1
|
Lau CH, Liang QL, Zhu H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res 2024:10.1007/s11248-024-00404-x. [PMID: 39158822 DOI: 10.1007/s11248-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
2
|
Sirous H, Fassihi A, Brogi S, Campiani G, Christ F, Debyser Z, Gemma S, Butini S, Chemi G, Grillo A, Zabihollahi R, Aghasadeghi MR, Saghaie L, Memarian HR. Synthesis, Molecular Modelling and Biological Studies of 3-hydroxypyrane- 4-one and 3-hydroxy-pyridine-4-one Derivatives as HIV-1 Integrase Inhibitors. Med Chem 2019; 15:755-770. [PMID: 30569867 DOI: 10.2174/1573406415666181219113225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Despite the progress in the discovery of antiretroviral compounds for treating HIV-1 infection by targeting HIV integrase (IN), a promising and well-known drug target against HIV-1, there is a growing need to increase the armamentarium against HIV, for avoiding the drug resistance issue. OBJECTIVE To develop novel HIV-1 IN inhibitors, a series of 3-hydroxy-pyrane-4-one (HP) and 3- hydroxy-pyridine-4-one (HPO) derivatives have been rationally designed and synthesized. METHODS To provide a significant characterization of the novel compounds, in-depth computational analysis was performed using a novel HIV-1 IN/DNA binary 3D-model for investigating the binding mode of the newly conceived molecules in complex with IN. The 3D-model was generated using the proto-type foamy virus (PFV) DNA as a structural template, positioning the viral polydesoxyribonucleic chain into the HIV-1 IN homology model. Moreover, a series of in vitro tests were performed including HIV-1 activity inhibition, HIV-1 IN activity inhibition, HIV-1 IN strand transfer activity inhibition and cellular toxicity. RESULTS Bioassay results indicated that most of HP analogues including HPa, HPb, HPc, HPd, HPe and HPg, showed favorable inhibitory activities against HIV-1-IN in the low micromolar range. Particularly halogenated derivatives (HPb and HPd) offered the best biological activities in terms of reduced toxicity and optimum inhibitory activities against HIV-1 IN and HIV-1 in cell culture. CONCLUSION Halogenated derivatives, HPb and HPd, displayed the most promising anti-HIV profile, paving the way to the optimization of the presented scaffolds for developing new effective antiviral agents.
Collapse
Affiliation(s)
- Hajar Sirous
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran.,Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Simone Brogi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy.,Department of Pharmacy, DoE Department of Excellence 2018-2022, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Frauke Christ
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Hamid R Memarian
- Department of Chemistry, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
3
|
Pham HT, Labrie L, Wijting IEA, Hassounah S, Lok KY, Portna I, Goring ME, Han Y, Lungu C, van der Ende ME, Brenner BG, Boucher CA, Rijnders BJA, van Kampen JJA, Mesplède T, Wainberg MA. The S230R Integrase Substitution Associated With Virus Load Rebound During Dolutegravir Monotherapy Confers Low-Level Resistance to Integrase Strand-Transfer Inhibitors. J Infect Dis 2019; 218:698-706. [PMID: 29617824 DOI: 10.1093/infdis/jiy175] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/27/2018] [Indexed: 01/24/2023] Open
Abstract
Background Dolutegravir (DTG) is an integrase strand-transfer inhibitor (INSTI) used for treatment of human immunodeficiency virus (HIV)-infected individuals. Owing to its high genetic barrier to resistance, DTG has been clinically investigated as maintenance monotherapy to maintain viral suppression and to reduce complication and healthcare costs. Our study aims to explain the underlying mechanism related to the emergence of a S230R substitution in patients who experienced virologic failure while using DTG monotherapy. Methods We evaluated the effect of the S230R substitution in regard to integrase enzyme activity, viral infectivity, replicative capacity, and susceptibility to different INSTIs by biochemical and cell-based assays. Results The S230R substitution conferred a 63% reduction in enzyme efficiency. S230R virus was 1.29-fold less infectious than wild-type virus but could replicate in PM1 cells without significant delay. Resistance levels against DTG, cabotegravir, raltegravir, and elvitegravir in tissue culture were 3.85-, 3.72-, 1.52-, and 1.21-fold, respectively, in virus with the S230R substitution. Conclusions Our data indicate that the S230R substitution is comparable to the previously reported R263K substitution in some respects. Virologic failure during DTG monotherapy can occur through the development of the S230R or R263K mutation, without the need for high-level DTG resistance.
Collapse
Affiliation(s)
- Hanh T Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Lydia Labrie
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Ingeborg E A Wijting
- Department of Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | - Said Hassounah
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
| | - Ka Yee Lok
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Inna Portna
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mark E Goring
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
| | - Yingshan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Cynthia Lungu
- Department of Viroscience, Erasmus University, Rotterdam, Netherlands
| | - Marchina E van der Ende
- Department of Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | - Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Faculty of Surgery, McGill University, Montreal, Canada
| | - Charles A Boucher
- Department of Viroscience, Erasmus University, Rotterdam, Netherlands
| | - Bart J A Rijnders
- Department of Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Sirous H, Chemi G, Gemma S, Butini S, Debyser Z, Christ F, Saghaie L, Brogi S, Fassihi A, Campiani G, Brindisi M. Identification of Novel 3-Hydroxy-pyran-4-One Derivatives as Potent HIV-1 Integrase Inhibitors Using in silico Structure-Based Combinatorial Library Design Approach. Front Chem 2019; 7:574. [PMID: 31457006 PMCID: PMC6700280 DOI: 10.3389/fchem.2019.00574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
We describe herein the development and experimental validation of a computational protocol for optimizing a series of 3-hydroxy-pyran-4-one derivatives as HIV integrase inhibitors (HIV INIs). Starting from a previously developed micromolar inhibitors of HIV integrase (HIV IN), we performed an in-depth investigation based on an in silico structure-based combinatorial library designing approach. This method allowed us to combine a combinatorial library design and side chain hopping with Quantum Polarized Ligand Docking (QPLD) studies and Molecular Dynamics (MD) simulation. The combinatorial library design allowed the identification of the best decorations for our promising scaffold. The resulting compounds were assessed by the mentioned QPLD methodology using a homology model of full-length binary HIV IN/DNA for retrieving the best performing compounds acting as HIV INIs. Along with the prediction of physico-chemical properties, we were able to select a limited number of drug-like compounds potentially displaying potent HIV IN inhibition. From this final set, based on the synthetic accessibility, we further shortlisted three representative compounds for the synthesis. The compounds were experimentally assessed in vitro for evaluating overall HIV-1 IN inhibition, HIV-1 IN strand transfer activity inhibition, HIV-1 activity inhibition and cellular toxicity. Gratifyingly, all of them showed relevant inhibitory activity in the in vitro tests along with no toxicity. Among them HPCAR-28 represents the most promising compound as potential anti-HIV agent, showing inhibitory activity against HIV IN in the low nanomolar range, comparable to that found for Raltegravir, and relevant potency in inhibiting HIV-1 replication and HIV-1 IN strand transfer activity. In summary, our results outline HPCAR-28 as a useful optimized hit for the potential treatment of HIV-1 infection by targeting HIV IN.
Collapse
Affiliation(s)
- Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Zeger Debyser
- Molecular Medicine, K.U. Leuven and IRC KULAK, Leuven, Belgium
| | - Frauke Christ
- Molecular Medicine, K.U. Leuven and IRC KULAK, Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Corona A, di Leva FS, Rigogliuso G, Pescatori L, Madia VN, Subra F, Delelis O, Esposito F, Cadeddu M, Costi R, Cosconati S, Novellino E, di Santo R, Tramontano E. New insights into the interaction between pyrrolyl diketoacids and HIV-1 integrase active site and comparison with RNase H. Antiviral Res 2016; 134:236-243. [PMID: 27659398 DOI: 10.1016/j.antiviral.2016.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/16/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
HIV-1 integrase (IN) inhibitors are one of the most recent innovations in the treatment of HIV infection. The selection of drug resistance viral strains is however a still open issue requiring constant efforts to identify new anti-HIV-1 drugs. Pyrrolyl diketo acid (DKA) derivatives inhibit HIV-1 replication by interacting with the Mg2+ cofactors within the HIV-1 IN active site or within the HIV-1 reverse-transcriptase associated ribonuclease H (RNase H) active site. While the interaction mode of pyrrolyl DKAs with the RNase H active site has been recently reported and substantiated by mutagenesis experiments, their interaction within the IN active site still lacks a detailed understanding. In this study, we investigated the binding mode of four pyrrolyl DKAs to the HIV-1 IN active site by molecular modeling coupled with site-directed mutagenesis studies showing that the DKA pyrrolyl scaffold primarily interacts with the IN amino residues P145, Q146 and Q148. Importantly, the tested DKAs demonstrated good effectiveness against HIV-1 Raltegravir resistant Y143A and N155H INs, thus showing an interaction pattern with relevant differences if compared with the first generation IN inhibitors. These data provide precious insights for the design of new HIV inhibitors active on clinically selected Raltegravir resistant variants. Furthermore, this study provides new structural information to modulate IN and RNase H inhibitory activities for development of dual-acting anti-HIV agents.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy
| | - Francesco Saverio di Leva
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano, 49 80131, Naples, Italy
| | - Giuseppe Rigogliuso
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy; LBPA, ENS Cachan, CNRS, 61 Avenue du président Wilson, 94235, Cachan Cedex, France
| | - Luca Pescatori
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Frederic Subra
- LBPA, ENS Cachan, CNRS, 61 Avenue du président Wilson, 94235, Cachan Cedex, France
| | - Olivier Delelis
- LBPA, ENS Cachan, CNRS, 61 Avenue du président Wilson, 94235, Cachan Cedex, France
| | - Francesca Esposito
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy
| | - Marta Cadeddu
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Sandro Cosconati
- DiSTABiF, Seconda Università di Napoli, Via Vivaldi, 43, 81100, Caserta, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano, 49 80131, Naples, Italy
| | - Roberto di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria SS554, 09042, Monserrato, Italy.
| |
Collapse
|
6
|
Trabaud MA, Cotte L, Saison J, Ramière C, Ronfort C, Venet F, Tardy JC, Monneret G, André P. Persistent production of an integrase-deleted HIV-1 variant with no resistance mutation and wild-type proviral DNA in a treated patient. AIDS Res Hum Retroviruses 2015; 31:142-9. [PMID: 25333615 DOI: 10.1089/aid.2014.0129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An HIV-infected patient presenting an unexpected viral escape under combined antiretroviral treatment is described. The virus isolated from plasma contained a large deletion in the HIV-1 integrase gene but no known resistance mutation. Nested polymerase chain reactions (PCRs) with patient virus integrase-specific primers and probes were developed and used to detect the mutant from plasma, blood, rectal biopsies, and sperm. The variant progressively emerged during a period of therapy-induced virosuppression, and persisted at a low but detectable level for at least 5 years. Surprisingly, proviral DNA from lymphocytes, rectal cells, and sperm cells was, and remained, mainly wild type. Cellular HIV RNA with the deletion was detected only once from the rectum. The origin and mechanisms underlying this so far not described production at a detectable level are largely hypothetical. This observation raised concern about the ability of defective viruses to spread.
Collapse
Affiliation(s)
- Mary-Anne Trabaud
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Laurent Cotte
- Département des Maladies Infectieuses, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- INSERM U1052, Lyon, France
| | - Julien Saison
- Département des Maladies Infectieuses, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- Laboratoire d'Immunologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- CIRI (Centre International de Recherche en Infectiologie), Inserm U1111, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Christophe Ramière
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- CIRI (Centre International de Recherche en Infectiologie), Inserm U1111, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| | - Corinne Ronfort
- Institut National de Recherche Agronomique (INRA), Université de Lyon, UMR754, UMS3444 BioSciences Gerland Lyon Sud, Lyon, France
| | - Fabienne Venet
- Laboratoire d'Immunologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Jean-Claude Tardy
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Monneret
- Laboratoire d'Immunologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Patrice André
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
- CIRI (Centre International de Recherche en Infectiologie), Inserm U1111, CNRS UMR5308, ENS de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
7
|
Arora R, de Beauchene IC, Polanski J, Laine E, Tchertanov L. Raltegravir flexibility and its impact on recognition by the HIV-1 IN targets. J Mol Recognit 2013; 26:383-401. [PMID: 23836466 DOI: 10.1002/jmr.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 04/04/2013] [Accepted: 04/07/2013] [Indexed: 01/10/2023]
Abstract
HIV-1 IN is a pertinent target for the development of AIDS chemotherapy. The first IN-specific inhibitor approved for the treatment of HIV/AIDS, RAL, was designed to block the ST reaction. We characterized the structural and conformational features of RAL and its recognition by putative HIV-1 targets - the unbound IN, the vDNA, and the IN•vDNA complex - mimicking the IN states over the integration process. RAL binding to the targets was studied by performing an extensive sampling of the inhibitor conformational landscape and by using four different docking algorithms: Glide, Autodock, VINA, and SurFlex. The obtained data evidenced that: (i) a large binding pocket delineated by the active site and an extended loop in the unbound IN accommodates RAL in distinct conformational states all lacking specific interactions with the target; (ii) a well-defined cavity formed by the active site, the vDNA, and the shortened loop in the IN•vDNA complex provide a more optimized inhibitor binding site in which RAL chelates Mg(2+) cations; (iii) a specific recognition between RAL and the unpaired cytosine of the processed DNA is governed by a pair of strong H-bonds similar to those observed in DNA base pair G-C. The identified RAL pose at the cleaved vDNA shed light on a putative step of RAL inhibition mechanism. This modeling study indicates that the inhibition process may include as a first step RAL recognition by the processed vDNA bound to a transient intermediate IN state, and thus provides a potentially promising route to the design of IN inhibitors with improved affinity and selectivity.
Collapse
Affiliation(s)
- Rohit Arora
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliquée (LBPA-CNRS), Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235, Cachan, France
| | | | | | | | | |
Collapse
|
8
|
Tsuruyama T, Nakai T, Ohmori R, Ozeki M, Tamaki K, Yoshikawa K. Dialysis purification of integrase-DNA complexes provides high-resolution atomic force microscopy images: dimeric recombinant HIV-1 integrase binding and specific looping on DNA. PLoS One 2013; 8:e53572. [PMID: 23341952 PMCID: PMC3544922 DOI: 10.1371/journal.pone.0053572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
It remains difficult to obtain high-resolution atomic force microscopy images of HIV-1 integrase bound to DNA in a dimeric or tetrameric fashion. We therefore constructed specific target DNAs to assess HIV-1 integrase binding and purified the complex by dialysis prior to analysis. Our resulting atomic force microscopy analyses indicated precise size of binding human immunodeficiency virus type 1 (HIV-1) recombinant integrase in a tetrameric manner, inducing formation of a loop-like or figure-eight-like secondary structure in the target DNA. Our findings regarding the target DNA secondary structure provide new insights into the intermediate states of retroviral integration.
Collapse
Affiliation(s)
- Tatsuaki Tsuruyama
- Department of Anatomical, Forensic Medicine, and Pathological Studies, Graduate School of Medicine, Kyoto University, Kyoto City, Kyoto Prefecture, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Quashie PK, Mesplède T, Han YS, Oliveira M, Singhroy DN, Fujiwara T, Underwood MR, Wainberg MA. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 2012. [PMID: 22205735 DOI: 10.1128/jvi.06591-11/asset/c94b8e9c-dc59-486e-aec2-9c3d1e3bd09a/assets/graphic/zjv9990957020005.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Integrase (IN) strand transfer inhibitors (INSTIs) have been developed to inhibit the ability of HIV-1 integrase to irreversibly link the reverse-transcribed viral DNA to the host genome. INSTIs have proven their high efficiency in inhibiting viral replication in vitro and in patients. However, first-generation INSTIs have only a modest genetic barrier to resistance, allowing the virus to escape these powerful drugs through several resistance pathways. Second-generation INSTIs, such as dolutegravir (DTG, S/GSK1349572), have been reported to have a higher resistance barrier, and no novel drug resistance mutation has yet been described for this drug. Therefore, we performed in vitro selection experiments with DTG using viruses of subtypes B, C, and A/G and showed that the most common mutation to emerge was R263K. Further analysis by site-directed mutagenesis showed that R263K does confer low-level resistance to DTG and decreased integration in cell culture without altering reverse transcription. Biochemical cell-free assays performed with purified IN enzyme containing R263K confirmed the absence of major resistance against DTG and showed a slight decrease in 3' processing and strand transfer activities compared to the wild type. Structural modeling suggested and in vitro IN-DNA binding assays show that the R263K mutation affects IN-DNA interactions.
Collapse
Affiliation(s)
- Peter K Quashie
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 2011; 86:2696-705. [PMID: 22205735 DOI: 10.1128/jvi.06591-11] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Integrase (IN) strand transfer inhibitors (INSTIs) have been developed to inhibit the ability of HIV-1 integrase to irreversibly link the reverse-transcribed viral DNA to the host genome. INSTIs have proven their high efficiency in inhibiting viral replication in vitro and in patients. However, first-generation INSTIs have only a modest genetic barrier to resistance, allowing the virus to escape these powerful drugs through several resistance pathways. Second-generation INSTIs, such as dolutegravir (DTG, S/GSK1349572), have been reported to have a higher resistance barrier, and no novel drug resistance mutation has yet been described for this drug. Therefore, we performed in vitro selection experiments with DTG using viruses of subtypes B, C, and A/G and showed that the most common mutation to emerge was R263K. Further analysis by site-directed mutagenesis showed that R263K does confer low-level resistance to DTG and decreased integration in cell culture without altering reverse transcription. Biochemical cell-free assays performed with purified IN enzyme containing R263K confirmed the absence of major resistance against DTG and showed a slight decrease in 3' processing and strand transfer activities compared to the wild type. Structural modeling suggested and in vitro IN-DNA binding assays show that the R263K mutation affects IN-DNA interactions.
Collapse
|
11
|
Peletskaya E, Andrake M, Gustchina A, Merkel G, Alexandratos J, Zhou D, Bojja RS, Satoh T, Potapov M, Kogon A, Potapov V, Wlodawer A, Skalka AM. Localization of ASV integrase-DNA contacts by site-directed crosslinking and their structural analysis. PLoS One 2011; 6:e27751. [PMID: 22145019 PMCID: PMC3228729 DOI: 10.1371/journal.pone.0027751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/24/2011] [Indexed: 01/26/2023] Open
Abstract
Background We applied crosslinking techniques as a first step in preparation of stable avian sarcoma virus (ASV) integrase (IN)-DNA complexes for crystallographic investigations. These results were then compared with the crystal structures of the prototype foamy virus (PFV) intasome and with published data for other retroviral IN proteins. Methodology/Results Photoaffinity crosslinking and site-directed chemical crosslinking were used to localize the sites of contacts with DNA substrates on the surface of ASV IN. Sulfhydryl groups of cysteines engineered into ASV IN and amino-modified nucleotides in DNA substrates were used for attachment of photocrosslinkers. Analysis of photocrosslinking data revealed several specific DNA-protein contacts. To confirm contact sites, thiol-modified nucleotides were introduced into oligo-DNA substrates at suggested points of contact and chemically crosslinked to the cysteines via formation of disulfide bridges. Cysteines incorporated in positions 124 and 146 in the ASV IN core domain were shown to interact directly with host and viral portions of the Y-mer DNA substrate, respectively. Crosslinking of an R244C ASV IN derivative identified contacts at positions 11 and 12 on both strands of viral DNA. The most efficient disulfide crosslinking was observed for complexes of the ASV IN E157C and D64C derivatives with linear viral DNA substrate carrying a thiol-modified scissile phosphate. Conclusion Analysis of our crosslinking results as well as published results of retroviral IN protein from other laboratories shows good agreement with the structure of PFV IN and derived ASV, HIV, and MuLV models for the core domain, but only partial agreement for the N- and C-terminal domains. These differences might be explained by structural variations and evolutionary selection for residues at alternate positions to perform analogous functions, and by methodological differences: i.e., a static picture of a particular assembly from crystallography vs. a variety of interactions that might occur during formation of functional IN complexes in solution.
Collapse
|
12
|
HIVToolbox, an integrated web application for investigating HIV. PLoS One 2011; 6:e20122. [PMID: 21647445 PMCID: PMC3102074 DOI: 10.1371/journal.pone.0020122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/12/2011] [Indexed: 11/19/2022] Open
Abstract
Many bioinformatic databases and applications focus on a limited domain of knowledge federating links to information in other databases. This segregated data structure likely limits our ability to investigate and understand complex biological systems. To facilitate research, therefore, we have built HIVToolbox, which integrates much of the knowledge about HIV proteins and allows virologists and structural biologists to access sequence, structure, and functional relationships in an intuitive web application. HIV-1 integrase protein was used as a case study to show the utility of this application. We show how data integration facilitates identification of new questions and hypotheses much more rapid and convenient than current approaches using isolated repositories. Several new hypotheses for integrase were created as an example, and we experimentally confirmed a predicted CK2 phosphorylation site. Weblink: [http://hivtoolbox.bio-toolkit.com].
Collapse
|
13
|
Abstract
Similar to all antiretroviral drugs, failure of raltegravirbased treatment regimens to fully supress HIV replication almost invariably results in emergence of HIV resistance to this new drug. HIV resistance to raltegravir is the consequence of mutations located close to the integrase active site, which can be divided into three main evolutionary pathways: the N155H, the Q148R/H/K and the Y143R/C pathways. Each of these primary mutations can be accompanied by a variety of secondary mutations that both increase resistance and compensate for the variable loss of viral replicative capacity that is often associated with primary resistance mutations. One unique property of HIV resistance to raltegravir is that each of these different resistance pathways are mutually exclusive and appear to evolve separately on distinct viral genomes. Resistance is frequently initiated by viruses carrying mutations of the N155H pathway, followed by emergence and further dominance of viral genomes carrying mutations of the Q148R/H/K or of the Y143R/C pathways, which express higher levels of resistance. Even if some natural integrase polymorphisms can be part of this evolution process, these polymorphisms do not affect HIV susceptibility in the absence of primary mutations. Therefore, all HIV-1 subtypes and groups, together with HIV-2, are naturally susceptible to raltegravir. Finally, because interaction of integrase strand transfer inhibitors with the HIV integrase active site is comparable from one compound to another, raltegravir-resistant viruses express significant cross resistance to most other compounds of this new class of antiretroviral drugs.
Collapse
Affiliation(s)
- Francois Clavel
- Inserm U941, Institut Universitaire d'Hematologie, Hopital Saint-Louis, Paris, France.
| |
Collapse
|
14
|
Abstract
Integration of the HIV-1 viral DNA generated by reverse transcription of the RNA genome into the host cell chromosomes is a key step of viral replication, catalyzed by the viral integrase. In October 2007, the first integrase inhibitor, raltegravir, was approved for clinical use under the name of Isentress™. The results of the various clinical trials that have evaluated raltegravir have been very encouraging with regard to the immunological and virological efficacy and tolerance. However, as observed for other anti-retrovirals, specific resistance mutations have been identified in patients failing to respond to treatment with raltegravir. Although knowledge of the integrase structural biology remains fragmentary, the structures and modeling data available might provide relevant clues on the origin of the emergence of these resistance mutations. In this review, we describe the mechanism of action of this drug and the main data relating to its use in vivo, together with recent structural data important to our understanding of the origin of viral resistance.
Collapse
Affiliation(s)
- Jean-Francois Mouscadet
- LBPA, CNRS UMR8113, Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan Cedex, France.
| | | |
Collapse
|
15
|
Gupta K, Diamond T, Hwang Y, Bushman F, Van Duyne GD. Structural properties of HIV integrase. Lens epithelium-derived growth factor oligomers. J Biol Chem 2010; 285:20303-15. [PMID: 20406807 PMCID: PMC2888443 DOI: 10.1074/jbc.m110.114413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrase (IN) is the catalytic component of the preintegration complex, a large nucleoprotein assembly critical for the integration of the retroviral genome into a host chromosome. Although partial crystal structures of human immunodeficiency virus IN alone and its complex with the integrase binding domain of the host factor PSIP1/lens epithelium-derived growth factor (LEDGF)/p75 are available, many questions remain regarding the properties and structures of LEDGF-bound IN oligomers. Using analytical ultracentrifugation, multiangle light scattering, and small angle x-ray scattering, we have established the oligomeric state, stoichiometry, and molecular shapes of IN.LEDGF complexes in solution. Analyses of intact IN tetramers bound to two different LEDGF truncations allow for placement of the integrase binding domain by difference analysis. Modeling of the small angle x-ray scattering envelopes using existing structural data suggests domain arrangements in the IN oligomers that support and extend existing biochemical data for IN.LEDGF complexes and lend new insights into the quaternary structure of LEDGF-bound IN tetramers. These IN oligomers may be involved in stages of the viral life cycle other than integration, including assembly, budding, and early replication.
Collapse
Affiliation(s)
- Kushol Gupta
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine and Howard Hughes Medical Institute, Philadelphia, Pennsylvania 19105-6059, USA
| | | | | | | | | |
Collapse
|
16
|
Zheng Y, Ao Z, Jayappa KD, Yao X. Characterization of the HIV-1 integrase chromatin- and LEDGF/p75-binding abilities by mutagenic analysis within the catalytic core domain of integrase. Virol J 2010; 7:68. [PMID: 20331877 PMCID: PMC2859858 DOI: 10.1186/1743-422x-7-68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 03/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background During the early stage of HIV-1 replication, integrase (IN) plays important roles at several steps, including reverse transcription, viral DNA nuclear import, targeting viral DNA to host chromatin and integration. Previous studies have demonstrated that HIV-1 IN interacts with a cellular Lens epithelium-derived growth factor (LEDGF/p75) and that this viral/cellular interaction plays an important role for tethering HIV-1 preintegration complexes (PICs) to transcriptionally active units of host chromatin. Meanwhile, other studies have revealed that the efficient knockdown and/or knockout of LEDGF/p75 could not abolish HIV infection, suggesting a LEDGF/p75-independent action of IN for viral DNA chromatin targeting and integration, even though the underlying mechanism(s) is not fully understood. Results In this study, we performed site-directed mutagenic analysis at the C-terminal region of the IN catalytic core domain responsible for IN/chromatin binding and IN/LEDGF/p75 interaction. The results showed that the IN mutations H171A, L172A and EH170,1AA, located in the loop region 170EHLK173 between the α4 and α5 helices of IN, severely impaired the interaction with LEDGF/p75 but were still able to bind chromatin. In addition, our combined knockdown approach for LEDGF/p75 also failed to dissociate IN from chromatin. This suggests that IN has a LEDGF/p75-independent determinant for host chromatin binding. Furthermore, a single-round HIV-1 replication assay showed that the viruses harboring IN mutants capable of LEDGF/p75-independent chromatin binding still sustained a low level of infection, while the chromatin-binding defective mutant was non-infectious. Conclusions All of these data indicate that, even though the presence of LEDGF/p75 is important for a productive HIV-1 replication, IN has the ability to bind chromatin in a LEDGF/p75-independent manner and sustains a low level of HIV-1 infection. Hence, it is interesting to define the mechanism(s) underlying IN-mediated LEDGF/p75-independent chromatin targeting, and further studies in this regard will help for a better understanding of the molecular mechanism of chromatin targeting by IN during HIV-1 infection.
Collapse
Affiliation(s)
- Yingfeng Zheng
- Laboratory of Molecular Human Retrovirology, Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, 508-745 William Avenue, Winnipeg R3E 0J9, Canada
| | | | | | | |
Collapse
|
17
|
Kessl JJ, McKee CJ, Eidahl JO, Shkriabai N, Katz A, Kvaratskhelia M. HIV-1 Integrase-DNA Recognition Mechanisms. Viruses 2009; 1:713-36. [PMID: 21994566 PMCID: PMC3185514 DOI: 10.3390/v1030713] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 01/24/2023] Open
Abstract
Integration of a reverse transcribed DNA copy of the HIV viral genome into the host chromosome is essential for virus replication. This process is catalyzed by the virally encoded protein integrase. The catalytic activities, which involve DNA cutting and joining steps, have been recapitulated in vitro using recombinant integrase and synthetic DNA substrates. Biochemical and biophysical studies of these model reactions have been pivotal in advancing our understanding of mechanistic details for how IN interacts with viral and target DNAs, and are the focus of the present review.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (J.J.K.); (C.J.M.); (J.O.E.), (N.S.); (A.K.)
| | | | | | | | | | | |
Collapse
|
18
|
Hare S, Di Nunzio F, Labeja A, Wang J, Engelman A, Cherepanov P. Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog 2009; 5:e1000515. [PMID: 19609359 PMCID: PMC2705190 DOI: 10.1371/journal.ppat.1000515] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 06/19/2009] [Indexed: 12/15/2022] Open
Abstract
Experimental evidence suggests that a tetramer of integrase (IN) is the protagonist of the concerted strand transfer reaction, whereby both ends of retroviral DNA are inserted into a host cell chromosome. Herein we present two crystal structures containing the N-terminal and the catalytic core domains of maedi-visna virus IN in complex with the IN binding domain of the common lentiviral integration co-factor LEDGF. The structures reveal that the dimer-of-dimers architecture of the IN tetramer is stabilized by swapping N-terminal domains between the inner pair of monomers poised to execute catalytic function. Comparison of four independent IN tetramers in our crystal structures elucidate the basis for the closure of the highly flexible dimer-dimer interface, allowing us to model how a pair of active sites become situated for concerted integration. Using a range of complementary approaches, we demonstrate that the dimer-dimer interface is essential for HIV-1 IN tetramerization, concerted integration in vitro, and virus infectivity. Our structures moreover highlight adaptable changes at the interfaces of individual IN dimers that allow divergent lentiviruses to utilize a highly-conserved, common integration co-factor.
Collapse
Affiliation(s)
- Stephen Hare
- Division of Medicine, St. Mary's Campus, Imperial College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Nowak MG, Sudol M, Lee NE, Konsavage WM, Katzman M. Identifying amino acid residues that contribute to the cellular-DNA binding site on retroviral integrase. Virology 2009; 389:141-8. [PMID: 19447461 DOI: 10.1016/j.virol.2009.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/13/2009] [Accepted: 04/21/2009] [Indexed: 11/30/2022]
Abstract
Although retroviral integrase specifically trims the ends of viral DNA and inserts these ends into any sequence in cellular DNA, little information is available to explain how integrase distinguishes between its two DNA substrates. We recently described novel integrase mutants that were improved for specific nicking of viral DNA but impaired at joining these ends into nonviral DNA. An acidic or bulky substitution at one particular residue was critical for this activity profile, and the prototypic protein--Rous sarcoma virus integrase with an S124D substitution--was defective at nonspecifically binding DNA. We have now characterized 19 (including 16 new) mutants that contain one or more aspartic acid substitutions at residues that extend over the surface of the protein and might participate with residue 124 in binding cellular DNA. In particular, every mutant with an aspartate substitution at residue 98 or 128, similar to the original S124D protein, showed improved specific nicking of viral DNA but disturbed nonspecific nicking of nonviral DNA. These data describe a probable cellular-DNA binding platform that involves at least 5 amino acids, in the following order of importance: 124>128>(98, 125)>123. These experimental data are vital for new models of integrase and will contribute to identifying targets for the next generation of integrase inhibitors.
Collapse
Affiliation(s)
- Matthew G Nowak
- Cell and Molecular Biology Graduate Program, Penn State College of Medicine, The Milton S. Hershey Medical Center, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
20
|
Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs. Proc Natl Acad Sci U S A 2009; 106:8192-7. [PMID: 19416821 DOI: 10.1073/pnas.0811919106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 integration into the host cell genome is a multistep process catalyzed by the virally-encoded integrase (IN) protein. In view of the difficulty of obtaining a stable DNA-bound IN at high concentration as required for structure determination, we selected IN-DNA complexes that form disulfide linkages between 5'-thiolated DNA and several single mutations to cysteine around the catalytic site of IN. Mild reducing conditions allowed for selection of the most thermodynamically-stable disulfide-linked species. The most stable complexes induce tetramer formation of IN, as happens during the physiological integration reaction, and are able to catalyze the strand transfer step of retroviral integration. One of these complexes also binds strand-transfer inhibitors of HIV antiviral drugs, making it uniquely valuable among the mutants of this set for understanding portions of the integration reaction. This novel complex may help define substrate interactions and delineate the mechanism of action of known integration inhibitors.
Collapse
|
21
|
Human immunodeficiency virus integration efficiency and site selection in quiescent CD4+ T cells. J Virol 2009; 83:6222-33. [PMID: 19369341 DOI: 10.1128/jvi.00356-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Until very recently, quiescent CD4(+) T cells were thought to be resistant to human immunodeficiency virus (HIV) infection. Subsequent studies, attempting to fully elucidate the mechanisms of resistance, showed that quiescent cells could become infected by HIV at low efficiency and form a latently infected population. In this study, we set out to identify the sites of viral integration and to assess the efficiency of the overall integration process in quiescent cells. Based on our results, HIV integration in quiescent CD4(+) T cells occurs in sites similar to those of their prestimulated counterparts. While site selections are similar, the integration process in quiescent cells is plagued by the formation of high levels of incorrectly processed viral ends and abortive two-long-terminal-repeat circles.
Collapse
|
22
|
Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A. Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J 2009; 276:2926-46. [PMID: 19490099 DOI: 10.1111/j.1742-4658.2009.07009.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integrase (IN) is one of only three enzymes encoded in the genomes of all retroviruses, and is the one least characterized in structural terms. IN catalyzes processing of the ends of a DNA copy of the retroviral genome and its concerted insertion into the chromosome of the host cell. The protein consists of three domains, the central catalytic core domain flanked by the N-terminal and C-terminal domains, the latter being involved in DNA binding. Although the Protein Data Bank contains a number of NMR structures of the N-terminal and C-terminal domains of HIV-1 and HIV-2, simian immunodeficiency virus and avian sarcoma virus IN, as well as X-ray structures of the core domain of HIV-1, avian sarcoma virus and foamy virus IN, plus several models of two-domain constructs, no structure of the complete molecule of retroviral IN has been solved to date. Although no experimental structures of IN complexed with the DNA substrates are at hand, the catalytic mechanism of IN is well understood by analogy with other nucleotidyl transferases, and a variety of models of the oligomeric integration complexes have been proposed. In this review, we present the current state of knowledge resulting from structural studies of IN from several retroviruses. We also attempt to reconcile the differences between the reported structures, and discuss the relationship between the structure and function of this enzyme, which is an important, although so far rather poorly exploited, target for designing drugs against HIV-1 infection.
Collapse
Affiliation(s)
- Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | | | | | | |
Collapse
|
23
|
Bera S, Pandey KK, Vora AC, Grandgenett DP. Molecular Interactions between HIV-1 integrase and the two viral DNA ends within the synaptic complex that mediates concerted integration. J Mol Biol 2009; 389:183-98. [PMID: 19362096 DOI: 10.1016/j.jmb.2009.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/16/2009] [Accepted: 04/04/2009] [Indexed: 01/08/2023]
Abstract
A macromolecular nucleoprotein complex in retrovirus-infected cells, termed the preintegration complex, is responsible for the concerted integration of linear viral DNA genome into host chromosomes. Isolation of sufficient quantities of the cytoplasmic preintegration complexes for biochemical and biophysical analysis is difficult. We investigated the architecture of HIV-1 nucleoprotein complexes involved in the concerted integration pathway in vitro. HIV-1 integrase (IN) non-covalently juxtaposes two viral DNA termini forming the synaptic complex, a transient intermediate in the integration pathway, and shares properties associated with the preintegration complex. IN slowly processes two nucleotides from the 3' OH ends and performs the concerted insertion of two viral DNA ends into target DNA. IN remains associated with the concerted integration product, termed the strand transfer complex. The synaptic complex and strand transfer complex can be isolated by native agarose gel electrophoresis. In-gel fluorescence resonance energy transfer measurements demonstrated that the energy transfer efficiencies between the juxtaposed Cy3 and Cy5 5'-end labeled viral DNA ends in the synaptic complex (0.68+/-0.09) was significantly different from that observed in the strand transfer complex (0.07+/-0.02). The calculated distances were 46+/-3 A and 83+/-5 A, respectively. DNaseI footprint analysis of the complexes revealed that IN protects U5 and U3 DNA sequences up to approximately 32 bp from the end, suggesting two IN dimers were bound per terminus. Enhanced DNaseI cleavages were observed at nucleotide positions 6 and 9 from the terminus on U3 but not on U5, suggesting independent assembly events. Protein-protein cross-linking of IN within these complexes revealed the presence of dimers, tetramers, and a larger multimer (>120 kDa). Our results suggest a new model where two IN dimers individually assemble on U3 and U5 ends before the non-covalent juxtaposition of two viral DNA ends, producing the synaptic complex.
Collapse
Affiliation(s)
- Sibes Bera
- Saint Louis University Health Sciences Center, Institute for Molecular Virology, Doisy Research Center, St. Louis, MO 63104, USA.
| | | | | | | |
Collapse
|