1
|
Chandler-Bostock R, Bingham RJ, Clark S, Scott AJP, Wroblewski E, Barker A, White SJ, Dykeman EC, Mata CP, Bohon J, Farquhar E, Twarock R, Stockley PG. Genome-regulated Assembly of a ssRNA Virus May Also Prepare It for Infection. J Mol Biol 2022; 434:167797. [PMID: 35998704 DOI: 10.1016/j.jmb.2022.167797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
Many single-stranded, positive-sense RNA viruses regulate assembly of their infectious virions by forming multiple, cognate coat protein (CP)-genome contacts at sites termed Packaging Signals (PSs). We have determined the secondary structures of the bacteriophage MS2 ssRNA genome (gRNA) frozen in defined states using constraints from X-ray synchrotron footprinting (XRF). Comparison of the footprints from phage and transcript confirms the presence of multiple PSs in contact with CP dimers in the former. This is also true for a virus-like particle (VLP) assembled around the gRNA in vitro in the absence of the single-copy Maturation Protein (MP) found in phage. Since PS folds are present at many sites across gRNA transcripts, it appears that this genome has evolved to facilitate this mechanism of assembly regulation. There are striking differences between the gRNA-CP contacts seen in phage and the VLP, suggesting that the latter are inappropriate surrogates for aspects of phage structure/function. Roughly 50% of potential PS sites in the gRNA are not in contact with the protein shell of phage. However, many of these sit adjacent to, albeit not in contact with, PS-binding sites on CP dimers. We hypothesize that these act as PSs transiently during assembly but subsequently dissociate. Combining the XRF data with PS locations from an asymmetric cryo-EM reconstruction suggests that the genome positions of such dissociations are non-random and may facilitate infection. The loss of many PS-CP interactions towards the 3' end of the gRNA would allow this part of the genome to transit more easily through the narrow basal body of the pilus extruding machinery. This is the known first step in phage infection. In addition, each PS-CP dissociation event leaves the protein partner trapped in a non-lowest free-energy conformation. This destabilizes the protein shell which must disassemble during infection, further facilitating this stage of the life-cycle.
Collapse
Affiliation(s)
| | - Richard J Bingham
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Sam Clark
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Andrew J P Scott
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy Barker
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eric C Dykeman
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jen Bohon
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Erik Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Reidun Twarock
- Departments of Mathematics and Biology & York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK.
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
2
|
Twarock R, Stockley PG. RNA-Mediated Virus Assembly: Mechanisms and Consequences for Viral Evolution and Therapy. Annu Rev Biophys 2019; 48:495-514. [PMID: 30951648 PMCID: PMC7612295 DOI: 10.1146/annurev-biophys-052118-115611] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses, entities composed of nucleic acids, proteins, and in some cases lipids lack the ability to replicate outside their target cells. Their components self-assemble at the nanoscale with exquisite precision-a key to their biological success in infection. Recent advances in structure determination and the development of biophysical tools such as single-molecule spectroscopy and noncovalent mass spectrometry allow unprecedented access to the detailed assembly mechanisms of simple virions. Coupling these techniques with mathematical modeling and bioinformatics has uncovered a previously unsuspected role for genomic RNA in regulating formation of viral capsids, revealing multiple, dispersed RNA sequence/structure motifs [packaging signals (PSs)] that bind cognate coat proteins cooperatively. The PS ensemble controls assembly efficiency and accounts for the packaging specificity seen in vivo. The precise modes of action of the PSs vary between viral families, but this common principle applies across many viral families, including major human pathogens. These insights open up the opportunity to block or repurpose PS function in assembly for both novel antiviral therapy and gene/drug/vaccine applications.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology, and York Cross-disciplinary Centre for Systems Analysis, University of York, York YO10 5GE, United Kingdom;
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| |
Collapse
|
3
|
Patel N, White SJ, Thompson RF, Bingham R, Weiß EU, Maskell DP, Zlotnick A, Dykeman E, Tuma R, Twarock R, Ranson NA, Stockley PG. HBV RNA pre-genome encodes specific motifs that mediate interactions with the viral core protein that promote nucleocapsid assembly. Nat Microbiol 2017; 2:17098. [PMID: 28628133 PMCID: PMC5495169 DOI: 10.1038/nmicrobiol.2017.98] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
Formation of the hepatitis B virus nucleocapsid is an essential step in the viral lifecycle, but its assembly is not fully understood. We report the discovery of sequence-specific interactions between the viral pre-genome and the hepatitis B core protein that play roles in defining the nucleocapsid assembly pathway. Using RNA SELEX and bioinformatics, we identified multiple regions in the pre-genomic RNA with high affinity for core protein dimers. These RNAs form stem-loops with a conserved loop motif that trigger sequence-specific assembly of virus-like particles (VLPs) at much higher fidelity and yield than in the absence of RNA. The RNA oligos do not interact with preformed RNA-free VLPs, so their effects must occur during particle assembly. Asymmetric cryo-electron microscopy reconstruction of the T = 4 VLPs assembled in the presence of one of the RNAs reveals a unique internal feature connected to the main core protein shell via lobes of density. Biophysical assays suggest that this is a complex involving several RNA oligos interacting with the C-terminal arginine-rich domains of core protein. These core protein-RNA contacts may play one or more roles in regulating the organization of the pre-genome during nucleocapsid assembly, facilitating subsequent reverse transcription and acting as a nucleation complex for nucleocapsid assembly.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon J White
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Bingham
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Eva U Weiß
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Daniel P Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam Zlotnick
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Eric Dykeman
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology and Mathematics & York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Bell DR, Cheng SY, Salazar H, Ren P. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations. Sci Rep 2017; 7:45812. [PMID: 28393861 PMCID: PMC5385882 DOI: 10.1038/srep45812] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/06/2017] [Indexed: 01/25/2023] Open
Abstract
We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3-4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes).
Collapse
Affiliation(s)
- David R. Bell
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sara Y. Cheng
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Heber Salazar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Shoura MJ, Ranatunga RJKU, Harris SA, Nielsen SO, Levene SD. Contribution of fluorophore dynamics and solvation to resonant energy transfer in protein-DNA complexes: a molecular-dynamics study. Biophys J 2015; 107:700-710. [PMID: 25099809 DOI: 10.1016/j.bpj.2014.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/23/2023] Open
Abstract
In Förster resonance energy transfer (FRET) experiments, extracting accurate structural information about macromolecules depends on knowing the positions and orientations of donor and acceptor fluorophores. Several approaches have been employed to reduce uncertainties in quantitative FRET distance measurements. Fluorophore-position distributions can be estimated by surface accessibility (SA) calculations, which compute the region of space explored by the fluorophore within a static macromolecular structure. However, SA models generally do not take fluorophore shape, dye transition-moment orientation, or dye-specific chemical interactions into account. We present a detailed molecular-dynamics (MD) treatment of fluorophore dynamics for an ATTO donor/acceptor dye pair and specifically consider as case studies dye-labeled protein-DNA intermediates in Cre site-specific recombination. We carried out MD simulations in both an aqueous solution and glycerol/water mixtures to assess the effects of experimental solvent systems on dye dynamics. Our results unequivocally show that MD simulations capture solvent effects and dye-dye interactions that can dramatically affect energy transfer efficiency. We also show that results from SA models and MD simulations strongly diverge in cases where donor and acceptor fluorophores are in close proximity. Although atomistic simulations are computationally more expensive than SA models, explicit MD studies are likely to give more realistic results in both homogeneous and mixed solvents. Our study underscores the model-dependent nature of FRET analyses, but also provides a starting point to develop more realistic in silico approaches for obtaining experimental ensemble and single-molecule FRET data.
Collapse
Affiliation(s)
- Massa J Shoura
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas; Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas
| | | | - Sarah A Harris
- Department of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Steven O Nielsen
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas
| | - Stephen D Levene
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas; Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas; Department of Physics, University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
6
|
Buenrostro JD, Chircus LM, Araya CL, Layton CJ, Chang HY, Snyder MP, Greenleaf WJ. Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat Biotechnol 2014; 32:562-8. [PMID: 24727714 PMCID: PMC4414031 DOI: 10.1038/nbt.2880] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/19/2014] [Indexed: 01/13/2023]
Abstract
RNA-protein interactions drive fundamental biological processes and are targets for molecular engineering, yet quantitative and comprehensive understanding of the sequence determinants of affinity remains limited. Here we repurpose a high-throughput sequencing instrument to quantitatively measure binding and dissociation of a fluorescently labeled protein to >10(7) RNA targets generated on a flow cell surface by in situ transcription and intermolecular tethering of RNA to DNA. Studying the MS2 coat protein, we decompose the binding energy contributions from primary and secondary RNA structure, and observe that differences in affinity are often driven by sequence-specific changes in both association and dissociation rates. By analyzing the biophysical constraints and modeling mutational paths describing the molecular evolution of MS2 from low- to high-affinity hairpins, we quantify widespread molecular epistasis and a long-hypothesized, structure-dependent preference for G:U base pairs over C:A intermediates in evolutionary trajectories. Our results suggest that quantitative analysis of RNA on a massively parallel array (RNA-MaP) provides generalizable insight into the biophysical basis and evolutionary consequences of sequence-function relationships.
Collapse
Affiliation(s)
- Jason D. Buenrostro
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren M. Chircus
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos L. Araya
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Curtis J. Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y. Chang
- Program in Epithelial Biology and the Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - William J. Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Stockley PG, Ranson NA, Twarock R. A new paradigm for the roles of the genome in ssRNA viruses. Future Virol 2013. [DOI: 10.2217/fvl.12.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent work with RNA phages and an ssRNA plant satellite virus challenges the widely held view that the sequences and structures of genomic RNAs are unimportant for virion assembly. In the T=3 phages, RNA–coat protein interactions occur throughout the genome, defining the quasiconformers of their protein shells. In the plant virus, there are multiple packaging signals dispersed throughout the genome that overcome electrostatic barriers to protein self-assembly. Both viral coat proteins cause the solution structures of their cognate genomes to collapse into a form that is readily encapsidated in a two-stage assembly process. Such similar behavior in two structurally unrelated viral protein folds implies that this might be a conserved feature of many viral assembly reactions. These results suggest a highly defined structure for the RNA in the virions, consistent with recent structural studies. They also have implications both for subsequent genome release during infection and for the evolution of viral sequences.
Collapse
Affiliation(s)
- Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Reidun Twarock
- Departments of Biology & Mathematics, York Centre for Complex Systems Analysis, University of York, York, YO10 5DD, UK
| |
Collapse
|
8
|
Borodavka A, Tuma R, Stockley PG. A two-stage mechanism of viral RNA compaction revealed by single molecule fluorescence. RNA Biol 2013; 10:481-9. [PMID: 23422316 PMCID: PMC3710354 DOI: 10.4161/rna.23838] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long RNAs often exist as multiple conformers in equilibrium. For the genomes of single-stranded RNA viruses, one of these conformers must include a compacted state allowing the RNA to be confined within the virion. We have used single molecule fluorescence correlation spectroscopy to monitor the conformations of viral genomes and sub-fragments in the absence and presence of coat proteins. Cognate RNA-coat protein interactions in two model viruses cause a rapid collapse in the hydrodynamic radii of their respective RNAs. This is caused by protein binding at multiple sites on the RNA that facilitate additional protein-protein contacts. The collapsed species recruit further coat proteins to complete capsid assembly with great efficiency and fidelity. The specificity in RNA-coat protein interactions seen at single-molecule concentrations reflects the packaging selectivity seen for such viruses in vivo. This contrasts with many in vitro reassembly measurements performed at much higher concentrations. RNA compaction by coat protein or polycation binding are distinct processes, implying that defined RNA-coat protein contacts are required for assembly.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
9
|
Galaway FA, Stockley PG. MS2 Viruslike Particles: A Robust, Semisynthetic Targeted Drug Delivery Platform. Mol Pharm 2012; 10:59-68. [DOI: 10.1021/mp3003368] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francis A. Galaway
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds, LS2 9JT, U.K
| | - Peter G. Stockley
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds, LS2 9JT, U.K
| |
Collapse
|
10
|
Borodavka A, Tuma R, Stockley PG. Evidence that viral RNAs have evolved for efficient, two-stage packaging. Proc Natl Acad Sci U S A 2012; 109:15769-74. [PMID: 23019360 PMCID: PMC3465389 DOI: 10.1073/pnas.1204357109] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome packaging is an essential step in virus replication and a potential drug target. Single-stranded RNA viruses have been thought to encapsidate their genomes by gradual co-assembly with capsid subunits. In contrast, using a single molecule fluorescence assay to monitor RNA conformation and virus assembly in real time, with two viruses from differing structural families, we have discovered that packaging is a two-stage process. Initially, the genomic RNAs undergo rapid and dramatic (approximately 20-30%) collapse of their solution conformations upon addition of cognate coat proteins. The collapse occurs with a substoichiometric ratio of coat protein subunits and is followed by a gradual increase in particle size, consistent with the recruitment of additional subunits to complete a growing capsid. Equivalently sized nonviral RNAs, including high copy potential in vivo competitor mRNAs, do not collapse. They do support particle assembly, however, but yield many aberrant structures in contrast to viral RNAs that make only capsids of the correct size. The collapse is specific to viral RNA fragments, implying that it depends on a series of specific RNA-protein interactions. For bacteriophage MS2, we have shown that collapse is driven by subsequent protein-protein interactions, consistent with the RNA-protein contacts occurring in defined spatial locations. Conformational collapse appears to be a distinct feature of viral RNA that has evolved to facilitate assembly. Aspects of this process mimic those seen in ribosome assembly.
Collapse
Affiliation(s)
- Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
11
|
Derbyshire N, White SJ, Bunka DHJ, Song L, Stead S, Tarbin J, Sharman M, Zhou D, Stockley PG. Toggled RNA aptamers against aminoglycosides allowing facile detection of antibiotics using gold nanoparticle assays. Anal Chem 2012; 84:6595-602. [PMID: 22793869 PMCID: PMC3413241 DOI: 10.1021/ac300815c] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Abstract
We have used systematic evolution of ligands by exponential enrichment (SELEX) to isolate RNA aptamers against aminoglycoside antibiotics. The SELEX rounds were toggled against four pairs of aminoglycosides with the goal of isolating reagents that recognize conserved structural features. The resulting aptamers bind both of their selection targets with nanomolar affinities. They also bind the less structurally related targets, although they show clear specificity for this class of antibiotics. We show that this lack of aminoglycoside specificity is a common property of aptamers previously selected against single compounds and described as "specific". Broad target specificity aptamers would be ideal for sensors detecting the entire class of aminoglycosides. We have used ligand-induced aggregation of gold-nanoparticles coated with our aptamers as a rapid and sensitive assay for these compounds. In contrast to DNA aptamers, unmodified RNA aptamers cannot be used as the recognition ligand in this assay, whereas 2'-fluoro-pyrimidine derivatives work reliably. We discuss the possible application of these reagents as sensors for drug residues and the challenges for understanding the structural basis of aminoglycoside-aptamer recognition highlighted by the SELEX results.
Collapse
Affiliation(s)
- Nicola Derbyshire
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Simon J. White
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - David H. J. Bunka
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Lei Song
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Sara Stead
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Jonathan Tarbin
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Matthew Sharman
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Dejian Zhou
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Peter G. Stockley
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| |
Collapse
|
12
|
Emory JM, Peng Z, Young B, Hupert ML, Rousselet A, Patterson D, Ellison B, Soper SA. Design and development of a field-deployable single-molecule detector (SMD) for the analysis of molecular markers. Analyst 2011; 137:87-97. [PMID: 22005669 DOI: 10.1039/c1an15658f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Single-molecule detection (SMD) has demonstrated some attractive benefits for many types of biomolecular analyses including enhanced processing speed by eliminating processing steps, elimination of ensemble averaging and single-molecule sensitivity. However, it's wide spread use has been hampered by the complex instrumentation required for its implementation when using fluorescence as the readout modality. We report herein a simple and compact fluorescence single-molecule instrument that is straightforward to operate and consisted of fiber optics directly coupled to a microfluidic device. The integrated fiber optics served as waveguides to deliver the laser excitation light to the sample and collecting the resulting emission, simplifying the optical requirements associated with traditional SMD instruments by eliminating the need for optical alignment and simplification of the optical train. Additionally, the use of a vertical cavity surface emitting laser and a single photon avalanche diode serving as the excitation source and photon transducer, respectively, as well as a field programmable gate array (FPGA) integrated into the processing electronics assisted in reducing the instrument footprint. This small footprint SMD platform was tested using fluorescent microspheres and single AlexaFluor 660 molecules to determine the optimal operating parameters and system performance. As a demonstration of the utility of this instrument for biomolecular analyses, molecular beacons (MBs) were designed to probe bacterial cells for the gene encoding Gram-positive species. The ability to monitor biomarkers using this simple and portable instrument will have a number of important applications, such as strain-specific detection of pathogenic bacteria or the molecular diagnosis of diseases requiring rapid turn-around-times directly at the point-of-use.
Collapse
Affiliation(s)
- Jason M Emory
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bunka DHJ, Lane SW, Lane CL, Dykeman EC, Ford RJ, Barker AM, Twarock R, Phillips SEV, Stockley PG. Degenerate RNA packaging signals in the genome of Satellite Tobacco Necrosis Virus: implications for the assembly of a T=1 capsid. J Mol Biol 2011; 413:51-65. [PMID: 21839093 DOI: 10.1016/j.jmb.2011.07.063] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/26/2022]
Abstract
Using a recombinant, T=1 Satellite Tobacco Necrosis Virus (STNV)-like particle expressed in Escherichia coli, we have established conditions for in vitro disassembly and reassembly of the viral capsid. In vivo assembly is dependent on the presence of the coat protein (CP) N-terminal region, and in vitro assembly requires RNA. Using immobilised CP monomers under reassembly conditions with "free" CP subunits, we have prepared a range of partially assembled CP species for RNA aptamer selection. SELEX directed against the RNA-binding face of the STNV CP resulted in the isolation of several clones, one of which (B3) matches the STNV-1 genome in 16 out of 25 nucleotide positions, including across a statistically significant 10/10 stretch. This 10-base region folds into a stem-loop displaying the motif ACAA and has been shown to bind to STNV CP. Analysis of the other aptamer sequences reveals that the majority can be folded into stem-loops displaying versions of this motif. Using a sequence and secondary structure search motif to analyse the genomic sequence of STNV-1, we identified 30 stem-loops displaying the sequence motif AxxA. The implication is that there are many stem-loops in the genome carrying essential recognition features for binding STNV CP. Secondary structure predictions of the genomic RNA using Mfold showed that only 8 out of 30 of these stem-loops would be formed in the lowest-energy structure. These results are consistent with an assembly mechanism based on kinetically driven folding of the RNA.
Collapse
Affiliation(s)
- David H J Bunka
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sahoo H. Förster resonance energy transfer – A spectroscopic nanoruler: Principle and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2011. [DOI: 10.1016/j.jphotochemrev.2011.05.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Rolfsson Ó, Toropova K, Ranson NA, Stockley PG. Mutually-induced conformational switching of RNA and coat protein underpins efficient assembly of a viral capsid. J Mol Biol 2010; 401:309-322. [PMID: 20684044 PMCID: PMC4793595 DOI: 10.1016/j.jmb.2010.05.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Single-stranded RNA viruses package their genomes into capsids enclosing fixed volumes. We assayed the ability of bacteriophage MS2 coat protein to package large, defined fragments of its genomic, single-stranded RNA. We show that the efficiency of packaging into a T=3 capsid in vitro is inversely proportional to RNA length, implying that there is a free-energy barrier to be overcome during assembly. All the RNAs examined have greater solution persistence lengths than the internal diameter of the capsid into which they become packaged, suggesting that protein-mediated RNA compaction must occur during assembly. Binding ethidium bromide to one of these RNA fragments, which would be expected to reduce its flexibility, severely inhibited packaging, consistent with this idea. Cryo-EM structures of the capsids assembled in these experiments with the sub-genomic RNAs show a layer of RNA density beneath the coat protein shell but lack density for the inner RNA shell seen in the wild-type virion. The inner layer is restored when full-length virion RNA is used in the assembly reaction, implying that it becomes ordered only when the capsid is filled, presumably because of the effects of steric and/or electrostatic repulsions. The cryo-EM results explain the length dependence of packaging. In addition, they show that for the sub-genomic fragments the strongest ordered RNA density occurs below the coat protein dimers forming the icosahedral 5-fold axes of the capsid. There is little such density beneath the proteins at the 2-fold axes, consistent with our model in which coat protein dimers binding to RNA stem-loops located at sites throughout the genome leads to switching of their preferred conformations, thus regulating the placement of the quasi-conformers needed to build the T=3 capsid. The data are consistent with mutual chaperoning of both RNA and coat protein conformations, partially explaining the ability of such viruses to assemble so rapidly and accurately.
Collapse
Affiliation(s)
- Óttar Rolfsson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Katerina Toropova
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
16
|
Fiore JL, Kraemer B, Koberling F, Edmann R, Nesbitt DJ. Enthalpy-driven RNA folding: single-molecule thermodynamics of tetraloop-receptor tertiary interaction. Biochemistry 2010; 48:2550-8. [PMID: 19186984 DOI: 10.1021/bi8019788] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RNA folding thermodynamics are crucial for structure prediction, which requires characterization of both enthalpic and entropic contributions of tertiary motifs to conformational stability. We explore the temperature dependence of RNA folding due to the ubiquitous GAAA tetraloop-receptor docking interaction, exploiting immobilized and freely diffusing single-molecule fluorescence resonance energy transfer (smFRET) methods. The equilibrium constant for intramolecular docking is obtained as a function of temperature (T = 21-47 degrees C), from which a van't Hoff analysis yields the enthalpy (DeltaH degrees) and entropy (DeltaS degrees) of docking. Tetraloop-receptor docking is significantly exothermic and entropically unfavorable in 1 mM MgCl(2) and 100 mM NaCl, with excellent agreement between immobilized (DeltaH degrees = -17.4 +/- 1.6 kcal/mol, and DeltaS degrees = -56.2 +/- 5.4 cal mol(-1) K(-1)) and freely diffusing (DeltaH degrees = -17.2 +/- 1.6 kcal/mol, and DeltaS degrees = -55.9 +/- 5.2 cal mol(-1) K(-1)) species. Kinetic heterogeneity in the tetraloop-receptor construct is unaffected over the temperature range investigated, indicating a large energy barrier for interconversion between the actively docking and nondocking subpopulations. Formation of the tetraloop-receptor interaction can account for approximately 60% of the DeltaH degrees and DeltaS degrees of P4-P6 domain folding in the Tetrahymena ribozyme, suggesting that it may act as a thermodynamic clamp for the domain. Comparison of the isolated tetraloop-receptor and other tertiary folding thermodynamics supports a theme that enthalpy- versus entropy-driven folding is determined by the number of hydrogen bonding and base stacking interactions.
Collapse
Affiliation(s)
- Julie L Fiore
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309-0440, USA
| | | | | | | | | |
Collapse
|
17
|
Pugh SD, Gell C, Smith DA, Radford SE, Brockwell DJ. Single-molecule studies of the Im7 folding landscape. J Mol Biol 2010; 398:132-45. [PMID: 20211187 PMCID: PMC2855442 DOI: 10.1016/j.jmb.2010.02.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/20/2010] [Accepted: 02/26/2010] [Indexed: 11/29/2022]
Abstract
Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted Ieqm) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the Ieqm variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na2SO4 in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding.
Collapse
Affiliation(s)
- Sara D Pugh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
18
|
Rezác J, Hobza P, Harris SA. Stretched DNA investigated using molecular-dynamics and quantum-mechanical calculations. Biophys J 2010; 98:101-10. [PMID: 20074515 DOI: 10.1016/j.bpj.2009.08.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 08/17/2009] [Accepted: 08/31/2009] [Indexed: 11/29/2022] Open
Abstract
We combined atomistic molecular-dynamics simulations with quantum-mechanical calculations to investigate the sequence dependence of the stretching behavior of duplex DNA. Our combined quantum-mechanical/molecular-mechanical approach demonstrates that molecular-mechanical force fields are able to describe both the backbone and base-base interactions within the highly distorted nucleic acid structures produced by stretching the DNA from the 5' ends, which include conformations containing disassociated basepairs, just as well as these force fields describe relaxed DNA conformations. The molecular-dynamics simulations indicate that the force-induced melting pathway is sequence-dependent and is influenced by the availability of noncanonical hydrogen-bond interactions that can assist the disassociation of the DNA basepairs. The biological implications of these results are discussed.
Collapse
Affiliation(s)
- Jan Rezác
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
19
|
Zhang H, Shu D, Browne M, Guo P. Approaches for stoichiometry and distance determination of nanometer bio-complex by dual-channel single molecule imaging. IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOP. IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOP 2009; 2009:124-127. [PMID: 20485472 DOI: 10.1109/lissa.2009.4906725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A dual-channel imaging system with single fluorophore sensitivity was assembled in this lab. Inclusion of an integrated laser combiner was introduced to facilitate simultaneous dual-channel imaging. The imaging system has been applied to study the structure, stoichiometry, distance and function of the phi29 DNA packaging motor. Approaches including single molecule photobleaching, single molecule FRET and binomial distribution quantification were carried out to clarify the stoichiometry and distance of pRNA on the biologically active packaging motor. The results were statistically analyzed to access the copy number of pRNA, and the distance constraint was used to verify the 3D structure of the computer model of phi29 DNA packaging motor.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Biomedical Engineering, College of Medicine/College of Engineering, University of Cincinnati, 3125 Eden Ave., Cincinnati, OH, 45267, USA
| | | | | | | |
Collapse
|