1
|
Łabuz J, Sztatelman O, Hermanowicz P. Molecular insights into the phototropin control of chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6034-6051. [PMID: 35781490 DOI: 10.1093/jxb/erac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.
Collapse
Affiliation(s)
- Justyna Łabuz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego, Warszawa, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
2
|
Applications of Time-Resolved Thermodynamics for Studies on Protein Reactions. J 2022. [DOI: 10.3390/j5010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thermodynamics and kinetics are two important scientific fields when studying chemical reactions. Thermodynamics characterize the nature of the material. Kinetics, mostly based on spectroscopy, have been used to determine reaction schemes and identify intermediate species. They are certainly important fields, but they are almost independent. In this review, our attempts to elucidate protein reaction kinetics and mechanisms by monitoring thermodynamic properties, including diffusion in the time domain, are described. The time resolved measurements are performed mostly using the time resolved transient grating (TG) method. The results demonstrate the usefulness and powerfulness of time resolved studies on protein reactions. The advantages and limitations of this TG method are also discussed.
Collapse
|
3
|
Temperature-responsive optogenetic probes of cell signaling. Nat Chem Biol 2022; 18:152-160. [PMID: 34937907 PMCID: PMC9252025 DOI: 10.1038/s41589-021-00917-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination. Quantitative modeling predicted BcLOV4 activation dynamics across a range of light and temperature inputs and thus provides an experimental roadmap for BcLOV4-based probes. BcLOV4 drove strong and stable signal activation in both zebrafish and fly cells, and thermal inactivation provided a means to multiplex distinct blue-light sensitive tools in individual mammalian cells. BcLOV4 is thus a versatile photosensor with unique light and temperature sensitivity that enables straightforward generation of broadly applicable optogenetic tools.
Collapse
|
4
|
Time-resolved detection of association/dissociation reactions and conformation changes in photosensor proteins for application in optogenetics. Biophys Rev 2021; 13:1053-1059. [DOI: 10.1007/s12551-021-00868-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
|
5
|
Magerl K, Dick B. Dimerization of LOV domains of Rhodobacter sphaeroides (RsLOV) studied with FRET and stopped-flow experiments. Photochem Photobiol Sci 2020; 19:159-170. [DOI: 10.1039/c9pp00424f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LOV (light-oxygen-voltage) proteins function as light sensors in plants, fungi, and bacteria. RsLOV is unique as the light state is a monomer but the dark state is a dimer. These dimers exchange their monomer units on a time-scale of seconds.
Collapse
Affiliation(s)
- Kathrin Magerl
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| | - Bernhard Dick
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- 93053 Regensburg
- Germany
| |
Collapse
|
6
|
Nakasone Y, Ohshima M, Okajima K, Tokutomi S, Terazima M. Photoreaction Dynamics of Full-Length Phototropin from Chlamydomonas reinhardtii. J Phys Chem B 2019; 123:10939-10950. [PMID: 31790257 DOI: 10.1021/acs.jpcb.9b09685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phototropin (phot) is a blue light sensor involved in the light responses of several species from green algae to higher plants. Phot consists of two photoreceptive domains (LOV1 and LOV2) and a Ser/Thr kinase domain. These domains are connected by a hinge and a linker domain. So far, studies on the photochemical reaction dynamics of phot have been limited to short fragments, and the reactions of intact phot have not been well elucidated. Here, the photoreactions of full-length phot and of several mutants from Chlamydomonas reinhardtii (Cr) were investigated by the transient grating and circular dichroism (CD) methods. Full-length Cr phot is in monomeric form in both dark and light states and shows conformational changes upon photoexcitation. When LOV1 is excited, the hinge helix unfolds with a time constant of 77 ms. Upon excitation of LOV2, the linker helix unfolds initially followed by a tertiary structural change of the kinase domain with a time constant of 91 ms. The quantum yield of conformational change after adduct formation of LOV2 is much smaller than that of LOV1, indicating that reactive and nonreactive forms exist. The conformational changes associated with the excitations of LOV1 and LOV2 occur independently and additively, even when they are excited simultaneously. Hence, the role of LOV1 is not to enhance the kinase activity in addition to LOV2 function; we suggest LOV1 has different functions such as regulation of intermolecular interactions.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto , Kyoto 606-8502 , Japan
| | - Masumi Ohshima
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto , Kyoto 606-8502 , Japan
| | - Koji Okajima
- Graduate School of Science and Technology , Keio University , Yokohama , Kanagawa 223-8522 , Japan
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science , Osaka Prefecture University , Sakai , Osaka 599-8531 , Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science , Kyoto University , Kyoto , Kyoto 606-8502 , Japan
| |
Collapse
|
7
|
Takeda K, Terazima M. Dynamics of Conformational Changes in Full-Length Phytochrome from Cyanobacterium Synechocystis sp. PCC6803 (Cph1) Monitored by Time-Resolved Translational Diffusion Detection. Biochemistry 2019; 58:2720-2729. [DOI: 10.1021/acs.biochem.9b00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Takeda K, Terazima M. Photoinduced Orientation Change of the Dimer Structure of the Pr-I State of Cph1Δ2. Biochemistry 2018; 57:5058-5071. [DOI: 10.1021/acs.biochem.8b00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kimitoshi Takeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Iwata K, Terazima M, Masuhara H. Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation. Biochim Biophys Acta Gen Subj 2017; 1862:335-357. [PMID: 29108958 DOI: 10.1016/j.bbagen.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Koichi Iwata
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Masuhara
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan.
| |
Collapse
|
10
|
Kuroi K, Sato F, Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Time-resolved fluctuation during the photochemical reaction of a photoreceptor protein: phototropin1LOV2-linker. Phys Chem Chem Phys 2017; 18:6228-38. [PMID: 26854261 DOI: 10.1039/c5cp07472j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the relationship between structural fluctuations and reactions is important for elucidating reaction mechanisms, experimental data describing such fluctuations of reaction intermediates are sparse. In order to investigate structural fluctuations during a protein reaction, the compressibilities of intermediate species after photoexcitation of a phot1LOV2-linker, which is a typical LOV domain protein with the C-terminal linker including the J-α helix and used recently for optogenetics, were measured in the time-domain by the transient grating and transient lens methods with a high pressure optical cell. The yield of covalent bond formation between the chromophore and a Cys residue (S state formation) relative to that at 0.1 MPa decreased very slightly with increasing pressure. The fraction of the reactive species that yields the T state (linker-unfolded state) decreased almost proportionally with pressure (0.1-200 MPa) to about 65%. Interestingly, the volume change associated with the reaction was much more pressure sensitive. By combining these data, the compressibility changes for the short lived intermediate (S state) and the final product (T state) formation were determined. The compressibility of the S state was found to increase compared with the dark (D) state, and the compressibility decreased during the transition from the S state to the T state. The compressibility change is discussed in terms of cavities inside the protein. By comparing the crystal structures of the phot1LOV2-linker at dark and light states, we concluded that the cavity volumes between the LOV domain and the linker domain increase in the S state, which explains the enhanced compressibility.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Francielle Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Kazunori Zikihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Satoru Tokutomi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
11
|
Łabuz J, Hermanowicz P, Gabryś H. The impact of temperature on blue light induced chloroplast movements in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:238-49. [PMID: 26398808 DOI: 10.1016/j.plantsci.2015.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/02/2015] [Accepted: 07/18/2015] [Indexed: 05/04/2023]
Abstract
Chloroplast movements in Arabidopsis thaliana are controlled by two blue light photoreceptors, phototropin1 and phototropin2. Under weak blue light chloroplasts gather at cell walls perpendicular to the direction of incident light. This response, called chloroplast accumulation, is redundantly regulated by both phototropins. Under strong blue light chloroplasts move to cell walls parallel to the direction of incident light, this avoidance response being solely dependent on phototropin2. Temperature is an important factor in modulating chloroplast relocations. Here we focus on temperature effects in Arabidopsis leaves. At room temperature, under medium blue light chloroplasts start to move to cell walls parallel to the light direction and undergo a partial avoidance response. In the same conditions, at low temperatures the avoidance response is strongly enhanced-chloroplasts behave as if they were responding to strong light. Higher sensitivity of avoidance response is correlated with changes in gene expression. After cold treatment, in darkness, the expression of phototropin1 is down-regulated, while phototropin2 levels are up-regulated. The motile system of chloroplasts in Arabidopsis is more sensitive to blue light at low temperatures, similar to other species studied before. The physiological role of the cold-enhancement of the avoidance response is explained in the context of phototropin levels, photochemical activities and signaling in the cell.
Collapse
Affiliation(s)
- Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Paweł Hermanowicz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
12
|
|
13
|
Nakasone Y, Kawaguchi Y, Kong SG, Wada M, Terazima M. Photoinduced Oligomerization of Arabidopsis thaliana Phototropin 2 LOV1. J Phys Chem B 2014; 118:14314-25. [DOI: 10.1021/jp509448b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yusuke Nakasone
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Kawaguchi
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Sam-Geun Kong
- Department
of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Masamitsu Wada
- Department
of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Masahide Terazima
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Photochemistry of Arabidopsis phototropin 1 LOV1: transient tetramerization. Photochem Photobiol Sci 2014; 12:1171-9. [PMID: 23743549 DOI: 10.1039/c3pp50047k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochemical reaction of the LOV1 (light-oxygen-voltage 1) domain of phototropin 1 from Arabidopsis thaliana was investigated by the time-resolved transient grating method. As with other LOV domains, an absorption spectral change associated with an adduct formation between its chromophore (flavin mononucleotide) and a cysteine residue was observed with a time constant of 1.1 μs. After this reaction, a significant diffusion coefficient (D) change (D of the reactant = 8.2 × 10(-11) m(2) s(-1), and D of the photoproduct = 6.4 × 10(-11) m(2) s(-1)) was observed with a time constant of 14 ms at a protein concentration of 270 μM. From the D value of the ground state and the peak position in size exclusion chromatography, we have confirmed that the phot1LOV1 domain exists as a dimer in the dark. The D-value and the concentration dependence of the rate indicated that the phot1LOV1 domain associates to form a tetramer (dimerization of the dimer) upon photoexcitation. We also found that the chromophore is released from the binding pocket of the LOV domain when it absorbs two photons within a pulse duration, which occurs in addition to the normal photocycle reaction. On the basis of these results, we discuss the molecular mechanism of the light dependent role of the phot1LOV1 domain.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
15
|
Halavaty AS, Moffat K. Coiled-coil dimerization of the LOV2 domain of the blue-light photoreceptor phototropin 1 from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1316-21. [PMID: 24316821 PMCID: PMC3855711 DOI: 10.1107/s1744309113029199] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/23/2013] [Indexed: 01/05/2023]
Abstract
A key role in signal transduction and dimerization mediated by Per-Arnt-Sim (PAS) domains is played by α-helical linkers that flank the structurally similar α/β cores of these domains. However, crystal-packing forces and the different construct lengths and sequences of the PAS domains influence the final length and orientation of the linkers relative to the core and create uncertainty in the exact mechanism of the linker function. Thus, structural characterization and comparison of the linkers within isolated PAS-domain constructs and/or full-length PAS-containing proteins is important for clarification of the mechanism. The plant blue-light photoreceptors phototropins possess two N-terminal flavin mononucleotide-based light, oxygen or voltage (LOV) domains (LOV1 and LOV2) that comprise a subclass of the PAS family and one C-terminal serine/threonine kinase domain whose enzymatic activity is regulated by blue light. The dark-adapted state crystal structures of the Arabidopsis thaliana phototropin 1 and phototropin 2 LOV1-domain constructs flanked by an N-terminal A'α helix and the structure of the phototropin 2 core LOV2 domain are known. Here, the crystal structure of the A. thaliana phototropin 1 LOV2 domain has been determined in its dark-adapted state. The core is flanked by an N-terminal A'α helix and a C-terminal Jα helix similar to those in the previously reported structure of Avena sativa phototropin 1 LOV2. In contrast to the monomeric A. sativa LOV2, A. thaliana LOV2 is a dimer in which two A'α helices adopt a scissor-like orientation at the dimer interface and form a short α-helical coiled coil. The Jα helix predominantly interacts with the β-sheet and plays a role in coiled-coil formation and dimerization.
Collapse
Affiliation(s)
- Andrei S. Halavaty
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Romanin C. Extending optogenetics to a Ca(2+)-selective channel. ACTA ACUST UNITED AC 2011; 18:820-1. [PMID: 21802001 DOI: 10.1016/j.chembiol.2011.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Many cellular processes are regulated by Ca(2+) signaling. In this issue of Chemistry & Biology, Pham et al. have developed a photo-activated protein, LOVS1K, which enables the generation of local or global Ca(2+) signals through binding to the Ca(2+)-specific membrane channel Orai.
Collapse
|
17
|
Toyooka T, Hisatomi O, Takahashi F, Kataoka H, Terazima M. Photoreactions of aureochrome-1. Biophys J 2011; 100:2801-9. [PMID: 21641326 DOI: 10.1016/j.bpj.2011.02.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022] Open
Abstract
Aureochrome is a recently discovered blue light photosensor that controls a light-dependent morphology change. As a photosensor, it has a unique DNA binding domain (bZIP). Although the biological functions of aureochrome have been revealed, the fundamental photochemistry of this protein has not been elucidated. The photochemical reaction dynamics of the LOV (light, oxygen, or voltage) domain of aureochrome-1 (AUREO1-LOV) and the LOV domain with the bZIP domain (AUREO1-ZL) were studied by employing the transient-grating (TG) technique, using size-exclusion chromatography to verify results. For both samples, adduct formation takes place with a time constant of 2.8 μs. Although significant diffusion changes were observed for both AUREO1-LOV and AUREO1-ZL after adduct formation, the origins of these changes were significantly different. The TG signal of AUREO1-LOV was strongly concentration-dependent. From analysis of the signal, it was concluded that AUREO1-LOV exists in equilibrium between the monomer and dimer, and dimerization of the monomer is the main reaction, i.e., irradiation with blue light enhances the strength of the interdomain interaction. On the other hand, the reaction of AUREO1-ZL is independent of concentration, suggesting that an intraprotein conformational change occurs in the bZIP domain with a time constant of 160 ms. These results revealed the different reactions and roles of the two domains; the LOV domain acts as a photosensor, leading to a subsequent conformational change in the bZIP domain, which should change its ability to bind to DNA. A model is proposed that demonstrates how aureochrome uses blue light to control its affinity for DNA.
Collapse
Affiliation(s)
- Tsuguyoshi Toyooka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
18
|
Losi A, Gärtner W. Old Chromophores, New Photoactivation Paradigms, Trendy Applications: Flavins in Blue Light-Sensing Photoreceptors†. Photochem Photobiol 2011; 87:491-510. [DOI: 10.1111/j.1751-1097.2011.00913.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Nakasone Y, Zikihara K, Tokutomi S, Terazima M. Kinetics of conformational changes of the FKF1-LOV domain upon photoexcitation. Biophys J 2011; 99:3831-9. [PMID: 21112308 DOI: 10.1016/j.bpj.2010.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 01/16/2023] Open
Abstract
The photochemical reaction dynamics of a light-oxygen-voltage (LOV) domain from the blue light sensor protein, FKF1 (flavin-binding Kelch repeat F-box) was studied by means of the pulsed laser-induced transient grating method. The observed absorption spectral changes upon photoexcitation were similar to the spectral changes observed for typical LOV domain proteins (e.g., phototropins). The adduct formation took place with a time constant of 6 μs. After this reaction, a significant conformational change with a time constant of 6 ms was observed as a change in the diffusion coefficient. An FKF1-LOV mutant without the conserved loop connecting helices E and F, which is present only in the FKF1/LOV Kelch protein 2/ZEITLUPE family, did not show these slow phase dynamics. This result indicates that the conformational change in the loop region represents a major change in the FKF1-LOV photoreaction.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
20
|
Terazima M. Studies of photo-induced protein reactions by spectrally silent reaction dynamics detection methods: applications to the photoreaction of the LOV2 domain of phototropin from Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1093-105. [PMID: 21211575 DOI: 10.1016/j.bbapap.2010.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/06/2010] [Accepted: 12/22/2010] [Indexed: 01/28/2023]
Abstract
Biological function involves a series of chemical reactions of biological molecules, and during these reactions, there are numerous spectrally silent dynamic events that cannot be monitored by absorption or emission spectroscopic techniques. Such spectrally silent dynamics include changes in conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), inter-protein interactions (oligomer formation, dissociation reactions) and conformational fluctuations. These events might be associated with biological function. To understand the molecular mechanisms of reactions, time-resolved detection of such dynamics is essential. Recently, it has been shown that time-resolved detection of the refractive index is a powerful tool for measuring dynamic events. This technique is complementary to optical absorption detection methods and the signal contains many unique properties, which are difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review. A typical example of an application of time-resolved refractive index change detection is given in the second part: The photoreaction of the LOV2 domain of a blue light photoreceptor from Arabidopsis Thaliana (phototropin). This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
21
|
Nakasone Y, Ono TA, Ishii A, Masuda S, Terazima M. Temperature-sensitive reaction of a photosensor protein YcgF: possibility of a role of temperature sensor. Biochemistry 2010; 49:2288-96. [PMID: 20141167 DOI: 10.1021/bi902121z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spectrally silent photoreaction of a blue light sensor protein YcgF, composed of the N-terminal BLUF domain and the C-terminal EAL domain, was investigated by the time-resolved transient grating method. Comparing photoinduced reactions of full-length YcgF with that of the BLUF-linker construct, it was found that a major conformation change after photoinduced dimerization is predominantly localized on the EAL domain. Furthermore, the photoinduced conformational change displayed significant temperature dependence. This result is explained by an equilibrium of reactive and nonreactive YcgF species, with the population of photoreactive species decreasing as the temperature is lowered in the dark state. We consider that the dimer form is the nonreactive species and it is the dominant species at lower temperatures. The temperature sensitivity of the photoreaction of YcgF suggests that this protein could have a biological function as a temperature sensor as well as behaving as a light sensor.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
22
|
Slavny P, Little R, Salinas P, Clarke TA, Dixon R. Quaternary structure changes in a second Per-Arnt-Sim domain mediate intramolecular redox signal relay in the NifL regulatory protein. Mol Microbiol 2010; 75:61-75. [DOI: 10.1111/j.1365-2958.2009.06956.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Mechanism-based tuning of a LOV domain photoreceptor. Nat Chem Biol 2009; 5:827-34. [PMID: 19718042 PMCID: PMC2865183 DOI: 10.1038/nchembio.210] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 06/11/2009] [Indexed: 01/07/2023]
Abstract
Phototropin-like LOV domains form a cysteinyl-flavin adduct in response to blue light but show considerable variation in output signal and the lifetime of the photo-adduct signaling state. Mechanistic studies of the slow-cycling fungal LOV photoreceptor Vivid (VVD) reveal the importance of reactive cysteine conformation, flavin electronic environment and solvent accessibility for adduct scission and thermal reversion. Proton inventory, pH effects, base catalysis and structural studies implicate flavin N(5) deprotonation as rate-determining for recovery. Substitutions of active site residues Ile74, Ile85, Met135 and Met165 alter photoadduct lifetimes by over four orders of magnitude in VVD, and similar changes in other LOV proteins show analogous effects. Adduct state decay rates also correlate with changes in conformational and oligomeric properties of the protein necessary for signaling. These findings link natural sequence variation of LOV domains to function and provide a means to design broadly reactive light-sensitive probes.
Collapse
|