1
|
Abstract
Increasingly more and larger structural complexes are being determined
experimentally. The sizes of these systems pose a formidable computational challenge
to the study of their vibrational dynamics by normal mode analysis. To overcome this challenge, this work presents a novel resonance-inspired approach. Tests on large shell structures
of protein capsids demonstrate there is a strong
resonance between the vibrations of a whole capsid and those of individual capsomeres.
We then show how this resonance can be taken advantage of to significantly speed up normal
mode computations.
Collapse
Affiliation(s)
- Hyuntae Na
- Computer Science, Penn State Harrisburg, Middletown, Pennsylvania, UNITED STATES
| | - Guang Song
- Computer Science, Iowa State University, 226 Atanasoff Hall, AMES, Iowa, 50010-4844, UNITED STATES
| |
Collapse
|
2
|
Acar-Soykut E, Tayyarcan EK, Boyaci IH. A simple and fast method for discrimination of phage and antibiotic contaminants in raw milk by using Raman spectroscopy. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:82-89. [PMID: 29358798 PMCID: PMC5756185 DOI: 10.1007/s13197-017-2798-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/09/2017] [Accepted: 08/10/2017] [Indexed: 01/23/2023]
Abstract
Phage and antibiotic in raw milk poses significant risks for starter culture activity in fermented products. Therefore, rapid detection of phage and antibiotic contaminations in raw milk is a crucial process in dairy science. For this purpose, a preliminary novel method for detection of phage and antibiotic was developed by using Raman spectroscopy. Streptococcus thermophilus phages and ampicillin which are quite important elements in dairy industry were used as model. The phage and antibiotic samples were added to raw milk separately, and Raman measurements were carried out. The obtained spectra were processed with a chemometric method. In this study, it has been demonstrated that the presence of phage has a titer sufficient to stop the fermentation (107 pfu/ml), and antibiotic in a concentration which inhibits the growth of starter cultures (0.5 µg/ml) in raw milk could be discriminated through Raman spectroscopy with a short analysis time (30 min).
Collapse
Affiliation(s)
- Esra Acar-Soykut
- Food Research Center, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | | | - Ismail Hakki Boyaci
- Department of Food Engineering, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| |
Collapse
|
3
|
Veesler D, Khayat R, Krishnamurthy S, Snijder J, Huang RK, Heck AJR, Anand GS, Johnson JE. Architecture of a dsDNA viral capsid in complex with its maturation protease. Structure 2013; 22:230-7. [PMID: 24361271 DOI: 10.1016/j.str.2013.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/30/2022]
Abstract
Most double-stranded DNA (dsDNA) viruses, including bacteriophages and herpesviruses, rely on a staged assembly process of capsid formation. A viral protease is required for many of them to disconnect scaffolding domains/proteins from the capsid shell, therefore priming the maturation process. We used the bacteriophage HK97 as a model system to decipher the molecular mechanisms underlying the recruitment of the maturation protease by the assembling procapsid and the influence exerted onto the latter. Comparisons of the procapsid with and without protease using single-particle cryoelectron microscopy reconstructions, hydrogen/deuterium exchange coupled to mass spectrometry, and native mass spectrometry demonstrated that the protease interacts with the scaffolding domains within the procapsid interior and stabilizes them as well as the whole particle. The results suggest that the thermodynamic consequences of protease packaging are to shift the equilibrium between isolated coat subunit capsomers and procapsid in favor of the latter by stabilizing the assembled particle before making the process irreversible through proteolysis of the scaffolding domains.
Collapse
Affiliation(s)
- David Veesler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Reza Khayat
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Srinath Krishnamurthy
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Rick K Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre Padualaan 8, 3584CH, Utrecht, The Netherlands
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Nemecek D, Stepanek J, Thomas GJ. Raman Spectroscopy of Proteins and Nucleoproteins. ACTA ACUST UNITED AC 2013; Chapter 17:Unit17.8. [DOI: 10.1002/0471140864.ps1708s71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda Maryland
- Central European Institute of Technology, Masaryk University Brno Czech Republic
| | - Josef Stepanek
- Charles University in Prague, Faculty of Mathematics and Physics, Institute of Physics Prague Czech Republic
| | - George J. Thomas
- School of Biological Sciences, University of Missouri‐Kansas City Kansas City Missouri
| |
Collapse
|
5
|
Baudoux AC, Hendrix RW, Lander GC, Bailly X, Podell S, Paillard C, Johnson JE, Potter CS, Carragher B, Azam F. Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses. Environ Microbiol 2012; 14:2071-86. [PMID: 22225728 PMCID: PMC3338904 DOI: 10.1111/j.1462-2920.2011.02685.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report on a genomic and functional analysis of a novel marine siphovirus, the Vibrio phage SIO-2. This phage is lytic for related Vibrio species of great ecological interest including the broadly antagonistic bacterium Vibrio sp. SWAT3 as well as notable members of the Harveyi clade (V.harveyi ATTC BAA-1116 and V.campbellii ATCC 25920). Vibrio phage SIO-2 has a circularly permuted genome of 80598 bp, which displays unusual features. This genome is larger than that of most known siphoviruses and only 38 of the 116 predicted proteins had homologues in databases. Another divergence is manifest by the origin of core genes, most of which share robust similarities with unrelated viruses and bacteria spanning a wide range of phyla. These core genes are arranged in the same order as in most bacteriophages but they are unusually interspaced at two places with insertions of DNA comprising a high density of uncharacterized genes. The acquisition of these DNA inserts is associated with morphological variation of SIO-2 capsid, which assembles as a large (80 nm) shell with a novel T=12 symmetry. These atypical structural features confer on SIO-2 a remarkable stability to a variety of physical, chemical and environmental factors. Given this high level of functional and genomic novelty, SIO-2 emerges as a model of considerable interest in ecological and evolutionary studies.
Collapse
Affiliation(s)
- A-C Baudoux
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hendrix RW, Johnson JE. Bacteriophage HK97 Capsid Assembly and Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:351-63. [DOI: 10.1007/978-1-4614-0980-9_15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Building the Machines: Scaffolding Protein Functions During Bacteriophage Morphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:325-50. [DOI: 10.1007/978-1-4614-0980-9_14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|