1
|
Using the Culex pipiens sperm proteome to identify elements essential for mosquito reproduction. PLoS One 2023; 18:e0280013. [PMID: 36795667 PMCID: PMC9934393 DOI: 10.1371/journal.pone.0280013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/19/2022] [Indexed: 02/17/2023] Open
Abstract
Mature sperm from Culex pipiens were isolated and analyzed by mass spectrometry to generate a mature sperm proteome dataset. In this study, we highlight subsets of proteins related to flagellar structure and sperm motility and compare the identified protein components to previous studies examining essential functions of sperm. The proteome includes 1700 unique protein IDs, including a number of uncharacterized proteins. Here we discuss those proteins that may contribute to the unusual structure of the Culex sperm flagellum, as well as potential regulators of calcium mobilization and phosphorylation pathways that regulate motility. This database will prove useful for understanding the mechanisms that activate and maintain sperm motility as well as identify potential molecular targets for mosquito population control.
Collapse
|
2
|
Zhu Z, Wang J, Tan J, Yao Y, He Z, Xie X, Yan Z, Fu W, Liu Q, Wang Y, Luo T, Bian X. Calcyphosine promotes the proliferation of glioma cells and serves as a potential therapeutic target. J Pathol 2021; 255:374-386. [PMID: 34370292 PMCID: PMC9291001 DOI: 10.1002/path.5776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/01/2022]
Abstract
Calcyphosine (CAPS) was initially identified from the canine thyroid. It also exists in many types of tumor, but its expression and function in glioma remain unknown. Here we explored the clinical significance and the functional mechanisms of CAPS in glioma. We found that CAPS was highly expressed in glioma and high expression of CAPS was correlated with poor survival, in glioma patients and public databases. Cox regression analysis showed that CAPS was an independent prognostic factor for glioma patients. Knockdown of CAPS suppressed the proliferation, whereas overexpression of CAPS promoted the proliferation of glioma both in vitro and in vivo. CAPS regulated the G2/M phase transition of the cell cycle, but had no obvious effect on apoptosis. CAPS affected PLK1 phosphorylation through interaction with MYPT1. CAPS knockdown decreased p‐MYPT1 at S507 and p‐PLK1 at S210. Expression of MYPT1 S507 phosphomimic rescued PLK1 phosphorylation and the phenotype caused by CAPS knockdown. The PLK1 inhibitor volasertib enhanced the therapeutic effect of temozolomide in glioma. Our data suggest that CAPS promotes the proliferation of glioma by regulating the cell cycle and the PLK1 inhibitor volasertib might be a chemosensitizer of glioma. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zheng Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Research Department, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Juan Tan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yueliang Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiaoqing Xie
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yanxia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| |
Collapse
|
3
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
4
|
Janacova L, Faktor J, Capkova L, Paralova V, Pospisilova A, Podhorec J, Ebhardt HA, Hrstka R, Nenutil R, Aebersold R, Bouchal P. SWATH-MS Analysis of FFPE Tissues Identifies Stathmin as a Potential Marker of Endometrial Cancer in Patients Exposed to Tamoxifen. J Proteome Res 2020; 19:2617-2630. [PMID: 32343582 DOI: 10.1021/acs.jproteome.0c00064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A specific form of endometrial cancer (EC) can develop in breast cancer patients previously treated with tamoxifen (ET), an antagonist of estrogen receptor (ER) that inhibits proliferation of ER positive breast cancer. ET tumors have a different phenotype than endometrial tumors, which typically develop de novo without previous exposure to tamoxifen (EN). Here we aimed to identify specific protein markers that could serve as specific molecular targets in either phenotype. A set of total 45 formalin-fixed paraffin-embedded (FFPE) endometrial tumor tissues and adjacent myometrium tissue samples were analyzed using LC-MS/MS in SWATH-MS mode. We found that calcyphosin (CAPS) levels were elevated in EN tumors compared to ET tumors. The higher CAPS level in EC tissue invading to myometrium supports its relationship to EC aggressiveness. Further, stathmin (STMN1) levels were found significantly elevated in ET versus EN tumors and significantly associated with patient survival. This finding connects elevated levels of this cell cycle regulating, proliferation-associated protein with tamoxifen exposure. In summary, using SWATH-MS we show that CAPS and STMN1 should be recognized as clinicopathologically different EC markers of which STMN1 is specifically connected with a previous tamoxifen exposition.
Collapse
Affiliation(s)
- Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Lenka Capkova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Vendula Paralova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Anna Pospisilova
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Podhorec
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Holger Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute for Technology (ETH) Zurich, Zurich, Switzerland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Rudolf Nenutil
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute for Technology (ETH) Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
5
|
Lan X, Lin W, Xu Y, Xu Y, Lv Z, Chen W. The detection and analysis of differential regulatory communities in lung cancer. Genomics 2020; 112:2535-2540. [PMID: 32045668 DOI: 10.1016/j.ygeno.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
The tumorgenesis process of lung cancer involves the regulatory dysfunctions of multiple pathways. Although many signaling pathways have been identified to be associated with lung cancer, there are little quantitative models of how inactions between genes change during the process from normal to cancer. These changes belong to different dynamic co-expressions patterns. We quantitatively analyzed differential co-expression of gene pairs in four datasets. Each dataset included a large number of lung cancer and normal samples. By overlapping their results, we got 14 highly confident gene pairs with consistent co-expression change patterns. Some of they, such as ARHGAP30 and GIMAP4, had been recorded in STRING network database while some of them were novel discoveries, such as C9orf135 and MORN5, TEKT1 and TSPAN1 were positively correlated in both normal and cancer but more correlated in normal than cancer. These gene pairs revealed the underlying mechanisms of lung cancer occurrence.
Collapse
Affiliation(s)
- Xiu Lan
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Weilong Lin
- Department of Orthopedics, Lishui Traditional Chinese Medicine Hospital, Lishui, China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, China; Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Yanyan Xu
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
| | - Zhuqing Lv
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Wenyu Chen
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
6
|
Maier V, Höll M, Dietze R, Mecha EO, Omwandho COA, Tinneberg HR, Meinhold-Heerlein I, Konrad L. Adenomyotic glands are highly related to endometrial glands. Reprod Biomed Online 2019; 40:769-778. [PMID: 32362572 DOI: 10.1016/j.rbmo.2019.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/01/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
RESEARCH QUESTION How closely related are adenomyotic and endometrial glands? DESIGN In this study, the mRNA and protein database www.proteinatlas.org was searched for proteins expressed predominantly in the endometrial glands. Specificity was tested with tissue microarrays. Biopsy specimens of endometrial, adenomyotic tissue, or both, were collected after surgery from 21 women without endometriosis, 20 women with endometriosis, 18 women with adenomyosis together with endometriosis and 12 women with adenomyosis alone. Tissue expression was analysed by immunohistochemistry. RESULTS Two proteins were identified: calcyphosine (CAPS), and msh homeobox 1 (MSX1). A high abundance and good specificity in endometrial glands were found. Both proteins, CAPS and MSX1, showed a high specificity for endometrium and are both localized in the luminal cells and epithelial cells of the glandular and adenomyotic glands. No significant differences were found between CAPS- and MSX1-positive endometrial glands between cases with and without endometriosis. Also, no cycle-specific different expression was found. Furthermore, a close relationship between the adenomyotic glands and the endometrial glands for CAPS (range 63.0-98.3%) and for MSX1 (range 87.1-99.3%) could be demonstrated. Only 11.2% and 6.8% negative glands for CAPS and MSX1 were identified in all tissues from all patients, respectively; none were negative for both proteins. CONCLUSIONS Taken together, our results show that the protein expression pattern of adenomyosis is nearly identical to those of the endometrium with and without endometriosis, thus suggesting endometrial glands as the main source for adenomyotic glands.
Collapse
Affiliation(s)
- Veronica Maier
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Matthias Höll
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Raimund Dietze
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Ezekiel Onyonka Mecha
- Department of Biochemistry, University of Nairobi P.O. Box 30197-00100, Nairobi 00100, Kenya
| | - Charles O A Omwandho
- Department of Biochemistry, University of Nairobi P.O. Box 30197-00100, Nairobi 00100, Kenya
| | | | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany
| | - Lutz Konrad
- Department of Gynecology and Obstetrics, Justus-Liebig-Universität Gießen, Feulgenstr. 10-12, Giessen 35392, Germany.
| |
Collapse
|
7
|
Pan H, Xiang H, Wang J, Wei Z, Zhou Y, Liu B, Li T, Ma X, Cao Y, Wang B. CAPS Mutations Are Potentially Associated with Unexplained Recurrent Pregnancy Loss. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:124-131. [DOI: 10.1016/j.ajpath.2018.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
|
8
|
Harborne SPD, Kunji ERS. Calcium-regulated mitochondrial ATP-Mg/P i carriers evolved from a fusion of an EF-hand regulatory domain with a mitochondrial ADP/ATP carrier-like domain. IUBMB Life 2018; 70:1222-1232. [PMID: 30281880 PMCID: PMC6283063 DOI: 10.1002/iub.1931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 02/02/2023]
Abstract
The mitochondrial ATP-Mg/Pi carrier is responsible for the calcium-dependent regulation of adenosine nucleotide concentrations in the mitochondrial matrix, which allows mitochondria to respond to changing energy requirements of the cell. The carrier is expressed in mitochondria of fungi, plants and animals and belongs to the family of mitochondrial carriers. The carrier is unusual as it consists of three separate domains: (i) an N-terminal regulatory domain with four calcium-binding EF-hands similar to calmodulin, (ii) a loop domain containing an amphipathic α-helix and (iii) a mitochondrial carrier domain related to the mitochondrial ADP/ATP carrier. This striking example of three domains coming together from different origins to provide new functions represents an interesting quirk of evolution. In this review, we outline how the carrier was identified and how its physiological role was established with a focus on human isoforms. We exploit the sequence and structural information of the domains to explore the similarities and differences to their closest counterparts; mitochondrial ADP/ATP carriers and proteins with four EF-hands. We discuss how their combined function has led to a mechanism for calcium-regulated transport of adenosine nucleotides. Finally, we compare the ATP-Mg/Pi carrier with the mitochondrial aspartate/glutamate carrier, the only other mitochondrial carrier regulated by calcium, and we will argue that they have arisen by convergent rather than divergent evolution. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1222-1232, 2018.
Collapse
Affiliation(s)
- Steven P. D. Harborne
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeCB2 0XYUK
| |
Collapse
|
9
|
Yang M, Sun Y, Sun J, Wang Z, Zhou Y, Yao G, Gu Y, Zhang H, Zhao H. Differentially expressed and survival-related proteins of lung adenocarcinoma with bone metastasis. Cancer Med 2018. [PMID: 29522283 PMCID: PMC5911611 DOI: 10.1002/cam4.1363] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite recent advances in targeted and immune‐based therapies, the poor prognosis of lung adenocarcinoma (LUAD) with bone metastasis (BM) remains a challenge. First, two‐dimensional gel electrophoresis (2‐DE) was used to identify proteins that were differentially expressed in LUAD with BM, and then matrix‐assisted laser desorption/ionization time of flight mass spectrometry (MALDI‐TOF‐MS) was used to identify these proteins. Second, the Cancer Genome Atlas (TCGA) was used to identify mutations in these differentially expressed proteins and Kaplan–Meier plotter (KM Plotter) was used to generate survival curves for the analyzed cases. Immunohistochemistry (IHC) was used to check the expression of proteins in 28 patients with BM and nine patients with LUAD. Lastly, the results were analyzed with respect to clinical features and patient's follow‐up. We identified a number of matched proteins from 2‐DE. High expression of enolase 1 (ENO1) (HR = 1.67, logrank P = 1.9E‐05), ribosomal protein lateral stalk subunit P2 (RPLP2) (HR = 1.77, logrank P = 2.9e‐06), and NME/NM23 nucleoside diphosphate kinase 2 (NME1‐NME2) (HR = 2.65, logrank P = 3.9E‐15) was all significantly associated with poor survival (P < 0.05). Further, ENO1 was upregulated (P = 0.0004) and calcyphosine (CAPS1) was downregulated (P = 5.34E‐07) in TCGA LUAD RNA‐seq expression data. IHC revealed that prominent ENO1 staining (OR = 7.5, P = 0.034) and low levels of CAPS1 (OR = 0.01, P < 0.0001) staining were associated with BM incidence. Finally, we found that LUAD patients with high expression of ENO1 and RPLP2 had worse overall survival. This is the first instance where the genes ENO1, RPLP2, NME1‐NME2 and CAPS1 were associated with disease severity and progression in LUAD patients with BM. Thus, with this study, we have identified potential biomarkers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Internal Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Yi Sun
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Jing Sun
- Department of Internal Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Zhiyu Wang
- Department of Internal Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Yiyi Zhou
- Department of Internal Oncology, Shanghai Sixth People's Hospital, Soochow University, Shanghai, 200233, China
| | - Guangyu Yao
- Department of Internal Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Yifeng Gu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Hui Zhao
- Department of Internal Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| |
Collapse
|
10
|
Li F, Zhu D, Yang Y, Wu K, Zhao S. Overexpression of calcyphosine is associated with poor prognosis in esophageal squamous cell carcinoma. Oncol Lett 2017; 14:6231-6237. [PMID: 29113272 DOI: 10.3892/ol.2017.6973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
Calcyphosine (CAPS), a calcium-binding protein, has been identified as a potential diagnostic and prognostic biomarker in several human carcinomas. However, little is known about CAPS in esophageal squamous cell carcinoma (ESCC). The present study aimed to investigate the expression levels of CAPS in ESCC tissues and evaluate its clinicopathological significance. Reverse transcription-quantitative polymerase chain reaction and immunohistochemical staining were conducted to detect the expression of CAPS in ESCC tissues and adjacent non-cancerous tissues. ESCC samples exhibited higher levels of CAPS mRNA than paired non-cancerous samples (P=0.0015), and the mRNA level of CAPS was positively associated with histological grade (P=0.0013) and tumor invasion depth (P=0.0206). In addition, Kaplan-Meier survival analysis revealed that patients with high CAPS expression experienced significantly shorter 5-year overall survival times than those with low CAPS expression (P=0.0112). Multivariate analysis demonstrated that CAPS protein expression was an independent prognostic biomarker for patients with ESCC. In conclusion, the findings of the present study demonstrated that CAPS may represent a novel diagnostic indicator and an independent prognostic biomarker in ESCC.
Collapse
Affiliation(s)
- Feng Li
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dengyan Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yang Yang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kai Wu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Song Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
11
|
Lane TR, Fuchs E, Slep KC. Structure of the ACF7 EF-Hand-GAR Module and Delineation of Microtubule Binding Determinants. Structure 2017; 25:1130-1138.e6. [PMID: 28602822 DOI: 10.1016/j.str.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Spectraplakins are large molecules that cross-link F-actin and microtubules (MTs). Mutations in spectraplakins yield defective cell polarization, aberrant focal adhesion dynamics, and dystonia. We present the 2.8 Å crystal structure of the hACF7 EF1-EF2-GAR MT-binding module and delineate the GAR residues critical for MT binding. The EF1-EF2 and GAR domains are autonomous domains connected by a flexible linker. The EF1-EF2 domain is an EFβ-scaffold with two bound Ca2+ ions that straddle an N-terminal α helix. The GAR domain has a unique α/β sandwich fold that coordinates Zn2+. While the EF1-EF2 domain is not sufficient for MT binding, the GAR domain is and likely enhances EF1-EF2-MT engagement. Residues in a conserved basic patch, distal to the GAR domain's Zn2+-binding site, mediate MT binding.
Collapse
Affiliation(s)
- Thomas R Lane
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA; Molecular and Cellular Biophysics Program, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA
| | - Kevin C Slep
- Molecular and Cellular Biophysics Program, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
12
|
Harborne SPD, King MS, Crichton PG, Kunji ERS. Calcium regulation of the human mitochondrial ATP-Mg/Pi carrier SLC25A24 uses a locking pin mechanism. Sci Rep 2017; 7:45383. [PMID: 28350015 PMCID: PMC5369052 DOI: 10.1038/srep45383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial ATP-Mg/Pi carriers import adenine nucleotides into the mitochondrial matrix and export phosphate to the cytosol. They are calcium-regulated to control the size of the matrix adenine nucleotide pool in response to cellular energetic demands. They consist of three domains: an N-terminal regulatory domain containing four calcium-binding EF-hands, a linker loop domain with an amphipathic α-helix and a C-terminal mitochondrial carrier domain for the transport of substrates. Here, we use thermostability assays to demonstrate that the carrier is regulated by calcium via a locking pin mechanism involving the amphipathic α-helix. When calcium levels in the intermembrane space are high, the N-terminus of the amphipathic α-helix is bound to a cleft in the regulatory domain, leading to substrate transport by the carrier domain. When calcium levels drop, the cleft closes, and the amphipathic α-helix is released to bind to the carrier domain via its C-terminus, locking the carrier in an inhibited state.
Collapse
Affiliation(s)
- Steven P. D. Harborne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Martin S. King
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Paul G. Crichton
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Edmund R. S. Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
13
|
Wang Q, Zhu L, Jiang Y, Xu J, Wang F, He Z. miR-219-5p suppresses the proliferation and invasion of colorectal cancer cells by targeting calcyphosin. Oncol Lett 2017; 13:1319-1324. [PMID: 28454255 DOI: 10.3892/ol.2017.5570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 10/27/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in an array of biological processes, and their dysregulation is associated with tumor development and progression. One such miRNA, miR-219-5p, is abnormally expressed in patients with colorectal cancer (CRC). In the present study, reverse transcription-quantitative polymerase chain reaction was performed to measure miR-219-5p expression in cells from both CRC tumors, and surrounding healthy tissue. MTT and invasion assays were used to determine the role of miR-219-5p in regulating CRC cell proliferation and invasion, respectively. A luciferase assay was then performed to assess the binding of miR-219-5p to the CAPS gene that encodes calcyphosin protein. The present study confirmed that miR-219-5p expression is significantly downregulated in CRC tissue. miR-219-5p knockdown promoted the growth of HCT-8 cells and increased the expression of calcyphosin protein (CAPS). On the other hand, overexpressing miR-219-5p inhibited HCT-8 cell growth and invasion, and downregulated CAPS expression. In addition, CAPS was identified as the functional downstream target of miR-219-5p by directly targeting its 3'-untranslated region. Therefore, miR-219-5p may function as a tumor suppressor by decreasing CAPS expression, and subsequently inhibit tumor proliferation and invasion. These results indicate that novel therapeutic strategies that increase miR-219-5p expression may be developed to treat CRC.
Collapse
Affiliation(s)
- Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lirong Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yasu Jiang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Junfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
14
|
Shao W, Wang Q, Wang F, Jiang Y, Xu M, Xu J. Abnormal expression of calcyphosine is associated with poor prognosis and cell biology function in colorectal cancer. Onco Targets Ther 2016; 9:477-87. [PMID: 26889086 PMCID: PMC4741367 DOI: 10.2147/ott.s92226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to investigate the calcyphosine (CAPS) expression in human colorectal cancer (CRC) and to explore its clinical and prognostic significances. CAPS expression was measured by Western blot, real-time polymerase chain reaction analysis, and immunohistochemistry. The relationships between the CAPS expression levels and the clinicopathological factors were investigated. The Kaplan–Meier method and log-rank test were used to investigate the overall survival of the patients. Moreover, the effects of CAPS on biological roles of CRC cells were also evaluated by MTT assay, colony formation assay, and transwell assay. CAPS was significantly overexpressed in cancerous tissue and CRC cell lines compared with adjacent nontumor tissue and a normal human intestinal epithelial cell line. Overexpression of CAPS was significantly associated with histological grade (P=0.004), invasive depth (P<0.001), lymph node metastasis (P=0.003), tumor node metastasis stage (P=0.017), and distant metastasis (P=0.042). Furthermore, silencing of CAPS expression in CRC cells inhibited their proliferation, colony formation, migration, and invasion. Kaplan–Meier survival analysis showed that high CAPS expression might demonstrate poor prognosis in CRC patients. Cox regression analysis revealed that CAPS expression was an independent prognostic factor of CRC. Our data suggested that the upregulation of CAPS might play a role in the carcinogenesis and progression of CRC. CAPS could be used as a potential diagnostic factor and be an independent good prognostic indicator for CRC patients.
Collapse
Affiliation(s)
- Weiwei Shao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Quhui Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yasu Jiang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Meirong Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Junfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
15
|
Harborne SPD, Ruprecht JJ, Kunji ERS. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:1245-53. [PMID: 26164100 PMCID: PMC4562336 DOI: 10.1016/j.bbabio.2015.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/15/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022]
Abstract
The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF-hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region with an amphipathic α-helix of unknown function. The mechanism by which calcium binding to the regulatory domain modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate carrier, which is dimeric. The structure showed that an amphipathic α-helix is bound to the regulatory domain in a hydrophobic cleft of EF-hand 3/4. Detailed bioinformatics analyses of different EF-hand states indicate that upon release of calcium, EF-hands close, meaning that the regulatory domain would release the amphipathic α-helix. We propose a mechanism for ATP-Mg/Pi carriers in which the amphipathic α-helix becomes mobile upon release of calcium and could block the transport of substrates across the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Steven P D Harborne
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Jonathan J Ruprecht
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
16
|
Ishikawa Y, Bächinger HP. A substrate preference for the rough endoplasmic reticulum resident protein FKBP22 during collagen biosynthesis. J Biol Chem 2014; 289:18189-201. [PMID: 24821723 DOI: 10.1074/jbc.m114.561944] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of collagens occurs in the rough endoplasmic reticulum and requires a large numbers of molecular chaperones, foldases, and post-translational modification enzymes. Collagens contain a large number of proline residues that are post-translationally modified to 3-hydroxyproline or 4-hydroxyproline, and the rate-limiting step in formation of the triple helix is the cis-trans isomerization of peptidyl-proline bonds. This step is catalyzed by peptidyl-prolyl cis-trans isomerases. There are seven peptidyl-prolyl cis-trans isomerases in the rER, and so far, two of these enzymes, cyclophilin B and FKBP65, have been shown to be involved in collagen biosynthesis. The absence of either cyclophilin B or FKBP65 leads to a recessive form of osteogenesis imperfecta. The absence of FKBP22 leads to a kyphoscoliotic type of Ehlers-Danlos syndrome (EDS), and this type of EDS is classified as EDS type VI, which can also be caused by a deficiency in lysyl-hydroxylase 1. However, the lack of FKBP22 shows a wider spectrum of clinical phenotypes than the absence of lysyl-hydroxylase 1 and additionally includes myopathy, hearing loss, and aortic rupture. Here we show that FKBP22 catalyzes the folding of type III collagen and interacts with type III collagen, type VI collagen, and type X collagen, but not with type I collagen, type II collagen, or type V collagen. These restrictive interactions might help explain the broader phenotype observed in patients that lack FKBP22.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and the Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and the Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| |
Collapse
|