DM, Wan X, Leon G, Brynildsen MP. Loss of Gre factors leads to phenotypic heterogeneity and cheating in Escherichia coli populations under nitric oxide stress. mBio 2024; 15:e0222924. [PMID: 39248572 PMCID: PMC11498084 DOI: 10.1128/mbio.02229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Nitric oxide (·NO) is one of the toxic metabolites that bacteria can be exposed to within phagosomes. Gre factors, which are also known as transcript cleavage factors or transcription elongation factors, relieve back-tracked transcription elongation complexes by cleaving nascent RNAs, which allows transcription to resume after stalling. Here we discovered that loss of both Gre factors in Escherichia coli, GreA and GreB, significantly compromised ·NO detoxification due to ·NO-induced phenotypic heterogeneity in ΔgreAΔgreB populations, which did not occur in wild-type cultures. Under normal culturing conditions, both wild-type and ΔgreAΔgreB synthesized transcripts uniformly, whereas treatment with ·NO led to bimodal transcript levels in ΔgreAΔgreB that were unimodal in wild-type. Interestingly, exposure to another toxic metabolite of phagosomes, hydrogen peroxide (H2O2), produced analogous results. Furthermore, we showed that loss of Gre factors led to cheating under ·NO stress where transcriptionally deficient cells benefited from the detoxification activities of the transcriptionally proficient subpopulation. Collectively, these results show that loss of Gre factor activities produces phenotypic heterogeneity under ·NO and H2O2 stress that can yield cheating between subpopulations.IMPORTANCEToxic metabolite stress occurs in a broad range of contexts that are important to human health, microbial ecology, and biotechnology, whereas Gre factors are highly conserved throughout the bacterial kingdom. Here we discovered that loss of Gre factors in E. coli leads to phenotypic heterogeneity under ·NO and H2O2 stress, which we further show with ·NO results in cheating between subpopulations. Collectively, these data suggest that Gre factors play a role in coping with toxic metabolite stress, and that loss of Gre factors can produce cheating between neighbors.
Collapse
Affiliation(s)
| | - Xuanqing Wan
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Gabrielle Leon
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| | - Mark P. Brynildsen
- Department of Chemical
and Biological Engineering, Princeton
University, Princeton,
New Jersey, USA
| |
Collapse
|
2
|
Homologs of the Escherichia coli F Element Protein TraR, Including Phage Lambda Orf73, Directly Reprogram Host Transcription. mBio 2022; 13:e0095222. [PMID: 35583320 PMCID: PMC9239242 DOI: 10.1128/mbio.00952-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacterial cells and their associated plasmids and bacteriophages encode numerous small proteins of unknown function. One example, the 73-amino-acid protein TraR, is encoded by the transfer operon of the conjugative F plasmid of Escherichia coli. TraR is a distant homolog of DksA, a protein found in almost all proteobacterial species that is required for ppGpp to regulate transcription during the stringent response. TraR and DksA increase or decrease transcription initiation depending on the kinetic features of the promoter by binding directly to RNA polymerase without binding to DNA. Unlike DksA, whose full activity requires ppGpp as a cofactor, TraR is fully active by itself and unaffected by ppGpp. TraR belongs to a family of divergent proteins encoded by proteobacterial bacteriophages and other mobile elements. Here, we experimentally addressed whether other members of the TraR family function like the F element-encoded TraR. Purified TraR and all 5 homologs that were examined bound to RNA polymerase, functioned at lower concentrations than DksA, and complemented a dksA-null strain for growth on minimal medium. One of the homologs, λ Orf73, encoded by bacteriophage lambda, was examined in greater detail. λ Orf73 slowed host growth and increased phage burst size. Mutational analysis suggested that λ Orf73 and TraR have a similar mechanism for inhibiting rRNA and r-protein promoters. We suggest that TraR and its homologs regulate host transcription to divert cellular resources to phage propagation or conjugation without induction of ppGpp and a stringent response.
Collapse
|
3
|
Donaldson LW. Molecular Modeling the Proteins from the exo-xis Region of Lambda and Shigatoxigenic Bacteriophages. Antibiotics (Basel) 2021; 10:1282. [PMID: 34827220 PMCID: PMC8614690 DOI: 10.3390/antibiotics10111282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Despite decades of intensive research on bacteriophage lambda, a relatively uncharacterized region remains between the exo and xis genes. Collectively, exo-xis region genes are expressed during the earliest stages of the lytic developmental cycle and are capable of affecting the molecular events associated with the lysogenic-lytic developmental decision. In Shiga toxin-producing E. coli (STEC) and enterohemorragic E. coli (EHEC) that are responsible for food- and water-borne outbreaks throughout the world, there are distinct differences of exo-xis region genes from their counterparts in lambda phage. Together, these differences may help EHEC-specific phage and their bacterial hosts adapt to the complex environment within the human intestine. Only one exo-xis region protein, Ea8.5, has been solved to date. Here, I have used the AlphaFold and RoseTTAFold machine learning algorithms to predict the structures of six exo-xis region proteins from lambda and STEC/EHEC phages. Together, the models suggest possible roles for exo-xis region proteins in transcription and the regulation of RNA polymerase.
Collapse
|
4
|
Bergkessel M. Bacterial transcription during growth arrest. Transcription 2021; 12:232-249. [PMID: 34486930 PMCID: PMC8632087 DOI: 10.1080/21541264.2021.1968761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022] Open
Abstract
Bacteria in most natural environments spend substantial periods of time limited for essential nutrients and not actively dividing. While transcriptional activity under these conditions is substantially reduced compared to that occurring during active growth, observations from diverse organisms and experimental approaches have shown that new transcription still occurs and is important for survival. Much of our understanding of transcription regulation has come from measuring transcripts in exponentially growing cells, or from in vitro experiments focused on transcription from highly active promoters by the housekeeping RNA polymerase holoenzyme. The fact that transcription during growth arrest occurs at low levels and is highly heterogeneous has posed challenges for its study. However, new methods of measuring low levels of gene expression activity, even in single cells, offer exciting opportunities for directly investigating transcriptional activity and its regulation during growth arrest. Furthermore, much of the rich structural and biochemical data from decades of work on the bacterial transcriptional machinery is also relevant to growth arrest. In this review, the physiological changes likely affecting transcription during growth arrest are first considered. Next, possible adaptations to help facilitate ongoing transcription during growth arrest are discussed. Finally, new insights from several recently published datasets investigating mRNA transcripts in single bacterial cells at various growth phases will be explored. Keywords: Growth arrest, stationary phase, RNA polymerase, nucleoid condensation, population heterogeneity.
Collapse
|
5
|
Mutational analysis of Escherichia coli GreA protein reveals new functional activity independent of antipause and lethal when overexpressed. Sci Rep 2020; 10:16074. [PMID: 32999370 PMCID: PMC7527559 DOI: 10.1038/s41598-020-73069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing appreciation for the diverse regulatory consequences of the family of proteins that bind to the secondary channel of E. coli RNA polymerase (RNAP), such as GreA, GreB or DksA. Similar binding sites could suggest a competition between them. GreA is characterised to rescue stalled RNAP complexes due to its antipause activity, but also it is involved in transcription fidelity and proofreading. Here, overexpression of GreA is noted to be lethal independent of its antipause activity. A library of random GreA variants has been used to isolate lethality suppressors to assess important residues for GreA functionality and its interaction with the RNA polymerase. Some mutant defects are inferred to be associated with altered binding competition with DksA, while other variants seem to have antipause activity defects that cannot reverse a GreA-sensitive pause site in a fliC::lacZ reporter system. Surprisingly, apparent binding and cleavage defects are found scattered throughout both the coiled-coil and globular domains. Thus, the coiled-coil of GreA is not just a measuring stick ensuring placement of acidic residues precisely at the catalytic centre but also seems to have binding functions. These lethality suppressor mutants may provide valuable tools for future structural and functional studies.
Collapse
|
6
|
Multicopy Suppressor Analysis of Strains Lacking Cytoplasmic Peptidyl-Prolyl cis/trans Isomerases Identifies Three New PPIase Activities in Escherichia coli That Includes the DksA Transcription Factor. Int J Mol Sci 2020; 21:ijms21165843. [PMID: 32823955 PMCID: PMC7461557 DOI: 10.3390/ijms21165843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.
Collapse
|
7
|
Joseph A, Nagaraja V, Natesh R. Mycobacterial transcript cleavage factor Gre, exhibits chaperone-like activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:757-764. [PMID: 31125617 DOI: 10.1016/j.bbapap.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 02/05/2023]
Abstract
Gre factors reactivate stalled elongation complexes by enhancing the intrinsic transcript cleavage activity of RNA polymerase. Previous work by us has shown that unlike in Escherichia coli (E.coli), Mycobacterium tuberculosis Gre factor is essential for its survival. Apart from their role in transcription regulation Gre factors have been implicated in stress response. A recent study has shown the role of E.coli GreA as a cellular chaperone, which inhibits aggregation of substrate proteins under heat stress condition. Moreover it was shown that GreA enables E.coli to survive heat shock and oxidative stress. In the current work, we have characterized the moonlighting chaperone activity and its plausible mechanism in Mycobacterium smegmatis Gre (MsGre) factor. We show here that MsGre prevents heat-induced aggregation of the substrate protein and also protects enzymatic activity. Interestingly Gre factor exists as a dimer in solution and does not undergo heat induced oligomerization. From the 8-anilino-1-naphthalene sulfonate (ANS) binding studies MsGre was shown to expose hydrophobic surface upon heat stress that would allow binding to unfolded or partially folded substrate protein. From Circular Dichroism (CD) studies, we also show that MsGre has a stable secondary structure under thermal stress. We propose that the presence of C-terminal FKBP-like fold in MsGre factor that might contribute to its chaperone-like function.
Collapse
Affiliation(s)
- Abyson Joseph
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Trivandrum, Kerala 695551, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology Unit, Indian Institute of Science, Bangalore, Karnataka, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, Karnataka, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Trivandrum, Kerala 695551, India.
| |
Collapse
|
8
|
Puzzling conformational changes affecting proteins binding to the RNA polymerase. Proc Natl Acad Sci U S A 2018; 115:12550-12552. [PMID: 30498028 DOI: 10.1073/pnas.1818361115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
9
|
Joseph A, Nagaraja V, Natesh R. MSMEG_6292, a Mycobacterium smegmatis RNA polymerase secondary channel-binding protein: purification, crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:543-548. [PMID: 30198886 PMCID: PMC6130422 DOI: 10.1107/s2053230x18009755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/09/2018] [Indexed: 11/10/2022] Open
Abstract
The transcriptional activity of RNA polymerase (RNAP) is controlled by a diverse set of regulatory factors. A subset of these regulators modulate the activity of RNAP through its secondary channel. Gre factors reactivate stalled elongation complexes by enhancing the intrinsic cleavage activity of RNAP. In the present study, the protein MSMEG_6292, a Gre-factor homologue from Mycobacterium smegmatis, was expressed heterologously in Escherichia coli and purified using standard chromatographic techniques. The hanging-drop vapour-diffusion crystallization method yielded diffraction-quality crystals. The crystals belonged to the trigonal space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 83.15, c = 107.07 Å, α = β = 90, γ = 120°. The crystals diffracted to better than 3.0 Å resolution. Molecular-replacement attempts did not yield any phasing models; hence, platinum derivatization was carried out with K2PtCl4 and derivative data were collected to 3.4 Å resolution.
Collapse
Affiliation(s)
- Abyson Joseph
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, Kerala 695 016, India
| | - Valakunja Nagaraja
- Microbiology and Cell Biology Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramanathan Natesh
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, Kerala 695 016, India
| |
Collapse
|
10
|
Pseudomonas aeruginosa cells attached to a surface display a typical proteome early as 20 minutes of incubation. PLoS One 2017; 12:e0180341. [PMID: 28678862 PMCID: PMC5498041 DOI: 10.1371/journal.pone.0180341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Abstract
Biofilms are present in all environments and often result in negative effects due to properties of the biofilm lifestyle and especially antibiotics resistance. Biofilms are associated with chronic infections. Controlling bacterial attachment, the first step of biofilm formation, is crucial for fighting against biofilm and subsequently preventing the persistence of infection. Thus deciphering the underlying molecular mechanisms involved in attachment could allow discovering molecular targets from it would be possible to develop inhibitors against bacterial colonization and potentiate antibiotherapy. To identify the key components and pathways that aid the opportunistic pathogen Pseudomonas aeruginosa in attachment we performed for the first time a proteomic analysis as early as after 20 minutes of incubation using glass wool fibers as a surface. We compared the protein contents of the attached and unattached bacteria. Using mass spectrometry, 3043 proteins were identified. Our results showed that, as of 20 minutes of incubation, using stringent quantification criteria 616 proteins presented a modification of their abundance in the attached cells compared to their unattached counterparts. The attached cells presented an overall reduced gene expression and characteristics of slow-growing cells. The over-accumulation of outer membrane proteins, periplasmic folding proteins and O-antigen chain length regulators was also observed, indicating a profound modification of the cell envelope. Consistently the sigma factor AlgU required for cell envelope homeostasis was highly over-accumulated in attached cells. In addition our data suggested a role of alarmone (p)ppGpp and polyphosphate during the early attachment phase. Furthermore, almost 150 proteins of unknown function were differentially accumulated in the attached cells. Our proteomic analysis revealed the existence of distinctive biological features in attached cells as early as 20 minutes of incubation. Analysis of some mutants demonstrated the interest of this proteomic approach in identifying genes involved in the early phase of adhesion to a surface.
Collapse
|
11
|
TraR directly regulates transcription initiation by mimicking the combined effects of the global regulators DksA and ppGpp. Proc Natl Acad Sci U S A 2017; 114:E5539-E5548. [PMID: 28652326 PMCID: PMC5514744 DOI: 10.1073/pnas.1704105114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli F element-encoded protein TraR is a distant homolog of the chromosome-encoded transcription factor DksA. Here we address the mechanism by which TraR acts as a global regulator, inhibiting some promoters and activating others. We show that TraR regulates transcription directly in vitro by binding to the secondary channel of RNA polymerase (RNAP) using interactions similar, but not identical, to those of DksA. Even though it binds to RNAP with only slightly higher affinity than DksA and is only half the size of DksA, TraR by itself inhibits transcription as strongly as DksA and ppGpp combined and much more than DksA alone. Furthermore, unlike DksA, TraR activates transcription even in the absence of ppGpp. TraR lacks the residues that interact with ppGpp in DksA, and TraR binding to RNAP uses the residues in the β' rim helices that contribute to the ppGpp binding site in the DksA-ppGpp-RNAP complex. Thus, unlike DksA, TraR does not bind ppGpp. We propose a model in which TraR mimics the effects of DksA and ppGpp together by binding directly to the region of the RNAP secondary channel that otherwise binds ppGpp, and its N-terminal region, like the coiled-coil tip of DksA, engages the active-site region of the enzyme and affects transcription allosterically. These data provide insights into the function not only of TraR but also of an evolutionarily widespread and diverse family of TraR-like proteins encoded by bacteria, as well as bacteriophages and other extrachromosomal elements.
Collapse
|
12
|
A Cre Transcription Fidelity Reporter Identifies GreA as a Major RNA Proofreading Factor in Escherichia coli. Genetics 2017; 206:179-187. [PMID: 28341651 PMCID: PMC5419468 DOI: 10.1534/genetics.116.198960] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/04/2017] [Indexed: 12/21/2022] Open
Abstract
We made a coupled genetic reporter that detects rare transcription misincorporation errors to measure RNA polymerase transcription fidelity in Escherichia coli. Using this reporter, we demonstrated in vivo that the transcript cleavage factor GreA, but not GreB, is essential for proofreading of a transcription error where a riboA has been misincorporated instead of a riboG. A greA mutant strain had more than a 100-fold increase in transcription errors relative to wild-type or a greB mutant. However, overexpression of GreB in ΔgreA cells reduced the misincorporation errors to wild-type levels, demonstrating that GreB at high concentration could substitute for GreA in RNA proofreading activity in vivo.
Collapse
|
13
|
Regulation of transcription initiation by Gfh factors from Deinococcus radiodurans. Biochem J 2016; 473:4493-4505. [PMID: 27754888 DOI: 10.1042/bcj20160659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
Transcription factors of the Gre family bind within the secondary channel of bacterial RNA polymerase (RNAP) directly modulating its catalytic activities. Universally conserved Gre factors activate RNA cleavage by RNAP, by chelating catalytic metal ions in the RNAP active site, and facilitate both promoter escape and transcription elongation. Gfh factors are Deinococcus/Thermus-specific homologues of Gre factors whose transcription functions remain poorly understood. Recently, we found that Gfh1 and Gfh2 proteins from Deinococcus radiodurans dramatically stimulate RNAP pausing during transcription elongation in the presence of Mn2+, but not Mg2+, ions. In contrast, we show that Gfh1 and Gfh2 moderately inhibit transcription initiation in the presence of either Mg2+ or Mn2+ ions. By using a molecular beacon assay, we demonstrate that Gfh1 and Gfh2 do not significantly change promoter complex stability or the rate of promoter escape by D. radiodurans RNAP. At the same time, Gfh factors significantly increase the apparent KM value for the 5'-initiating nucleotide, without having major effects on the affinity of metal ions for the RNAP active site. Similar inhibitory effects of Gfh factors are observed for transcription initiation on promoters recognized by the principal and an alternative σ factor. In summary, our data suggest that D. radiodurans Gfh factors impair the binding of initiating substrates independently of the metal ions bound in the RNAP active site, but have only mild overall effects on transcription initiation. Thus the mechanisms of modulation of RNAP activity by these factors are different for various steps of transcription.
Collapse
|
14
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
15
|
Satory D, Gordon AJE, Wang M, Halliday JA, Golding I, Herman C. DksA involvement in transcription fidelity buffers stochastic epigenetic change. Nucleic Acids Res 2015; 43:10190-9. [PMID: 26304546 PMCID: PMC4666387 DOI: 10.1093/nar/gkv839] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/09/2015] [Indexed: 01/25/2023] Open
Abstract
DksA is an auxiliary transcription factor that interacts with RNA polymerase and influences gene expression. Depending on the promoter, DksA can be a positive or negative regulator of transcription initiation. Moreover, DksA has a substantial effect on transcription elongation where it prevents the collision of transcription and replication machineries, plays a key role in maintaining transcription elongation when translation and transcription are uncoupled and has been shown to be involved in transcription fidelity. Here, we assessed the role of DksA in transcription fidelity by monitoring stochastic epigenetic switching in the lac operon (with and without an error-prone transcription slippage sequence), partial phenotypic suppression of a lacZ nonsense allele, as well as monitoring the number of lacI mRNA transcripts produced in the presence and absence of DksA via an operon fusion and single molecule fluorescent in situ hybridization studies. We present data showing that DksA acts to maintain transcription fidelity in vivo and the role of DksA seems to be distinct from that of the GreA and GreB transcription fidelity factors.
Collapse
Affiliation(s)
- Dominik Satory
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengyu Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
16
|
New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel. Biomolecules 2015; 5:1195-209. [PMID: 26120903 PMCID: PMC4598747 DOI: 10.3390/biom5031195] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022] Open
Abstract
Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.
Collapse
|
17
|
Yuzenkova Y, Gamba P, Herber M, Attaiech L, Shafeeq S, Kuipers OP, Klumpp S, Zenkin N, Veening JW. Control of transcription elongation by GreA determines rate of gene expression in Streptococcus pneumoniae. Nucleic Acids Res 2014; 42:10987-99. [PMID: 25190458 PMCID: PMC4176173 DOI: 10.1093/nar/gku790] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/28/2023] Open
Abstract
Transcription by RNA polymerase may be interrupted by pauses caused by backtracking or misincorporation that can be resolved by the conserved bacterial Gre-factors. However, the consequences of such pausing in the living cell remain obscure. Here, we developed molecular biology and transcriptome sequencing tools in the human pathogen Streptococcus pneumoniae and provide evidence that transcription elongation is rate-limiting on highly expressed genes. Our results suggest that transcription elongation may be a highly regulated step of gene expression in S. pneumoniae. Regulation is accomplished via long-living elongation pauses and their resolution by elongation factor GreA. Interestingly, mathematical modeling indicates that long-living pauses cause queuing of RNA polymerases, which results in 'transcription traffic jams' on the gene and thus blocks its expression. Together, our results suggest that long-living pauses and RNA polymerase queues caused by them are a major problem on highly expressed genes and are detrimental for cell viability. The major and possibly sole function of GreA in S. pneumoniae is to prevent formation of backtracked elongation complexes.
Collapse
Affiliation(s)
- Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Pamela Gamba
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martijn Herber
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Laetitia Attaiech
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Stefan Klumpp
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
18
|
Gopalkrishnan S, Nicoloff H, Ades SE. Co-ordinated regulation of the extracytoplasmic stress factor, sigmaE, with other Escherichia coli sigma factors by (p)ppGpp and DksA may be achieved by specific regulation of individual holoenzymes. Mol Microbiol 2014; 93:479-93. [PMID: 24946009 DOI: 10.1111/mmi.12674] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 12/01/2022]
Abstract
The E. coli alternative sigma factor, σ(E) , transcribes genes required to maintain the cell envelope and is activated by conditions that destabilize the envelope. σ(E) is also activated during entry into stationary phase in the absence of envelope stress by the alarmone (p)ppGpp. (p)ppGpp controls a large regulatory network, reducing expression of σ(70) -dependent genes required for rapid growth and activating σ(70) -dependent and alternative sigma factor-dependent genes required for stress survival. The DksA protein often potentiates the effects of (p)ppGpp. Here we examine regulation of σ(E) by (p)ppGpp and DksA following starvation for nutrients. We find that (p)ppGpp is required for increased σ(E) activity under all conditions tested, but the requirement for DksA varies. DksA is required during amino acid starvation, but is dispensable during phosphate starvation. In contrast, regulation of σ(S) is (p)ppGpp- and DksA-dependent under all conditions tested, while negative regulation of σ(70) is DksA- but not (p)ppGpp-dependent during phosphate starvation, yet requires both factors during amino acid starvation. These findings suggest that the mechanism of transcriptional regulation by (p)ppGpp and/or DksA cannot yet be explained by a unifying model and is specific to individual promoters, individual holoenzymes, and specific starvation conditions.
Collapse
Affiliation(s)
- Saumya Gopalkrishnan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | | |
Collapse
|
19
|
A Rhodobacter sphaeroides protein mechanistically similar to Escherichia coli DksA regulates photosynthetic growth. mBio 2014; 5:e01105-14. [PMID: 24781745 PMCID: PMC4010833 DOI: 10.1128/mbio.01105-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
ABSTRACT DksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the "stringent response" to nutrient starvation in the gammaproteobacterium Escherichia coli and for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly related Rhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length to E. coli DksA but lacks the Zn finger motif of the E. coli DksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of an E. coli strain lacking the dksA gene and modulates transcription in vitro with E. coli RNA polymerase (RNAP) similarly to E. coli DksA. RSP2654 reduces RNAP-promoter complex stability in vitro with RNAPs from E. coli or R. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity to E. coli DksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsp has distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp. IMPORTANCE The role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis in Rhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.
Collapse
|
20
|
Characterization of a novel RNA polymerase mutant that alters DksA activity. J Bacteriol 2013; 195:4187-94. [PMID: 23852871 DOI: 10.1128/jb.00382-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The auxiliary factor DksA is a global transcription regulator and, with the help of ppGpp, controls the nutritional stress response in Escherichia coli. Although the consequences of its modulation of RNA polymerase (RNAP) are becoming better explained, it is still not fully understood how the two proteins interact. We employed a series of genetic suppressor selections to find residues in RNAP that alter its sensitivity to DksA. Our approach allowed us to identify and genetically characterize in vivo three single amino acid substitutions: β' E677G, β V146F, and β G534D. We demonstrate that the mutation β' E677G affects the activity of both DksA and its homolog, TraR, but does not affect the action of other secondary interactors, such as GreA or GreB. Our mutants provide insight into how different auxiliary transcription factors interact with RNAP and contribute to our understanding of how different stages of transcription are regulated through the secondary channel of RNAP in vivo.
Collapse
|
21
|
An insertion in the catalytic trigger loop gates the secondary channel of RNA polymerase. J Mol Biol 2012; 425:82-93. [PMID: 23147217 DOI: 10.1016/j.jmb.2012.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/29/2012] [Accepted: 11/06/2012] [Indexed: 12/20/2022]
Abstract
Escherichia coli DksA and GreB bind to RNA polymerase (RNAP), reaching inside the secondary channel, with similar affinities but have different cellular functions. DksA destabilizes promoter complexes whereas GreB facilitates RNA cleavage in arrested elongation complexes (ECs). Although the less abundant GreB may not interfere with DksA regulation during initiation, reports that DksA acts during elongation and termination suggest that it may exclude GreB from arrested complexes, potentially triggering genome instability. Here, we show that GreB does not compete with DksA during termination whereas DksA, even when present in several hundredfold molar excess, does not inhibit GreB-mediated cleavage of the nascent RNA. Our findings that DksA does not bind to backtracked or active ECs provide an explanation for the lack of DksA activity on most ECs that we reported previously, raising a question of what makes a transcription complex susceptible to DksA. Structural modeling suggests that i6, an insertion in the catalytic trigger loop, hinders DksA access into the channel, restricting DksA action to a subset of transcription complexes. In support of this hypothesis, we demonstrate that deletion of i6 permits DksA binding to ECs and that the distribution of DksA and i6 in bacterial genomes is strongly concordant. We hypothesize that DksA binds to transcription complexes in which i6 becomes mobile, for example, as a consequence of weakened RNAP interactions with the downstream duplex DNA.
Collapse
|
22
|
Iyer LM, Aravind L. Insights from the architecture of the bacterial transcription apparatus. J Struct Biol 2011; 179:299-319. [PMID: 22210308 DOI: 10.1016/j.jsb.2011.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/14/2011] [Accepted: 12/18/2011] [Indexed: 10/14/2022]
Abstract
We provide a portrait of the bacterial transcription apparatus in light of the data emerging from structural studies, sequence analysis and comparative genomics to bring out important but underappreciated features. We first describe the key structural highlights and evolutionary implications emerging from comparison of the cellular RNA polymerase subunits with the RNA-dependent RNA polymerase involved in RNAi in eukaryotes and their homologs from newly identified bacterial selfish elements. We describe some previously unnoticed domains and the possible evolutionary stages leading to the RNA polymerases of extant life forms. We then present the case for the ancient orthology of the basal transcription factors, the sigma factor and TFIIB, in the bacterial and the archaeo-eukaryotic lineages. We also present a synopsis of the structural and architectural taxonomy of specific transcription factors and their genome-scale demography. In this context, we present certain notable deviations from the otherwise invariant proteome-wide trends in transcription factor distribution and use it to predict the presence of an unusual lineage-specifically expanded signaling system in certain firmicutes like Paenibacillus. We then discuss the intersection between functional properties of transcription factors and the organization of transcriptional networks. Finally, we present some of the interesting evolutionary conundrums posed by our newly gained understanding of the bacterial transcription apparatus and potential areas for future explorations.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, Room 5N50, Bethesda, MD 20894, USA
| | | |
Collapse
|
23
|
Inhibition of Mycobacterium tuberculosis RNA polymerase by binding of a Gre factor homolog to the secondary channel. J Bacteriol 2011; 194:1009-17. [PMID: 22194445 DOI: 10.1128/jb.06128-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because of its essential nature, each step of transcription, viz., initiation, elongation, and termination, is subjected to elaborate regulation. A number of transcription factors modulate the rates of transcription at these different steps, and several inhibitors shut down the process. Many modulators, including small molecules and proteinaceous inhibitors, bind the RNA polymerase (RNAP) secondary channel to control transcription. We describe here the first small protein inhibitor of transcription in Mycobacterium tuberculosis. Rv3788 is a homolog of the Gre factors that binds near the secondary channel of RNAP to inhibit transcription. The factor also affected the action of guanosine pentaphosphate (pppGpp) on transcription and abrogated Gre action, indicating its function in the modulation of the catalytic center of RNAP. Although it has a Gre factor-like domain organization with the conserved acidic residues in the N terminus and retains interaction with RNAP, the factor did not show any transcript cleavage stimulatory activity. Unlike Rv3788, another Gre homolog from Mycobacterium smegmatis, MSMEG_6292 did not exhibit transcription-inhibitory activities, hinting at the importance of the former in influencing the lifestyle of M. tuberculosis.
Collapse
|
24
|
Proshkin SA, Mironov AS. Regulation of bacterial transcription elongation. Mol Biol 2011. [DOI: 10.1134/s0026893311020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Potrykus K, Murphy H, Chen X, Epstein JA, Cashel M. Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL. Nucleic Acids Res 2009; 38:1636-51. [PMID: 20008510 PMCID: PMC2836576 DOI: 10.1093/nar/gkp1150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We report that greA expression is driven by two strong, overlapping P1 and P2 promoters. The P1 promoter is σ70-dependent and P2 is σE-dependent. Two-thirds of transcripts terminate within the leader region and the remaining third comprises greA mRNA. Termination efficiency seems to be unaffected by growth phase. Two collections of small 40–50 (initiating from P2) and 50–60 nt (from P1) RNA chains, termed GraL, are demonstrable in vivo and in vitro. We document that GraL arrays arise from an intrinsic terminator with an 11 bp stem followed by an AU7GCU2 sequence. Atypical chain termination occurs at multiple sites; the 3′-ends differ by 1 nt over a range of 10 nt. Transcripts observed are shown to be insensitive to Gre factors and physically released from RNAP–DNA complexes. The abundance of individual chains within each cluster displays a characteristic pattern, which can be differentially altered by oligonucleotide probes. Multiple termination sites are particularly sensitive to changes at the bottom of the stem. Evolutionarily conserved GraL stem structures and fitness assays suggest a biological function for the RNA clusters themselves. Although GraL overexpression induces ≥3-fold transcriptional changes of over 100 genes, a direct target remains elusive.
Collapse
Affiliation(s)
- Katarzyna Potrykus
- Laboratory of Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD 20892-2785, USA.
| | | | | | | | | |
Collapse
|
26
|
Vassylyev DG. Elongation by RNA polymerase: a race through roadblocks. Curr Opin Struct Biol 2009; 19:691-700. [PMID: 19896365 DOI: 10.1016/j.sbi.2009.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/10/2009] [Accepted: 10/07/2009] [Indexed: 01/22/2023]
Abstract
Transcription is the first and most regulated step of gene expression. RNA polymerase (RNAP) is the heart of the transcription machinery and a major target for numerous regulatory pathways in living cells. The crystal structures of transcription complexes formed by bacterial RNAP in various configurations have provided a number of breakthroughs in understanding basic, universal mechanisms of transcription and have revealed regulatory 'hot spots' in RNAP that serve as targets and anchors for auxiliary transcription factors. In combination with biochemical analyses, these structures allow feasible modeling of the regulatory complexes for which experimental structural data are still missing. The available structural information suggests a number of general mechanistic predictions that provide a reference point and direction for future studies of transcription regulation.
Collapse
Affiliation(s)
- Dmitry G Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B KAUL Genetics Building, 720 20th Street South, Birmingham, AL 35294, United States.
| |
Collapse
|
27
|
Stepanova EV, Shevelev AB, Borukhov SI, Severinov KV. Mechanisms of action of RNA polymerase-binding transcription factors that do not bind to DNA. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909050017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Super DksAs: substitutions in DksA enhancing its effects on transcription initiation. EMBO J 2009; 28:1720-31. [PMID: 19424178 DOI: 10.1038/emboj.2009.126] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/07/2009] [Indexed: 11/08/2022] Open
Abstract
At specific times during bacterial growth, the transcription factor DksA and the unusual nucleotide regulator ppGpp work synergistically to inhibit some Escherichia coli promoters (e.g. rRNA promoters) and to stimulate others (e.g. promoters for amino-acid synthesis and transport). However, the mechanism of DksA action remains uncertain, in part because DksA does not function like conventional transcription factors. To gain insights into DksA function, we identified mutations in dksA that bypassed the requirement for ppGpp by selecting for growth of cells lacking ppGpp on minimal medium without amino acids. We show here that two substitutions in DksA, L15F and N88I, result in higher DksA activity both in vivo and in vitro, primarily by increasing the apparent affinity of DksA for RNA polymerase (RNAP). The mutant DksA proteins suggest potential roles for ppGpp in DksA function, identify potential surfaces on DksA crucial for RNAP binding, and provide tools for future studies to elucidate the mechanism of DksA action.
Collapse
|
29
|
Similar and divergent effects of ppGpp and DksA deficiencies on transcription in Escherichia coli. J Bacteriol 2009; 191:3226-36. [PMID: 19251846 DOI: 10.1128/jb.01410-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The concerted action of ppGpp and DksA in transcription has been widely documented. In disparity with this model, phenotypic studies showed that ppGpp and DksA might also have independent and opposing roles in gene expression in Escherichia coli. In this study we used a transcriptomic approach to compare the global transcriptional patterns of gene expression in strains deficient in ppGpp (ppGpp(0)) and/or DksA (DeltadksA). Approximately 6 and 7% of all genes were significantly affected by more than twofold in ppGpp- and DksA-deficient strains, respectively, increasing to 13% of all genes in the ppGpp(0) DeltadksA strain. Although the data indicate that most of the affected genes were copositively or conegatively regulated by ppGpp and DksA, some genes that were independently and/or differentially regulated by the two factors were found. The large functional group of chemotaxis and flagellum synthesis genes were notably differentially affected, with all genes being upregulated in the DksA-deficient strain but 60% of them being downregulated in the ppGpp-deficient strain. Revealingly, mutations in the antipausing Gre factors suppress the upregulation observed in the DksA-deficient strain, emphasizing the importance of the secondary channel of the RNA polymerase for regulation and fine-tuning of gene expression in E. coli.
Collapse
|
30
|
Blankschien MD, Potrykus K, Grace E, Choudhary A, Vinella D, Cashel M, Herman C. TraR, a homolog of a RNAP secondary channel interactor, modulates transcription. PLoS Genet 2009; 5:e1000345. [PMID: 19148274 PMCID: PMC2613031 DOI: 10.1371/journal.pgen.1000345] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 12/17/2008] [Indexed: 12/03/2022] Open
Abstract
Recent structural and biochemical studies have identified a novel control mechanism of gene expression mediated through the secondary channel of RNA Polymerase (RNAP) during transcription initiation. Specifically, the small nucleotide ppGpp, along with DksA, a RNAP secondary channel interacting factor, modifies the kinetics of transcription initiation, resulting in, among other events, down-regulation of ribosomal RNA synthesis and up-regulation of several amino acid biosynthetic and transport genes during nutritional stress. Until now, this mode of regulation of RNAP was primarily associated with ppGpp. Here, we identify TraR, a DksA homolog that mimics ppGpp/DksA effects on RNAP. First, expression of TraR compensates for dksA transcriptional repression and activation activities in vivo. Second, mutagenesis of a conserved amino acid of TraR known to be critical for DksA function abolishes its activity, implying both structural and functional similarity to DksA. Third, unlike DksA, TraR does not require ppGpp for repression of the rrnB P1 promoter in vivo and in vitro or activation of amino acid biosynthesis/transport genes in vivo. Implications for DksA/ppGpp mechanism and roles of TraR in horizontal gene transfer and virulence are discussed. Control of gene expression is central for cell operation. Transcription regulation is a first step to control gene expression and is largely mediated by DNA-binding factors. These recruit or prevent RNA polymerase binding to promoters of specific genes. Recently, a novel way to control transcription has emerged from studying nutritional stress in bacteria. In this case, a small nucleotide effector, ppGpp, with the help of a protein DksA, interacts with the secondary channel of RNAP, affecting RNA polymerase kinetics at promoters without binding to specific DNA sequences. This interaction results in up-regulation and down-regulation of genes involved in responding to nutritional stress. This work describes TraR, a factor found on conjugative plasmids that can regulate gene expression similarly to DksA, but in the absence of any nucleotide effector, like ppGpp. Thus, regulation of transcription similarly to DksA/ppGpp may be a more general mechanism. The presence of TraR on conjugative plasmids suggests a role for TraR in pathogenicity, virulence, and antibiotic resistance. These observations should provide a basis for new studies designed to combat antibiotic resistance and virulence in emerging pathogens.
Collapse
Affiliation(s)
- Matthew D. Blankschien
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katarzyna Potrykus
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elicia Grace
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Abha Choudhary
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniel Vinella
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Cashel
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|