1
|
Wang Q, Liu S, Li K, Xing R, Chen X, Li P. A Computational Biology Study on the Structure and Dynamics Determinants of Thermal Stability of the Chitosanase from Aspergillus fumigatus. Int J Mol Sci 2023; 24:ijms24076671. [PMID: 37047643 PMCID: PMC10095384 DOI: 10.3390/ijms24076671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Environmentally friendly and efficient biodegradation with chitosanase for degrading chitosan to oligosaccharide has been gaining more importance. Here, we studied a chitosanase from Aspergillus fumigatus with potential for production, but does not have the ideal thermal stability. The structure predicted by the Alphafold2 model, especially the binding site and two catalytic residues, has been found to have a high similarity with the experimental structure of the chitosanase V-CSN from the same family. The effects of temperature on structure and function were studied by dynamic simulation and the results showed that the binding site had high flexibility. After heating up from 300 K to 350 K, the RMSD and RMSF of the binding site increased significantly, in particular, the downward shift of loop6 closed the binding site, resulting in the spatial hindrance of binding. The time proportions of important hydrogen bonds at the binding site decreased sharply, indicating that serious disruption of hydrogen bonds should be the main interaction factor for conformational changes. The residues contributing energetically to binding were also revealed to be in the highly flexible region, which inevitably leads to the decrease in the activity stability at high temperature. These findings provide directions for the modification of thermal stability and perspectives on the research of proteins without experimental structures.
Collapse
Affiliation(s)
- Qian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
2
|
Su H, Sun J, Jia Z, Zhao H, Mao X. Insights into promiscuous chitosanases: the known and the unknown. Appl Microbiol Biotechnol 2022; 106:6887-6898. [PMID: 36178516 DOI: 10.1007/s00253-022-12198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Chitosanase, a glycoside hydrolase (GH), catalyzes the cleavage of β-1,4-glycosidic bonds in polysaccharides and is widely distributed in nature. Many organisms produce chitosanases, and numerous chitosanases in the GH families have been intensely studied. The reported chitosanases mainly cleaved the inter-glucosamine glycosidic bonds, while substrate specificity is not strictly unique due to the existence of bifunctional or multifunctional activity profiles. The promiscuity of chitosanases is essential for the different pathways of biomass polysaccharide conversion and understanding of the chitosanase evolutionary process. However, the reviews for this aspect are completely unknown. This review provides an overview of the promiscuous activities, also considering the substrate and product specificity of chitosanases observed to date. These contribute to important implications for the future discovery and research of promiscuous chitosanases and applications related to biomass conversion. KEY POINTS: • The promiscuity of chitosanases is reviewed for the first time. • The current review provides insights into the substrate specificity of chitosanases. • The mode-product relationship and prospect of promiscuous chitosanases are highlighted.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Hongjun Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
3
|
Cao S, Gao P, Xia W, Liu S, Liu X. Cloning and characterization of a novel GH75 family chitosanase from Penicillium oxalicum M2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Zhang W, Zhou J, Gu Q, Sun R, Yang W, Lu Y, Wang C, Yu X. Heterologous Expression of GH5 Chitosanase in Pichia pastoris and Antioxidant Biological Activity of Its Chitooligosacchride Hydrolysate. J Biotechnol 2022; 348:55-63. [PMID: 35304164 DOI: 10.1016/j.jbiotec.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/25/2022]
Abstract
Chitosanase was widely used in the production of bioactive chitooligosacchride (CHOS) due to their safety, controllability, environmental protection, and biodegradability. Studies showed that the bioactivity of CHOS is closely related to its degree of polymerization. Therefore, the production of ideal polymerized CHOS becomes our primary goal. In this study, the glycosyl hydrolase (GH) family 5 chitosanase was successfully expressed heterologously in Pichia pastoris. After 96h of high-density fermentation, the chitosanase activity reached 90.62 U·mL-1, the protein content reached 9.76mg·mL-1. When 2% chitosan was hydrolyzed by crude enzyme (20U/mL), the hydrolysis rate reached 91.2% after 8h, producing a mixture of CHOS with 2-4 desirable degrees of polymerization (DP). Then, the antioxidant activity of CHOS mixture was investigated, and the results showed that the antioxidant effect was concentration-dependent and had great application potential in the field of nutrition.
Collapse
Affiliation(s)
- Wenshuai Zhang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianli Zhou
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiuya Gu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ruobin Sun
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenhua Yang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Lu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Congcong Wang
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobin Yu
- School of Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Structural and biochemical basis of a marine bacterial glycoside hydrolase family 2 β-glycosidase with broad substrate specificity. Appl Environ Microbiol 2021; 88:e0222621. [PMID: 34818100 DOI: 10.1128/aem.02226-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uronic acids are commonly found in marine polysaccharides and increase structural complexity sanand intrinsic recalcitrance to enzymatic attack. The glycoside hydrolase family 2 (GH2) include proteins that target sugar conjugates with hexuronates and are involved in the catabolism and cycling of marine polysaccharides. Here, we reported a novel GH2, AqGalA from a marine algae-associated Bacteroidetes with broad-substrate specificity. Biochemical analyses revealed that AqGalA exhibits hydrolyzing activities against β-galacturonide, β-glucuronide, and β-galactopyranoside via retaining mechanisms. We solved the AqGalA crystal structure in complex with galacturonic acid (GalA) and showed (via mutagenesis) that charge characteristics at uronate-binding subsites controlled substrate selectivity for uronide hydrolysis. Additionally, conformational flexibility of the AqGalA active site pocket was proposed as a key component for broad substrate enzyme selectivity. Our AqGalA structural and functional data augments the current understanding of substrate recognition of GH2 enzymes and provided key insights into the bacterial use of uronic acid containing polysaccharides. IMPORTANCE The decomposition of algal glycans driven by marine bacterial communities represents one of the largest heterotrophic transformation of organic matter fueling marine food webs and global carbon cycling. However, our knowledge of the carbohydrate cycling is limited due to structural complexity of marine polysaccharides and the complicated enzymatic machinery of marine microbes. To degrade algal glycan, marine bacteria such as members of Bacteroidetes produce a complex repertoire of carbohydrate-active enzymes (CAZymes) matching the structural specificity of the different carbohydrates. In this study, we investigated an extracellular GH2 β-glycosidase, AqGalA from a marine Bacteroidetes to identify the key components responsible for glycuronides recognition and hydrolysis. The broad substrate specificity of AqGalA against glycosides with diverse stereochemical substitutions indicates its potential in processing complex marine polysaccharides. Our findings promote a better understanding of microbially-driven mechanisms of marine carbohydrate cycling.
Collapse
|
6
|
Krapivin VB, Luzhkov VB. Molecular modeling of the conformational dynamics of nitroxide derivatives of chitosan in aqueous solution. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Wang Y, Li D, Liu M, Xia C, Fan Q, Li X, Lan Z, Shi G, Dong W, Li Z, Cui Z. Preparation of Active Chitooligosaccharides with a Novel Chitosanase AqCoA and Their Application in Fungal Disease Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3351-3361. [PMID: 33688732 DOI: 10.1021/acs.jafc.0c07802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymes that degrade fungal cell walls and the resulting oligosaccharides are promising weapons to combat plant fungal disease. In this study, we identified a novel endo-chitosanase, AqCoA, from Aquabacterium sp. A7-Y. The enzyme showed a specific activity of 18 U/mg toward 95% deacetylated chitosan at pH 5.0 and 40 °C. AqCoA also showed activity toward sodium carboxymethylcellulose, indicating substrate promiscuity. AqCoA hydrolyzed chitosan into chitooligosaccharides (CoA-COSs) with degrees of polymerization (DPs) of 3-5 but showed no activity toward CoA-COSs with DPs <6, indicating an endo-type activity. At 2.5 μg/mL, AqCoA inhibited appressorium formation of Magnaporthe oryzae; the produced CoA-COSs also inhibited the growth of M. oryzae and Fusarium oxysporum. Furthermore, CoA-COSs acted as immune elicitors in rice by inducing the reactive oxygen species burst and the expression of defense genes. These results demonstrated that AqCoA and its resulting CoA-COSs might be effective tools for protecting plants against pathogenic fungi.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, P. R. China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095 Nanjing, P. R. China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Zejun Lan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Guolong Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 211800 Nanjing, P. R. China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| |
Collapse
|
8
|
Liu M, Yu J, Lv B, Hou Y, Liu X, Feng X, Li C. Improving the activity and thermostability of GH2 β-glucuronidases via domain reassembly. Biotechnol Bioeng 2021; 118:1962-1972. [PMID: 33559890 DOI: 10.1002/bit.27710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/31/2021] [Indexed: 11/07/2022]
Abstract
Glycoside hydrolase family 2 (GH2) enzymes are generally composed of three domains: TIM-barrel domain (TIM), immunoglobulin-like β-sandwich domain (ISD), and sugar-binding domain (SBD). The combination of these three domains yields multiple structural combinations with different properties. Theoretically, the drawbacks of a given GH2 fold may be circumvented by efficiently reassembling the three domains. However, very few successful cases have been reported. In this study, we used six GH2 β-glucuronidases (GUSs) from bacteria, fungi, or humans as model enzymes and constructed a series of mutants by reassembling the domains from different GUSs. The mutants PGUS-At, GUS-PAA, and GUS-PAP, with reassembled domains from fungal GUSs, showed improved expression levels, activity, and thermostability, respectively. Specifically, compared to the parental enzyme, the mutant PGUS-At displayed 3.8 times higher expression, the mutant GUS-PAA displayed 1.0 time higher catalytic efficiency (kcat /Km ), and the mutant GUS-PAP displayed 7.5 times higher thermostability at 65°C. Furthermore, two-hybrid mutants, GUS-AEA and GUS-PEP, were constructed with the ISD from a bacterial GUS and SBD and TIM domain from fungal GUSs. GUS-AEA and GUS-PEP showed 30.4% and 23.0% higher thermostability than GUS-PAP, respectively. Finally, molecular dynamics simulations were conducted to uncover the molecular reasons for the increased thermostability of the mutant.
Collapse
Affiliation(s)
- Mingzhu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Jing Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Yuhui Hou
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Xinhe Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China.,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, PR China
| |
Collapse
|
9
|
Structural Insights into the Molecular Evolution of the Archaeal Exo-β-d-Glucosaminidase. Int J Mol Sci 2019; 20:ijms20102460. [PMID: 31109049 PMCID: PMC6566704 DOI: 10.3390/ijms20102460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
The archaeal exo-β-d-glucosaminidase (GlmA), a thermostable enzyme belonging to the glycosidase hydrolase (GH) 35 family, hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a novel enzyme in terms of its primary structure, as it is homologous to both GH35 and GH42 β-galactosidases. The catalytic mechanism of GlmA is not known. Here, we summarize the recent reports on the crystallographic analysis of GlmA. GlmA is a homodimer, with each subunit comprising three distinct domains: a catalytic TIM-barrel domain, an α/β domain, and a β1 domain. Surprisingly, the structure of GlmA presents features common to GH35 and GH42 β-galactosidases, with the domain organization resembling that of GH42 β-galactosidases and the active-site architecture resembling that of GH35 β-galactosidases. Additionally, the GlmA structure also provides critical information about its catalytic mechanism, in particular, on how the enzyme can recognize glucosamine. Finally, we postulate an evolutionary pathway based on the structure of an ancestor GlmA to extant GH35 and GH42 β-galactosidases.
Collapse
|
10
|
Cloning, purification and characterization of a novel GH46 family chitosanase, Csn-CAP, from Staphylococcus capitis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Poshina DN, Raik SV, Poshin AN, Skorik YA. Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Sun H, Mao X, Guo N, Zhao L, Cao R, Liu Q. Discovery and Characterization of a Novel Chitosanase from Paenibacillus dendritiformis by Phylogeny-Based Enzymatic Product Specificity Prediction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4645-4651. [PMID: 29687713 DOI: 10.1021/acs.jafc.7b06067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the process of genome mining for novel chitosanases by phylogeny-based enzymatic product specificity prediction, a gene named Csn-PD from Paenibacillus dendritiformis was discovered. The enzyme was classified as a member of the GH46 family of glycoside hydrolase based on sequence alignment, and it was functionally expressed in Escherichia coli BL21 (DE3). The recombinant chitosanase was purified, and its molecular weight was estimated to be 31 kDa by SDS-PAGE. Csn-PD displayed maximal activity toward colloidal chitosan at pH 7.0 and 45 °C, respectively. A combination of thin-layer chromatography and electrospray ionization-mass spectrometry results showed that Csn-PD exhibited an endotype cleavage pattern and hydrolyzed chitosan to yield (GlcN)2 as the major product. The unique enzymatic properties of this chitosanase may make it a good candidate for (GlcN)2 production.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Food Engineering and Nutrition , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , China
| | - Xiangzhao Mao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Na Guo
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Ling Zhao
- Department of Food Engineering and Nutrition , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , China
| | - Rong Cao
- Department of Food Engineering and Nutrition , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , China
| | - Qi Liu
- Department of Food Engineering and Nutrition , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , China
| |
Collapse
|
13
|
Abstract
In red algae, the most abundant principal cell wall polysaccharides are mixed galactan agars, of which agarose is a common component. While bioconversion of agarose is predominantly catalyzed by bacteria that live in the oceans, agarases have been discovered in microorganisms that inhabit diverse terrestrial ecosystems, including human intestines. Here we comprehensively define the structure-function relationship of the agarolytic pathway from the human intestinal bacterium Bacteroides uniformis (Bu) NP1. Using recombinant agarases from Bu NP1 to completely depolymerize agarose, we demonstrate that a non-agarolytic Bu strain can grow on GAL released from agarose. This relationship underscores that rare nutrient utilization by intestinal bacteria is facilitated by the acquisition of highly specific enzymes that unlock inaccessible carbohydrate resources contained within unusual polysaccharides. Intriguingly, the agarolytic pathway is differentially distributed throughout geographically distinct human microbiomes, reflecting a complex historical context for agarose consumption by human beings.
Collapse
|
14
|
Shinya S, Fukamizo T. Interaction between chitosan and its related enzymes: A review. Int J Biol Macromol 2017; 104:1422-1435. [PMID: 28223213 DOI: 10.1016/j.ijbiomac.2017.02.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/17/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Chitosan-related enzymes including chitosanases, exo-β-glucosaminidases, and enzymes having chitosan-binding modules recognize ligands through electrostatic interactions between the acidic amino acids in proteins and amino groups of chitosan polysaccharides. However, in GH8 chitosanases, several aromatic residues are also involved in substrate recognition through stacking interactions, and these enzymes consequently hydrolyze β-1,4-glucan as well as chitosan. The binding grooves of these chitosanases are extended and opened at both ends of the grooves, so that the enzymes can clamp a long chitosan polysaccharide. The association/dissociation of positively charged glucosamine residues to/from the binding pocket of a GH2 exo-β-glucosaminidase controls the p Ka of the catalytic acid, thereby maintaining the high catalytic potency of the enzyme. In contrast to chitosanases, chitosan-binding modules only accommodate a couple of glucosamine residues, predominantly recognizing the non-reducing end glucosamine residue of chitosan by electrostatic interactions and a hydrogen-bonding network. These structural findings on chitosan-related enzymes may contribute to future applications for the efficient conversion of the chitin/chitosan biomass.
Collapse
Affiliation(s)
- Shoko Shinya
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
15
|
Mine S, Watanabe M, Kamachi S, Abe Y, Ueda T. The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution. J Biol Chem 2017; 292:4996-5006. [PMID: 28130448 DOI: 10.1074/jbc.m116.766535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
The archaeal exo-β-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 β-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 β-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 β-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 β-galactosidase. Our study suggests that GH35 and GH42 β-galactosidases evolved by exploiting the structural features of GlmA.
Collapse
Affiliation(s)
- Shouhei Mine
- From the Biomedical Research Institute (BMD), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577,
| | - Masahiro Watanabe
- the Research Institute for Sustainable Chemistry (ISC), AIST, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, and
| | - Saori Kamachi
- the Research Institute for Sustainable Chemistry (ISC), AIST, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, and
| | - Yoshito Abe
- the Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tadashi Ueda
- the Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
16
|
The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase. Biochem J 2016; 473:463-72. [DOI: 10.1042/bj20150966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/27/2015] [Indexed: 02/04/2023]
Abstract
The crystal structure of an inverting exo-β-D-glucosaminidase from glycoside hydrolase family 9 was determined. This is the first description of the structure of an exo-type enzyme from this family. A glycosynthase was produced from this enzyme through saturation mutagenesis.
Collapse
|
17
|
Qin Z, Xiao Y, Yang X, Mesters JR, Yang S, Jiang Z. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase. Sci Rep 2015; 5:18292. [PMID: 26669854 PMCID: PMC4680927 DOI: 10.1038/srep18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/16/2015] [Indexed: 11/17/2022] Open
Abstract
Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions — a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins.
Collapse
Affiliation(s)
- Zhen Qin
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Yibei Xiao
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Xinbin Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Jeroen R Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
18
|
Structural and biochemical insights into the degradation mechanism of chitosan by chitosanase OU01. Biochim Biophys Acta Gen Subj 2015; 1850:1953-61. [DOI: 10.1016/j.bbagen.2015.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 01/02/2023]
|
19
|
Nascimento AS, Muniz JRC, Aparício R, Golubev AM, Polikarpov I. Insights into the structure and function of fungal β-mannosidases from glycoside hydrolase family 2 based on multiple crystal structures of the Trichoderma harzianum enzyme. FEBS J 2014; 281:4165-78. [PMID: 24975648 DOI: 10.1111/febs.12894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/15/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED Hemicellulose is an important part of the plant cell wall biomass, and is relevant to cellulosic ethanol technologies. β-Mannosidases are enzymes capable of cleaving nonreducing residues of β-d-mannose from β-d-mannosides and hemicellulose mannose-containing polysaccharides, such as mannans and galactomannans. β-Mannosidases are distributed between glycoside hydrolase (GH) families 1, 2, and 5, and only a handful of the enzymes have been structurally characterized to date. The only published X-ray structure of a GH family 2 mannosidase is that of the bacterial Bacteroides thetaiotaomicron enzyme. No structures of eukaryotic mannosidases of this family are currently available. To fill this gap, we set out to solve the structure of Trichoderma harzianum GH family 2 β-mannosidase and to refine it to 1.9-Å resolution. Structural comparisons of the T. harzianum GH2 β-mannosidase highlight similarities in its structural architecture with other members of GH family 2, reveal the molecular mechanism of β-mannoside binding and recognition, and shed light on its putative galactomannan-binding site. DATABASE Coordinates and observed structure factor amplitudes have been deposited with the Protein Data Bank (4CVU and 4UOJ). The T. harzianum β-mannosidase 2A nucleotide sequence has GenBank accession number BankIt1712036 GeneMark.hmm KJ624918.
Collapse
|
20
|
Shinya S, Ohnuma T, Yamashiro R, Kimoto H, Kusaoke H, Anbazhagan P, Juffer AH, Fukamizo T. The first identification of carbohydrate binding modules specific to chitosan. J Biol Chem 2013; 288:30042-30053. [PMID: 23986450 DOI: 10.1074/jbc.m113.503243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two carbohydrate binding modules (DD1 and DD2) belonging to CBM32 are located at the C terminus of a chitosanase from Paenibacillus sp. IK-5. We produced three proteins, DD1, DD2, and tandem DD1/DD2 (DD1+DD2), and characterized their binding ability. Transition temperature of thermal unfolding (Tm) of each protein was elevated by the addition of cello-, laminari-, chitin-, or chitosan-hexamer (GlcN)6. The Tm elevation (ΔTm) in DD1 was the highest (10.3 °C) upon the addition of (GlcN)6 and was markedly higher than that in DD2 (1.0 °C). A synergistic effect was observed (ΔTm = 13.6 °C), when (GlcN)6 was added to DD1+DD2. From isothermal titration calorimetry experiments, affinities to DD1 were not clearly dependent upon chain length of (GlcN)n; ΔGr° values were -7.8 (n = 6), -7.6 (n = 5), -7.6 (n = 4), -7.6 (n = 3), and -7.1 (n = 2) kcal/mol, and the value was not obtained for GlcN due to the lowest affinity. DD2 bound (GlcN)n with the lower affinities (ΔGr° = -5.0 (n = 3) ~ -5.2 (n = 6) kcal/mol). Isothermal titration calorimetry profiles obtained for DD1+DD2 exhibited a better fit when the two-site model was used for analysis and provided greater affinities to (GlcN)6 for individual DD1 and DD2 sites (ΔGr° = -8.6 and -6.4 kcal/mol, respectively). From NMR titration experiments, (GlcN)n (n = 2~6) were found to bind to loops extruded from the core β-sandwich of individual DD1 and DD2, and the interaction sites were similar to each other. Taken together, DD1+DD2 is specific to chitosan, and individual modules synergistically interact with at least two GlcN units, facilitating chitosan hydrolysis.
Collapse
Affiliation(s)
- Shoko Shinya
- From the Department of Advanced Bioscience, Kinki University, Nara 631-8505 Japan
| | - Takayuki Ohnuma
- From the Department of Advanced Bioscience, Kinki University, Nara 631-8505 Japan
| | - Reina Yamashiro
- From the Department of Advanced Bioscience, Kinki University, Nara 631-8505 Japan
| | - Hisashi Kimoto
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195
| | - Hideo Kusaoke
- Department of Environmental and Biotechnological Frontier Engineering, Fukui University of Technology, Fukui 910-8505, Japan, and
| | - Padmanabhan Anbazhagan
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, FI-90014 Finland
| | - André H Juffer
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, FI-90014 Finland
| | - Tamo Fukamizo
- From the Department of Advanced Bioscience, Kinki University, Nara 631-8505 Japan,.
| |
Collapse
|
21
|
Chavan SB, Deshpande MV. Chitinolytic enzymes: An appraisal as a product of commercial potential. Biotechnol Prog 2013; 29:833-46. [DOI: 10.1002/btpr.1732] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- S. B. Chavan
- Jay Biotech; 111, Matrix, World Trade Centre, Kharadi, Pune 411014 India
| | - M. V. Deshpande
- Biochemical Sciences Division; National Chemical Laboratory; Pune 411008 India
| |
Collapse
|
22
|
Demo G, Fliedrová B, Weignerová L, Wimmerová M. Crystallization and preliminary X-ray crystallographic analysis of recombinant β-mannosidase from Aspergillus niger. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:288-91. [PMID: 23519806 PMCID: PMC3606576 DOI: 10.1107/s1744309113002522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 01/24/2013] [Indexed: 11/10/2022]
Abstract
β-Mannosidase (EC 3.2.1.25) is an important exoglycosidase specific for the hydrolysis of terminal β-linked mannoside in various oligomeric saccharide structures. β-Mannosidase from Aspergillus niger was expressed in Pichia pastoris and purified to clear homogeneity. β-Mannosidase was crystallized in the presence of D-mannose and the crystal diffracted to 2.41 Å resolution. The crystal belonged to space group P1, with unit-cell parameters a=62.37, b=69.73, c=69.90 Å, α=108.20, β=101.51, γ=103.20°. The parameters derived from the data collection indicate the presence of one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Gabriel Demo
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Barbora Fliedrová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague, Czech Republic
| | - Lenka Weignerová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
23
|
Tanaka T, Wada T, Noguchi M, Ishihara M, Kobayashi A, Ohnuma T, Fukamizo T, Brzezinski R, Shoda SI. 4,6-Dimethoxy-1,3,5-triazin-2-yl β-d-glycosaminides: Novel Substrates for Transglycosylation Reaction Catalyzed by Exo-β-d-glucosaminidase fromAmycolatopsis orientalis. J Carbohydr Chem 2012. [DOI: 10.1080/07328303.2012.698437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Cao R, Jin Y, Xu D. Recognition of Cello-Oligosaccharides by CBM17 from Clostridium cellulovorans: Molecular Dynamics Simulation. J Phys Chem B 2012; 116:6087-96. [DOI: 10.1021/jp3010647] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ruyin Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yongdong Jin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Dingguo Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
25
|
Zhu XF, Tan HQ, Zhu C, Liao L, Zhang XQ, Wu M. Cloning and overexpression of a new chitosanase gene from Penicillium sp. D-1. AMB Express 2012; 2:13. [PMID: 22339878 PMCID: PMC3308211 DOI: 10.1186/2191-0855-2-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/16/2012] [Indexed: 12/15/2022] Open
Abstract
A chitosanase gene, csn, was cloned from Penicillium sp. D-1 by inverse PCR. The cDNA sequence analysis revealed that csn had no intron. The deduced CSN protein consists of 250 amino acids including a 20-amino acid signal peptide, and shared 83.6% identity with the family 75 chitosanase from Talaromyces stipitatus (B8M2R4). The mature protein was overexpressed in Escherichia coli and purified with the affinity chromatography of Ni2+-NTA. The novel recombinant chitosanase showed maximal catalytic activity at pH 4.0 and 48°C. Moreover, the activity of CSN was stable over a broad pH range of 3.0-8.0, and the enzymatic activity was significantly enhanced by Mg2+ and Mn2+. The CSN could effectively hydrolyze colloidal chitosan and chitosan, while could not hydrolyze chitin and carboxymethylcellulose (CMC). Due to the particular acidophily, CSN has the potential application in the recycling of chitosan wastes. The GenBank/EMBL/DDBJ accession numbers for the 18S rRNA gene and chitosanase gene of strain D-1 are JF950269 and JF950270, respectively.
Collapse
|
26
|
Honda Y, Shimaya N, Ishisaki K, Ebihara M, Taniguchi H. Elucidation of exo-β-d-glucosaminidase activity of a family 9 glycoside hydrolase (PBPRA0520) from Photobacterium profundum SS9. Glycobiology 2010; 21:503-11. [DOI: 10.1093/glycob/cwq191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Sakamoto Y, Ike M, Tanaka N, Suzuki Y, Ogasawara W, Okada H, Nonaka T, Morikawa Y, Nakamura KT. Crystallization and preliminary X-ray crystallographic studies of an exo-beta-D-glucosaminidase from Trichoderma reesei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:309-12. [PMID: 20208168 PMCID: PMC2833044 DOI: 10.1107/s1744309110000606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 01/06/2010] [Indexed: 11/10/2022]
Abstract
Chitosan is degraded to glucosamine (GlcN) by chitosanase and exo-beta-D-glucosaminidase (GlcNase). GlcNase from Trichoderma reesei (Gls93) is a 93 kDa extracellular protein composed of 892 amino acids. The enzyme liberates GlcN from the nonreducing end of the chitosan chain in an exo-type manner and belongs to glycoside hydrolase family 2. For crystallographic investigations, Gls93 was overexpressed in Pichia pastoris cells. The recombinant Gls93 had two molecular forms of approximately 105 kDa (Gls93-F1) and approximately 100 kDa (Gls93-F2), with the difference between them being caused by N-glycosylation. Both forms were crystallized by the hanging-drop vapour-diffusion method. Crystals of Gls93-F1 belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 98.27, b = 98.42, c = 108.28 A, and diffracted to 1.8 A resolution. Crystals of Gls93-F2 belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 67.84, b = 81.62, c = 183.14 A, and diffracted to 2.4 A resolution. Both crystal forms were suitable for X-ray structure analysis at high resolution.
Collapse
Affiliation(s)
- Yasumitsu Sakamoto
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Masakazu Ike
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Nobutada Tanaka
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yoshiyuki Suzuki
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Hirofumi Okada
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takamasa Nonaka
- School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Yasushi Morikawa
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kazuo T. Nakamura
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
28
|
Pluvinage B, Ghinet MG, Brzezinski R, Boraston AB, Stubbs KA. Inhibition of the exo-β-d-glucosaminidase CsxA by a glucosamine-configured castanospermine and an amino-australine analogue. Org Biomol Chem 2009; 7:4169-72. [DOI: 10.1039/b913235j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|