1
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
2
|
Alao JP, Obaseki I, Amankwah YS, Nguyen Q, Sugoor M, Unruh E, Popoola HO, Tehver R, Kravats AN. Insight into the Nucleotide Based Modulation of the Grp94 Molecular Chaperone Using Multiscale Dynamics. J Phys Chem B 2023; 127:5389-5409. [PMID: 37294929 PMCID: PMC10292203 DOI: 10.1021/acs.jpcb.3c00260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/17/2023] [Indexed: 06/11/2023]
Abstract
Grp94, an ER-localized molecular chaperone, is required for the folding and activation of many membrane and secretory proteins. Client activation by Grp94 is mediated by nucleotide and conformational changes. In this work, we aim to understand how microscopic changes from nucleotide hydrolysis can potentiate large-scale conformational changes of Grp94. We performed all-atom molecular dynamics simulations on the ATP-hydrolysis competent state of the Grp94 dimer in four different nucleotide bound states. We found that Grp94 was the most rigid when ATP was bound. ATP hydrolysis or nucleotide removal enhanced mobility of the N-terminal domain and ATP lid, resulting in suppression of interdomain communication. In an asymmetric conformation with one hydrolyzed nucleotide, we identified a more compact state, similar to experimental observations. We also identified a potential regulatory role of the flexible linker, as it formed electrostatic interactions with the Grp94 M-domain helix near the region where BiP is known to bind. These studies were complemented with normal-mode analysis of an elastic network model to investigate Grp94's large-scale conformational changes. SPM analysis identified residues that are important in signaling conformational change, many of which have known functional relevance in ATP coordination and catalysis, client binding, and BiP binding. Our findings suggest that ATP hydrolysis in Grp94 alters allosteric wiring and facilitates conformational changes.
Collapse
Affiliation(s)
- John Paul Alao
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Ikponwmosa Obaseki
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yaa Sarfowah Amankwah
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Quinn Nguyen
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Meghana Sugoor
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Erin Unruh
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | | | - Riina Tehver
- Department
of Physics, Denison University, Granville, Ohio 43023, United States
| | - Andrea N. Kravats
- Department
of Chemistry & Biochemistry, Miami University, Oxford, Ohio 45056, United States
- Cell,
Molecular, and Structural Biology Program, Department of Chemistry
& Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
3
|
Vu HT, Zhang Z, Tehver R, Thirumalai D. Plus and minus ends of microtubules respond asymmetrically to kinesin binding by a long-range directionally driven allosteric mechanism. SCIENCE ADVANCES 2022; 8:eabn0856. [PMID: 35417226 PMCID: PMC9007332 DOI: 10.1126/sciadv.abn0856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Although it is known that majority of kinesin motors walk predominantly toward the plus end of microtubules (MTs) in a hand-over-hand manner, the structural origin of the stepping directionality is not understood. To resolve this issue, we modeled the structures of kinesin-1 (Kin1), MT, and the Kin1-MT complex using the elastic network model and calculated the residue-dependent responses to a local perturbation in the constructs. Kin1 binding elicits an asymmetric response that is pronounced in α/β-tubulin dimers in the plus end of the MT. Kin1 opens the clefts of multiple plus end α/β-tubulin dimers, creating binding-competent conformations, which is required for processivity. Reciprocally, MT induces correlations between switches I and II in the motor and enhances fluctuations in adenosine 5'-diphosphate and the residues in the binding pocket. Our findings explain both the directionality of stepping and MT effects on a key step in the catalytic cycle of kinesin.
Collapse
Affiliation(s)
- Huong T. Vu
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Coventry CV4 7AL, UK
| | - Zhechun Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Riina Tehver
- Department of Physics, Denison University, Granville, OH 43023, USA
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Austin, TX 78702, USA
| |
Collapse
|
4
|
Grindle MP, Carter B, Alao JP, Connors K, Tehver R, Kravats AN. Structural Communication between the E. coli Chaperones DnaK and Hsp90. Int J Mol Sci 2021; 22:ijms22042200. [PMID: 33672263 PMCID: PMC7926864 DOI: 10.3390/ijms22042200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023] Open
Abstract
The 70 kDa and 90 kDa heat shock proteins Hsp70 and Hsp90 are two abundant and highly conserved ATP-dependent molecular chaperones that participate in the maintenance of cellular homeostasis. In Escherichia coli, Hsp90 (Hsp90Ec) and Hsp70 (DnaK) directly interact and collaborate in protein remodeling. Previous work has produced a model of the direct interaction of both chaperones. The locations of the residues involved have been confirmed and the model has been validated. In this study, we investigate the allosteric communication between Hsp90Ec and DnaK and how the chaperones couple their conformational cycles. Using elastic network models (ENM), normal mode analysis (NMA), and a structural perturbation method (SPM) of asymmetric and symmetric DnaK-Hsp90Ec, we extract biologically relevant vibrations and identify residues involved in allosteric signaling. When one DnaK is bound, the dominant normal modes favor biological motions that orient a substrate protein bound to DnaK within the substrate/client binding site of Hsp90Ec and release the substrate from the DnaK substrate binding domain. The presence of one DnaK molecule stabilizes the entire Hsp90Ec protomer to which it is bound. Conversely, the symmetric model of DnaK binding results in steric clashes of DnaK molecules and suggests that the Hsp90Ec and DnaK chaperone cycles operate independently. Together, this data supports an asymmetric binding of DnaK to Hsp90Ec.
Collapse
Affiliation(s)
- Matthew P. Grindle
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Ben Carter
- Department of Physics, Denison University, Granville, OH 43023, USA; (B.C.); (R.T.)
| | - John Paul Alao
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Katherine Connors
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
| | - Riina Tehver
- Department of Physics, Denison University, Granville, OH 43023, USA; (B.C.); (R.T.)
| | - Andrea N. Kravats
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA; (M.P.G.); (J.P.A.); (K.C.)
- Correspondence:
| |
Collapse
|
5
|
Romo TD, Grossfield A, Markelz AG. Persistent Protein Motions in a Rugged Energy Landscape Revealed by Normal Mode Ensemble Analysis. J Chem Inf Model 2020; 60:6419-6426. [PMID: 33103888 DOI: 10.1021/acs.jcim.0c00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins are allosteric machines that couple motions at distinct, often distant, sites to control biological function. Low-frequency structural vibrations are a mechanism of this long-distance connection and are often used computationally to predict correlations, but experimentally identifying the vibrations associated with specific motions has proved challenging. Spectroscopy is an ideal tool to explore these excitations, but measurements have been largely unable to identify important frequency bands. The result is at odds with some previous calculations and raises the question what methods could successfully characterize protein structural vibrations. Here we show the lack of spectral structure arises in part from the variations in protein structure as the protein samples the energy landscape. However, by averaging over the energy landscape as sampled using an aggregate 18.5 μs of all-atom molecular dynamics simulation of hen egg white lysozyme and normal-mode analyses, we find vibrations with large overlap with functional displacements are surprisingly concentrated in narrow frequency bands. These bands are not apparent in either the ensemble averaged vibrational density of states or isotropic absorption. However, in the case of the ensemble averaged anisotropic absorption, there is persistent spectral structure and overlap between this structure and the functional displacement frequency bands. We systematically lay out heuristics for calculating the spectra robustly, including the need for statistical sampling of the protein and inclusion of adequate water in the spectral calculation. The results show the congested spectrum of these complex molecules obscures important frequency bands associated with function and reveal a method to overcome this congestion by combining structurally sensitive spectroscopy with robust normal mode ensemble analysis.
Collapse
Affiliation(s)
- Tod D Romo
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Alan Grossfield
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Andrea G Markelz
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, United States
| |
Collapse
|
6
|
Mugnai ML, Templeton C, Elber R, Thirumalai D. Role of Long-range Allosteric Communication in Determining the Stability and Disassembly of SARS-COV-2 in Complex with ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.30.405340. [PMID: 33299995 PMCID: PMC7724663 DOI: 10.1101/2020.11.30.405340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome (SARS) and novel coronavirus disease (COVID-19) are caused by two closely related beta-coronaviruses, SARS-CoV and SARS-CoV-2, respectively. The envelopes surrounding these viruses are decorated with spike proteins, whose receptor binding domains (RBDs) initiate invasion by binding to the human angiotensin-converting enzyme 2 (ACE2). Subtle changes at the interface with ACE2 seem to be responsible for the enhanced affinity for the receptor of the SARS-CoV-2 RBD compared to SARS-CoV RBD. Here, we use Elastic Network Models (ENMs) to study the response of the viral RBDs and ACE2 upon dissassembly of the complexes. We identify a dominant detachment mode, in which the RBD rotates away from the surface of ACE2, while the receptor undergoes a conformational transition which stretches the active-site cleft. Using the Structural Perturbation Method, we determine the network of residues, referred to as the Allostery Wiring Diagram (AWD), which drives the large-scale motion activated by the detachment of the complex. The AWD for SARS-CoV and SARS-CoV-2 are remarkably similar, showing a network that spans the interface of the complex and reaches the active site of ACE2, thus establishing an allosteric connection between RBD binding and receptor catalytic function. Informed in part by the AWD, we used Molecular Dynamics simulations to probe the effect of interfacial mutations in which SARS-CoV-2 residues are replaced by their SARS-CoV counterparts. We focused on a conserved glycine (G502 in SARS-CoV-2, G488 in SARS-CoV) because it belongs to a region that initiates the dissociation of the complex along the dominant detachment mode, and is prominent in the AWD. Molecular Dynamics simulations of SARS-CoV-2 wild-type and G502P mutant show that the affinity for the human receptor of the mutant is drastically diminished. Our results suggest that in addition to residues that are in direct contact with the interface those involved in long range allosteric communication are also a determinant of the stability of the RBD-ACE2 complex.
Collapse
Affiliation(s)
- Mauro L Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Clark Templeton
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
- Institute for Computational Engineering and Science, The University of Texas at Austin, Austin, TX 78712
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
7
|
D'Amico RN, Murray AM, Boehr DD. Driving Protein Conformational Cycles in Physiology and Disease: "Frustrated" Amino Acid Interaction Networks Define Dynamic Energy Landscapes: Amino Acid Interaction Networks Change Progressively Along Alpha Tryptophan Synthase's Catalytic Cycle. Bioessays 2020; 42:e2000092. [PMID: 32720327 DOI: 10.1002/bies.202000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Indexed: 12/22/2022]
Abstract
A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or "conformational cycle," required for function is proposed. It is suggested that the free-energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free-energy landscape. Some network connections are consistent in every structural state, while others periodically change their interaction strength according to the conformational cycle. It is reviewed here that structural transitions change these periodic network connections, which then predisposes the protein toward the next set of network changes, and hence the next structural change. These concepts are illustrated by recent work on tryptophan synthase. Disruption of these dynamic connections may lead to aberrant protein function and disease states.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - Alec M Murray
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
9
|
Dima RI, Stan G. Computational Studies of Mechanical Remodeling of Substrate Proteins by AAA+ Biological Nanomachines. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1356.ch008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ruxandra I. Dima
- Department of Chemistry, University of Cincinnati, P. O. Box 210172, Cincinnati, Ohio 45221, United States
| | - George Stan
- Department of Chemistry, University of Cincinnati, P. O. Box 210172, Cincinnati, Ohio 45221, United States
| |
Collapse
|
10
|
Thirumalai D, Lorimer GH, Hyeon C. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci 2019; 29:360-377. [PMID: 31800116 DOI: 10.1002/pro.3795] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Molecular chaperones are ATP-consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all-purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT-19, which are ATP-consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT-19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R″ (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL-GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild-type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady-state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - George H Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
11
|
Dynamic Protein Allosteric Regulation and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:25-43. [DOI: 10.1007/978-981-13-8719-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
13
|
Thirumalai D, Hyeon C. Signalling networks and dynamics of allosteric transitions in bacterial chaperonin GroEL: implications for iterative annealing of misfolded proteins. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0182. [PMID: 29735736 DOI: 10.1098/rstb.2017.0182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
14
|
Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. PLoS Comput Biol 2019; 15:e1006658. [PMID: 30921324 PMCID: PMC6438456 DOI: 10.1371/journal.pcbi.1006658] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
At the root of the so-called precision medicine or precision oncology, which is our focus here, is the hypothesis that cancer treatment would be considerably better if therapies were guided by a tumor’s genomic alterations. This hypothesis has sparked major initiatives focusing on whole-genome and/or exome sequencing, creation of large databases, and developing tools for their statistical analyses—all aspiring to identify actionable alterations, and thus molecular targets, in a patient. At the center of the massive amount of collected sequence data is their interpretations that largely rest on statistical analysis and phenotypic observations. Statistics is vital, because it guides identification of cancer-driving alterations. However, statistics of mutations do not identify a change in protein conformation; therefore, it may not define sufficiently accurate actionable mutations, neglecting those that are rare. Among the many thematic overviews of precision oncology, this review innovates by further comprehensively including precision pharmacology, and within this framework, articulating its protein structural landscape and consequences to cellular signaling pathways. It provides the underlying physicochemical basis, thereby also opening the door to a broader community.
Collapse
|
15
|
Javidialesaadi A, Flournoy SM, Stan G. Role of Diffusion in Unfolding and Translocation of Multidomain Titin I27 Substrates by a Clp ATPase Nanomachine. J Phys Chem B 2019; 123:2623-2635. [DOI: 10.1021/acs.jpcb.8b10282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Shanice M. Flournoy
- Department of Chemistry, Virginia State University, Petersburg, Virginia 23806, United States
| | - George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
16
|
Precision medicine review: rare driver mutations and their biophysical classification. Biophys Rev 2019; 11:5-19. [PMID: 30610579 PMCID: PMC6381362 DOI: 10.1007/s12551-018-0496-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
How can biophysical principles help precision medicine identify rare driver mutations? A major tenet of pragmatic approaches to precision oncology and pharmacology is that driver mutations are very frequent. However, frequency is a statistical attribute, not a mechanistic one. Rare mutations can also act through the same mechanism, and as we discuss below, “latent driver” mutations may also follow the same route, with “helper” mutations. Here, we review how biophysics provides mechanistic guidelines that extend precision medicine. We outline principles and strategies, especially focusing on mutations that drive cancer. Biophysics has contributed profoundly to deciphering biological processes. However, driven by data science, precision medicine has skirted some of its major tenets. Data science embodies genomics, tissue- and cell-specific expression levels, making it capable of defining genome- and systems-wide molecular disease signatures. It classifies cancer driver genes/mutations and affected pathways, and its associated protein structural data guide drug discovery. Biophysics complements data science. It considers structures and their heterogeneous ensembles, explains how mutational variants can signal through distinct pathways, and how allo-network drugs can be harnessed. Biophysics clarifies how one mutation—frequent or rare—can affect multiple phenotypic traits by populating conformations that favor interactions with other network modules. It also suggests how to identify such mutations and their signaling consequences. Biophysics offers principles and strategies that can help precision medicine push the boundaries to transform our insight into biological processes and the practice of personalized medicine. By contrast, “phenotypic drug discovery,” which capitalizes on physiological cellular conditions and first-in-class drug discovery, may not capture the proper molecular variant. This is because variants of the same protein can express more than one phenotype, and a phenotype can be encoded by several variants.
Collapse
|
17
|
Astl L, Tse A, Verkhivker GM. Interrogating Regulatory Mechanisms in Signaling Proteins by Allosteric Inhibitors and Activators: A Dynamic View Through the Lens of Residue Interaction Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:187-223. [DOI: 10.1007/978-981-13-8719-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
FcαRI binding at the IgA1 C H2-C H3 interface induces long-range conformational changes that are transmitted to the hinge region. Proc Natl Acad Sci U S A 2018; 115:E8882-E8891. [PMID: 30181292 DOI: 10.1073/pnas.1807478115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
IgA effector functions include proinflammatory immune responses triggered upon clustering of the IgA-specific receptor, FcαRI, by IgA immune complexes. FcαRI binds to the IgA1-Fc domain (Fcα) at the CH2-CH3 junction and, except for CH2 L257 and L258, all side-chain contacts are contributed by the CH3 domain. In this study, we used experimental and computational approaches to elucidate energetic and conformational aspects of FcαRI binding to IgA. The energetic contribution of each IgA residue in the binding interface was assessed by alanine-scanning mutagenesis and equilibrium surface plasmon resonance (SPR). As expected, hydrophobic residues central to the binding site have strong energetic contributions to the FcαRI:Fcα interaction. Surprisingly, individual mutation of CH2 residues L257 and L258, found at the periphery of the FcαRI binding site, dramatically reduced binding affinity. Comparison of antibody:receptor complexes involving IgA or its precursor IgY revealed a conserved receptor binding site at the CH2-CH3 junction (or its equivalent). Given the importance of residues near the CH2-CH3 junction, we used coarse-grained Langevin dynamics simulations to understand the functional dynamics in Fcα. Our simulations indicate that FcαRI binding, either in an asymmetric (1:1) or symmetric (2:1) complex with Fcα, propagated long-range conformational changes across the Fc domains, potentially impacting the hinge and Fab regions. Subsequent SPR experiments confirmed that FcαRI binding to the Fcα CH2-CH3 junction altered the kinetics of HAA lectin binding at the IgA1 hinge. Receptor-induced long-distance conformational transitions have important implications for the interaction of aberrantly glycosylated IgA1 with anti-glycan autoantibodies in IgA nephropathy.
Collapse
|
19
|
Chen J, Thirumalai D. Interface Residues That Drive Allosteric Transitions Also Control the Assembly of l-Lactate Dehydrogenase. J Phys Chem B 2018; 122:11195-11205. [PMID: 30102042 DOI: 10.1021/acs.jpcb.8b06430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The allosteric enzyme, l-lactate dehydrogenase (LDH), is activated by fructose 1,6-metaphosphate (FBP) to reduce pyruvate to lactate. The molecular details of the FBP-driven transition from the low affinity T state to the high affinity R state in LDH, a tetramer composed of identical subunits, are not known. The dynamics of the T → R allosteric transition, investigated using Brownian dynamics (BD) simulations of the self-organized polymer (SOP) model, revealed that coordinated rotations of the subunits drive the T → R transition. We used the structural perturbation method (SPM), which requires only the static structure, to identify the allostery wiring diagram (AWD), a network of residues that transmits signals across the tetramer, as LDH undergoes the T → R transition. Interestingly, the residues that play a major role in the dynamics, which are predominantly localized at the interfaces, coincide with the AWD identified using the SPM. Although the allosteric pathways are highly heterogeneous, on the basis of our simulations, we surmise that predominantly the conformational changes in the T → R transition start from the region near the active site, comprised of helix αC, helix α1/2G, helix α3G, and helix α2F, and proceed to other structural units, thus completing the global motion. Brownian dynamics simulations of the tetramer assembly, triggered by a temperature quench from the fully disrupted conformations, show that the bottleneck for assembly is the formation of the correct orientational registry between the subunits, requiring contacts between the interface residues. Surprisingly, these residues are part of the AWD, which was identified using the SPM. Taken together, our results show that LDH, and perhaps other multidomain proteins, may have evolved to stabilize distinct states of allosteric enzymes using precisely the same AWD that also controls the functionally relevant allosteric transitions.
Collapse
Affiliation(s)
- Jie Chen
- Biophysics Program, Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| | - D Thirumalai
- Department of Chemistry , The University of Texas , Austin , Texas 78712 , United States
| |
Collapse
|
20
|
Wang J, Custer G, Beckett D, Matysiak S. Long Distance Modulation of Disorder-to-Order Transitions in Protein Allostery. Biochemistry 2017; 56:4478-4488. [PMID: 28718281 DOI: 10.1021/acs.biochem.7b00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elucidation of the molecular details of allosteric communication between distant sites in a protein is key to understanding and manipulating many biological regulatory processes. Although protein disorder is acknowledged to play an important thermodynamic role in allostery, the molecular mechanisms by which this disorder is harnessed for long distance communication are known for a limited number of systems. Transcription repression by the Escherichia coli biotin repressor, BirA, is allosterically activated by binding of the small molecule effector biotinoyl-5'-AMP. The effector acts by promoting BirA dimerization, which is a prerequisite for sequence-specific binding to the biotin biosynthetic operon operator sequence. A 30 Å distance separates the effector binding and dimerization surfaces in BirA, and previous studies indicate that allostery is mediated, in part, by disorder-to-order transitions on the two coupled sites. In this work, combined experimental and computational methods have been applied to investigate the molecular basis of allosteric communication in BirA. Double-mutant cycle analysis coupled with thermodynamic measurements indicates functional coupling between residues in disordered loops on the two distant surfaces. All atom molecular dynamics simulations reveal that this coupling occurs through long distance reciprocal modulation of the structure and dynamics of disorder-to-order transitions on the two surfaces.
Collapse
Affiliation(s)
- Jingheng Wang
- Fischell Department of Bioengineering and ‡Department of Chemistry & Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Gregory Custer
- Fischell Department of Bioengineering and ‡Department of Chemistry & Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Dorothy Beckett
- Fischell Department of Bioengineering and ‡Department of Chemistry & Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Fischell Department of Bioengineering and ‡Department of Chemistry & Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
21
|
Directional Force Originating from ATP Hydrolysis Drives the GroEL Conformational Change. Biophys J 2017; 112:1561-1570. [PMID: 28445748 DOI: 10.1016/j.bpj.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 11/23/2022] Open
Abstract
Protein functional mechanisms usually require conformational changes, and often there are known structures for the different conformational states. However, usually neither the origin of the driving force nor the underlying pathways for these conformational transitions is known. Exothermic chemical reactions may be an important source of forces that drive conformational changes. Here we investigate this type of force originating from ATP hydrolysis in the chaperonin GroEL, by applying forces originating from the chemical reaction. Specifically, we apply directed forces to drive the GroEL conformational changes and learn that there is a highly specific direction for applied forces to drive the closed form to the open form. For this purpose, we utilize coarse-grained elastic network models. Principal component analysis on 38 GroEL experimental structures yields the most important motions, and these are used in structural interpolation for the construction of a coarse-grained free energy landscape. In addition, we investigate a more random application of forces with a Monte Carlo method and demonstrate pathways for the closed-open conformational transition in both directions by computing trajectories that are shown upon the free energy landscape. Initial root mean square deviation (RMSD) between the open and closed forms of the subunit is 14.7 Å and final forms from our simulations reach an average RMSD of 3.6 Å from the target forms, closely matching the level of resolution of the coarse-grained model.
Collapse
|
22
|
Abstract
Allostery represents a fundamental mechanism of biological regulation that is mediated via long-range communication between distant protein sites. Although little is known about the underlying dynamical process, recent time-resolved infrared spectroscopy experiments on a photoswitchable PDZ domain (PDZ2S) have indicated that the allosteric transition occurs on multiple timescales. Here, using extensive nonequilibrium molecular dynamics simulations, a time-dependent picture of the allosteric communication in PDZ2S is developed. The simulations reveal that allostery amounts to the propagation of structural and dynamical changes that are genuinely nonlinear and can occur in a nonlocal fashion. A dynamic network model is constructed that illustrates the hierarchy and exceeding structural heterogeneity of the process. In compelling agreement with experiment, three physically distinct phases of the time evolution are identified, describing elastic response ([Formula: see text] ns), inelastic reorganization ([Formula: see text] ns), and structural relaxation ([Formula: see text]s). Issues such as the similarity to downhill folding as well as the interpretation of allosteric pathways are discussed.
Collapse
|
23
|
Ma X, Meng H, Lai L. Motions of Allosteric and Orthosteric Ligand-Binding Sites in Proteins are Highly Correlated. J Chem Inf Model 2016; 56:1725-33. [DOI: 10.1021/acs.jcim.6b00039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaomin Ma
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hu Meng
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, ‡BNLMS, State Key
Laboratory for Structural
Chemistry of Unstable and Stable Species, College of Chemistry and
Molecular Engineering, and §Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Suzuki Y, Yura K. Conformational shift in the closed state of GroEL induced by ATP-binding triggers a transition to the open state. Biophys Physicobiol 2016; 13:127-134. [PMID: 27924266 PMCID: PMC5042161 DOI: 10.2142/biophysico.13.0_127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/12/2016] [Indexed: 01/11/2023] Open
Abstract
We investigated the effect of ATP binding to GroEL and elucidated a role of ATP in the conformational change of GroEL. GroEL is a tetradecamer chaperonin that helps protein folding by undergoing a conformational change from a closed state to an open state. This conformational change requires ATP, but does not require the hydrolysis of the ATP. The following three types of conformations are crystalized and the atomic coordinates are available; closed state without ATP, closed state with ATP and open state with ADP. We conducted simulations of the conformational change using Elastic Network Model from the closed state without ATP targeting at the open state, and from the closed state with ATP targeting at the open state. The simulations emphasizing the lowest normal mode showed that the one started with the closed state with ATP, rather than the one without ATP, reached a conformation closer to the open state. This difference was mainly caused by the changes in the positions of residues in the initial structure rather than the changes in "connectivity" of residues within the subunit. Our results suggest that ATP should behave as an insulator to induce conformation population shift in the closed state to the conformation that has a pathway leading to the open state.
Collapse
Affiliation(s)
- Yuka Suzuki
- Department of Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan; Center for Informational Biology, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan; National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
25
|
O'Rourke KF, Gorman SD, Boehr DD. Biophysical and computational methods to analyze amino acid interaction networks in proteins. Comput Struct Biotechnol J 2016; 14:245-51. [PMID: 27441044 PMCID: PMC4939391 DOI: 10.1016/j.csbj.2016.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
26
|
Abstract
Allosteric transition, defined as conformational changes induced by ligand binding, is one of the fundamental properties of proteins. Allostery has been observed and characterized in many proteins, and has been recently utilized to control protein function via regulation of protein activity. Here, we review the physical and evolutionary origin of protein allostery, as well as its importance to protein regulation, drug discovery, and biological processes in living systems. We describe recently developed approaches to identify allosteric pathways, connected sets of pairwise interactions that are responsible for propagation of conformational change from the ligand-binding site to a distal functional site. We then present experimental and computational protein engineering approaches for control of protein function by modulation of allosteric sites. As an example of application of these approaches, we describe a synergistic computational and experimental approach to rescue the cystic-fibrosis-associated protein cystic fibrosis transmembrane conductance regulator, which upon deletion of a single residue misfolds and causes disease. This example demonstrates the power of allosteric manipulation in proteins to both elucidate mechanisms of molecular function and to develop therapeutic strategies that rescue those functions. Allosteric control of proteins provides a tool to shine a light on the complex cascades of cellular processes and facilitate unprecedented interrogation of biological systems.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
27
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
28
|
Na H, Jernigan RL, Song G. Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models. PLoS Comput Biol 2015; 11:e1004542. [PMID: 26473491 PMCID: PMC4608564 DOI: 10.1371/journal.pcbi.1004542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022] Open
Abstract
Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most existing coarse-grained models use extremely simple potentials to represent the interactions within the coarse-grained structures and as a result, the dynamics obtained for the coarse-grained structures may not always be fully realistic. There is a gap between the quality of the dynamics of the coarse-grained structures given by all-atom models and that by coarse-grained models. In this work, we resolve an important question in protein dynamics computations—how can we efficiently construct coarse-grained models whose description of the dynamics of the coarse-grained structures remains as accurate as that given by all-atom models? Our method takes advantage of the sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix projection approach. The result is highly significant since it can provide descriptions of normal mode motions at an all-atom level of accuracy even for the largest biomolecular complexes. The application of our method to GroEL/GroES offers new insights into the mechanism of this biologically important chaperonin, such as that the conformational transitions of this protein complex in its functional cycle are even more strongly connected to the first few lowest frequency modes than with other coarse-grained models. Proteins and other biomolecules are not static but are constantly in motion. Moreover, they possess intrinsic collective motion patterns that are tightly linked to their functions. Thus, an accurate and detailed description of their motions can provide deep insights into their functional mechanisms. For large protein complexes with hundreds of thousands of atoms or more, an atomic level description of the motions can be computationally prohibitive, and so coarse-grained models with fewer structural details are often used instead. However, there can be a big gap between the quality of motions derived from atomic models and those from coarse-grained models. In this work, we solve an important problem in protein dynamics studies: how to preserve the atomic-level accuracy in describing molecular motions while using coarse-grained models? We accomplish this by developing a novel iterative matrix projection method that dramatically speeds up the computations. This method is significant since it promises accurate descriptions of protein motions approaching an all-atom level even for the largest biomolecular complexes. Results shown here for a large molecular chaperonin demonstrate how this can provide new insights into its functional process.
Collapse
Affiliation(s)
- Hyuntae Na
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
| | - Robert L. Jernigan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- Program of Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa, United States of America
- L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Guang Song
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
- Program of Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa, United States of America
- L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ribeiro AAST, Ortiz V. Energy Propagation and Network Energetic Coupling in Proteins. J Phys Chem B 2015; 119:1835-46. [DOI: 10.1021/jp509906m] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andre A. S. T. Ribeiro
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Vanessa Ortiz
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
30
|
Kalescky R, Liu J, Tao P. Identifying key residues for protein allostery through rigid residue scan. J Phys Chem A 2014; 119:1689-700. [PMID: 25437403 DOI: 10.1021/jp5083455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allostery is a ubiquitous process for protein regulatory activity in which a binding event can change a protein's function carried out at a distal site. Despite intensive theoretical and experimental investigation of protein allostery in the past five decades, effective methods have yet to be developed that can systematically identify key residues involved in allosteric mechanisms. In this study, we propose the rigid residue scan as a systematic approach to identify important allosteric residues. The third PDZ domain (PDZ3) in the postsynaptic density 95 protein (PSD-95) is used as a model system, and each amino acid residue is treated as a single rigid body during independent molecular dynamics simulations. Various indices based on cross-correlation matrices are used, which allow for two groups of residues with different functions to be identified. The first group is proposed as "switches" that are needed to "turn on" the binding effect of protein allostery. The second group is proposed as "wire residues" that are needed to propagate energy or information from the binding site to distal locations within the same protein. Among the nine residues suggested as important for PDZ3 intramolecular communication in this study, eight have been reported as critical for allostery in PDZ3. Therefore, the rigid residue scan approach is demonstrated to be an effective method for systemically identifying key residues in protein intramolecular communication and allosteric mechanisms.
Collapse
Affiliation(s)
- Robert Kalescky
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), and Center for Scientific Computation, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275, United States
| | | | | |
Collapse
|
31
|
Nussinov R, Tsai CJ. Allostery without a conformational change? Revisiting the paradigm. Curr Opin Struct Biol 2014; 30:17-24. [PMID: 25500675 DOI: 10.1016/j.sbi.2014.11.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/18/2014] [Indexed: 02/02/2023]
Abstract
Classically, allostery induces a functional switch through a conformational change. However, lately an increasing number of studies concluded that the allostery they observe takes place through sheer dynamics. Here we explain that even if a structural comparison between the active and inactive states does not detect a conformational change, it does not mean that there is no conformational change. We list likely reasons for this lack of observation, including crystallization conditions and crystal effects; one of the states is disordered; the structural comparisons disregard the quaternary protein structure; overlooking synergy effects among allosteric effectors and graded incremental switches and too short molecular dynamics simulations. Specific functions are performed by distinct conformations; they emerge through specific interactions between conformationally selected states.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| |
Collapse
|
32
|
Fuglebakk E, Tiwari SP, Reuter N. Comparing the intrinsic dynamics of multiple protein structures using elastic network models. Biochim Biophys Acta Gen Subj 2014; 1850:911-922. [PMID: 25267310 DOI: 10.1016/j.bbagen.2014.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Elastic network models (ENMs) are based on the simple idea that a protein can be described as a set of particles connected by springs, which can then be used to describe its intrinsic flexibility using, for example, normal mode analysis. Since the introduction of the first ENM by Monique Tirion in 1996, several variants using coarser protein models have been proposed and their reliability for the description of protein intrinsic dynamics has been widely demonstrated. Lately an increasing number of studies have focused on the meaning of slow dynamics for protein function and its potential conservation through evolution. This leads naturally to comparisons of the intrinsic dynamics of multiple protein structures with varying levels of similarity. SCOPE OF REVIEW We describe computational strategies for calculating and comparing intrinsic dynamics of multiple proteins using elastic network models, as well as a selection of examples from the recent literature. MAJOR CONCLUSIONS The increasing interest for comparing dynamics across protein structures with various levels of similarity, has led to the establishment and validation of reliable computational strategies using ENMs. Comparing dynamics has been shown to be a viable way for gaining greater understanding for the mechanisms employed by proteins for their function. Choices of ENM parameters, structure alignment or similarity measures will likely influence the interpretation of the comparative analysis of protein motion. GENERAL SIGNIFICANCE Understanding the relation between protein function and dynamics is relevant to the fundamental understanding of protein structure-dynamics-function relationship. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Edvin Fuglebakk
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| | - Sandhya P Tiwari
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| |
Collapse
|
33
|
Chang SY, Liu FF, Dong XY, Sun Y. Molecular insight into conformational transmission of human P-glycoprotein. J Chem Phys 2014; 139:225102. [PMID: 24329094 DOI: 10.1063/1.4832740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
P-glycoprotein (P-gp), a kind of ATP-binding cassette transporter, can export candidates through a channel at the two transmembrane domains (TMDs) across the cell membranes using the energy released from ATP hydrolysis at the two nucleotide-binding domains (NBDs). Considerable evidence has indicated that human P-gp undergoes large-scale conformational changes to export a wide variety of anti-cancer drugs out of the cancer cells. However, molecular mechanism of the conformational transmission of human P-gp from the NBDs to the TMDs is still unclear. Herein, targeted molecular dynamics simulations were performed to explore the atomic detail of the conformational transmission of human P-gp. It is confirmed that the conformational transition from the inward- to outward-facing is initiated by the movement of the NBDs. It is found that the two NBDs move both on the two directions (x and y). The movement on the x direction leads to the closure of the NBDs, while the movement on the y direction adjusts the conformations of the NBDs to form the correct ATP binding pockets. Six key segments (KSs) protruding from the TMDs to interact with the NBDs are identified. The relative movement of the KSs along the y axis driven by the NBDs can be transmitted through α-helices to the rest of the TMDs, rendering the TMDs to open towards periplasm in the outward-facing conformation. Twenty eight key residue pairs are identified to participate in the interaction network that contributes to the conformational transmission from the NBDs to the TMDs of human P-gp. In addition, 9 key residues in each NBD are also identified. The studies have thus provided clear insight into the conformational transmission from the NBDs to the TMDs in human P-gp.
Collapse
Affiliation(s)
- Shan-Yan Chang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fu-Feng Liu
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
34
|
Abstract
By focusing on essential features, while averaging over less important details, coarse-grained (CG) models provide significant computational and conceptual advantages with respect to more detailed models. Consequently, despite dramatic advances in computational methodologies and resources, CG models enjoy surging popularity and are becoming increasingly equal partners to atomically detailed models. This perspective surveys the rapidly developing landscape of CG models for biomolecular systems. In particular, this review seeks to provide a balanced, coherent, and unified presentation of several distinct approaches for developing CG models, including top-down, network-based, native-centric, knowledge-based, and bottom-up modeling strategies. The review summarizes their basic philosophies, theoretical foundations, typical applications, and recent developments. Additionally, the review identifies fundamental inter-relationships among the diverse approaches and discusses outstanding challenges in the field. When carefully applied and assessed, current CG models provide highly efficient means for investigating the biological consequences of basic physicochemical principles. Moreover, rigorous bottom-up approaches hold great promise for further improving the accuracy and scope of CG models for biomolecular systems.
Collapse
Affiliation(s)
- W G Noid
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
35
|
Feher VA, Durrant JD, Van Wart AT, Amaro RE. Computational approaches to mapping allosteric pathways. Curr Opin Struct Biol 2014; 25:98-103. [PMID: 24667124 DOI: 10.1016/j.sbi.2014.02.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 01/17/2023]
Abstract
Allosteric signaling occurs when chemical and/or physical changes at an allosteric site alter the activity of a primary orthosteric site often many Ångströms distant. A number of recently developed computational techniques, including dynamical network analysis, novel topological and molecular dynamics methods, and hybrids of these methods, are useful for elucidating allosteric signaling pathways at the atomistic level. No single method prevails as best to identify allosteric signal propagation path(s), rather each has particular strengths in characterizing signals that occur over specific timescale ranges and magnitudes of conformational fluctuation. With continued improvement in accuracy and predictive power, these computational techniques aim to become useful drug discovery tools that will allow researchers to identify allostery critical residues for subsequent pharmacological targeting.
Collapse
Affiliation(s)
- Victoria A Feher
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jacob D Durrant
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Adam T Van Wart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Ribeiro AAST, Ortiz V. Determination of Signaling Pathways in Proteins through Network Theory: Importance of the Topology. J Chem Theory Comput 2014; 10:1762-9. [DOI: 10.1021/ct400977r] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andre A. S. T. Ribeiro
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Vanessa Ortiz
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
37
|
Eren D, Alakent B. Frequency response of a protein to local conformational perturbations. PLoS Comput Biol 2013; 9:e1003238. [PMID: 24086121 PMCID: PMC3784495 DOI: 10.1371/journal.pcbi.1003238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/11/2013] [Indexed: 11/18/2022] Open
Abstract
Signals created by local perturbations are known to propagate long distances through proteins via backbone connectivity and nonbonded interactions. In the current study, signal propagation from the flexible ligand binding loop to the rest of Protein Tyrosine Phosphatase 1B (PTP1B) was investigated using frequency response techniques. Using restrained Targeted Molecular Dynamics (TMD) potential on WPD and R loops, PTP1B was driven between its crystal structure conformations at different frequencies. Propagation of the local perturbation signal was manifested via peaks at the fundamental frequency and upper harmonics of 1/f distributed spectral density of atomic variables, such as Cα atoms, dihedral angles, or polar interaction distances. Frequency of perturbation was adjusted high enough (simulation length >∼10×period of a perturbation cycle) not to be clouded by random diffusional fluctuations, and low enough (<∼0.8 ns(-1)) not to attenuate the propagating signal and enhance the contribution of the side-chains to the dissipation of the signals. Employing Discrete Fourier Transform (DFT) to TMD simulation trajectories of 16 cycles of conformational transitions at periods of 1.2 to 5 ns yielded Cα displacements consistent with those obtained from crystal structures. Identification of the perturbed atomic variables by statistical t-tests on log-log scale spectral densities revealed the extent of signal propagation in PTP1B, while phase angles of the filtered trajectories at the fundamental frequency were used to cluster collectively fluctuating elements. Hydrophobic interactions were found to have a higher contribution to signal transduction between side-chains compared to the role of polar interactions. Most of in-phase fluctuating residues on the signaling pathway were found to have high identity among PTP domains, and located over a wide region of PTP1B including the allosteric site. Due to its simplicity and efficiency, the suggested technique may find wide applications in identification of signaling pathways of different proteins.
Collapse
Affiliation(s)
- Dilek Eren
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
| | - Burak Alakent
- Department of Chemical Engineering, Bogazici University, Bebek, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
38
|
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013; 138:333-408. [PMID: 23384594 PMCID: PMC3647006 DOI: 10.1016/j.pharmthera.2013.01.016] [Citation(s) in RCA: 512] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The "central hit strategy" selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The "network influence strategy" works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes/edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary.
| | | | | | | | | |
Collapse
|
39
|
Jayasinghe M, Shrestha P, Wu X, Tehver R, Stan G. Weak intra-ring allosteric communications of the archaeal chaperonin thermosome revealed by normal mode analysis. Biophys J 2013; 103:1285-95. [PMID: 22995501 DOI: 10.1016/j.bpj.2012.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/21/2022] Open
Abstract
Chaperonins are molecular machines that use ATP-driven cycles to assist misfolded substrate proteins to reach the native state. During the functional cycle, these machines adopt distinct nucleotide-dependent conformational states, which reflect large-scale allosteric changes in individual subunits. Distinct allosteric kinetics has been described for the two chaperonin classes. Bacterial (group I) chaperonins, such as GroEL, undergo concerted subunit motions within each ring, whereas archaeal and eukaryotic chaperonins (group II) undergo sequential subunit motions. We study these distinct mechanisms through a comparative normal mode analysis of monomer and double-ring structures of the archaeal chaperonin thermosome and GroEL. We find that thermosome monomers of each type exhibit common low-frequency behavior of normal modes. The observed distinct higher-frequency modes are attributed to functional specialization of these subunit types. The thermosome double-ring structure has larger contribution from higher-frequency modes, as it is found in the GroEL case. We find that long-range intersubunit correlation of amino-acid pairs is weaker in the thermosome ring than in GroEL. Overall, our results indicate that distinct allosteric behavior of the two chaperonin classes originates from different wiring of individual subunits as well as of the intersubunit communications.
Collapse
Affiliation(s)
- Manori Jayasinghe
- Department of Chemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | | | | | | | | |
Collapse
|
40
|
Berezovsky IN. Thermodynamics of allostery paves a way to allosteric drugs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:830-5. [PMID: 23376182 DOI: 10.1016/j.bbapap.2013.01.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 12/30/2022]
Abstract
We overview here our recent work on the thermodynamic view of allosteric regulation and communication. Starting from the geometry-based prediction of regulatory binding sites in a static structure, we move on to exploring a connection between ligand binding and the intrinsic dynamics of the protein molecule. We describe here two recently introduced measures, binding leverage and leverage coupling, which allow one to analyze the molecular basis of allosteric regulation. We discuss the advantages of these measures and show that they work universally in proteins of different sizes, oligomeric states, and functions. We also point the problems that have to be solved before completing an atomic level description of allostery, and briefly discuss ideas for computational design of allosteric drugs. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
41
|
Impact of mutations on the allosteric conformational equilibrium. J Mol Biol 2012; 425:647-61. [PMID: 23228330 DOI: 10.1016/j.jmb.2012.11.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 11/21/2022]
Abstract
Allostery in a protein involves effector binding at an allosteric site that changes the structure and/or dynamics at a distant, functional site. In addition to the chemical equilibrium of ligand binding, allostery involves a conformational equilibrium between one protein substate that binds the effector and a second substate that less strongly binds the effector. We run molecular dynamics simulations using simple, smooth energy landscapes to sample specific ligand-induced conformational transitions, as defined by the effector-bound and effector-unbound protein structures. These simulations can be performed using our web server (http://salilab.org/allosmod/). We then develop a set of features to analyze the simulations and capture the relevant thermodynamic properties of the allosteric conformational equilibrium. These features are based on molecular mechanics energy functions, stereochemical effects, and structural/dynamic coupling between sites. Using a machine-learning algorithm on a data set of 10 proteins and 179 mutations, we predict both the magnitude and the sign of the allosteric conformational equilibrium shift by the mutation; the impact of a large identifiable fraction of the mutations can be predicted with an average unsigned error of 1k(B)T. With similar accuracy, we predict the mutation effects for an 11th protein that was omitted from the initial training and testing of the machine-learning algorithm. We also assess which calculated thermodynamic properties contribute most to the accuracy of the prediction.
Collapse
|
42
|
Parnas A, Nisemblat S, Weiss C, Levy-Rimler G, Pri-Or A, Zor T, Lund PA, Bross P, Azem A. Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin. PLoS One 2012; 7:e50318. [PMID: 23226518 PMCID: PMC3514286 DOI: 10.1371/journal.pone.0050318] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/18/2012] [Indexed: 01/28/2023] Open
Abstract
Type I chaperonins (cpn60/Hsp60) are essential proteins that mediate the folding of proteins in bacteria, chloroplast and mitochondria. Despite the high sequence homology among chaperonins, the mitochondrial chaperonin system has developed unique properties that distinguish it from the widely-studied bacterial system (GroEL and GroES). The most relevant difference to this study is that mitochondrial chaperonins are able to refold denatured proteins only with the assistance of the mitochondrial co-chaperonin. This is in contrast to the bacterial chaperonin, which is able to function with the help of co-chaperonin from any source. The goal of our work was to determine structural elements that govern the specificity between chaperonin and co-chaperonin pairs using mitochondrial Hsp60 as model system. We used a mutagenesis approach to obtain human mitochondrial Hsp60 mutants that are able to function with the bacterial co-chaperonin, GroES. We isolated two mutants, a single mutant (E321K) and a double mutant (R264K/E358K) that, together with GroES, were able to rescue an E. coli strain, in which the endogenous chaperonin system was silenced. Although the mutations are located in the apical domain of the chaperonin, where the interaction with co-chaperonin takes place, none of the residues are located in positions that are directly responsible for co-chaperonin binding. Moreover, while both mutants were able to function with GroES, they showed distinct functional and structural properties. Our results indicate that the phenotype of the E321K mutant is caused mainly by a profound increase in the binding affinity to all co-chaperonins, while the phenotype of R264K/E358K is caused by a slight increase in affinity toward co-chaperonins that is accompanied by an alteration in the allosteric signal transmitted upon nucleotide binding. The latter changes lead to a great increase in affinity for GroES, with only a minor increase in affinity toward the mammalian mitochondrial co-chaperonin.
Collapse
Affiliation(s)
- Avital Parnas
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Nisemblat
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Celeste Weiss
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Galit Levy-Rimler
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Amir Pri-Or
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Tsaffrir Zor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Peter A. Lund
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
43
|
Qi Y, Wang Q, Tang B, Lai L. Identifying Allosteric Binding Sites in Proteins with a Two-State Go̅ Model for Novel Allosteric Effector Discovery. J Chem Theory Comput 2012; 8:2962-71. [DOI: 10.1021/ct300395h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yifei Qi
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, and Peking−Tsinghua Center for Life Sciences at College
of Chemistry and Molecular Engineering and ‡Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qian Wang
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, and Peking−Tsinghua Center for Life Sciences at College
of Chemistry and Molecular Engineering and ‡Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Bo Tang
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, and Peking−Tsinghua Center for Life Sciences at College
of Chemistry and Molecular Engineering and ‡Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Luhua Lai
- BNLMS,
State Key Laboratory for Structural Chemistry of Unstable and Stable
Species, and Peking−Tsinghua Center for Life Sciences at College
of Chemistry and Molecular Engineering and ‡Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Mascarenhas NM, Kästner J. Are different stoichiometries feasible for complexes between lymphotoxin-alpha and tumor necrosis factor receptor 1? BMC STRUCTURAL BIOLOGY 2012; 12:8. [PMID: 22568977 PMCID: PMC3412742 DOI: 10.1186/1472-6807-12-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 05/08/2012] [Indexed: 01/11/2023]
Abstract
Background Tumor necrosis factors, TNF and lymphotoxin-α (LT), are cytokines that bind to two receptors, TNFR1 and TNFR2 (TNF-receptor 1 and 2) to trigger their signaling cascades. The exact mechanism of ligand-induced receptor activation is still unclear. It is generally assumed that three receptors bind to the homotrimeric ligand to trigger a signaling event. Recent evidence, though, has raised doubts if the ligand:receptor stoichiometry should indeed be 3:3 for ligand-induced cellular response. We used molecular dynamics simulations, elastic network models, as well as MM/PBSA to analyze this question. Results Applying MM/PBSA methodology to different stoichiometric complexes of human LT-(TNFR1)n=1,2,3 the free energy of binding in these complexes has been estimated by single-trajectory and separate-trajectory methods. Simulation studies rationalized the favorable binding energy in the LT-(TNFR1)1 complex, as evaluated from single-trajectory analysis to be an outcome of the interaction of cysteine-rich domain 4 (CRD4) and the ligand. Elastic network models (ENMs) help to associate the difference in the global fluctuation of the receptors in these complexes. Functionally relevant transformation associated with these complexes reveal the difference in the dynamics of the receptor when free and in complex with LT. Conclusions MM/PBSA predicts complexes with a ligand-receptor molar ratio of 3:1 and 3:2 to be energetically favorable. The high affinity associated with LT-(TNFR1)1 is due to the interaction between the CRD4 domain with LT. The global dynamics ascertained from ENMs have highlighted the differential dynamics of the receptor in different states.
Collapse
Affiliation(s)
- Nahren Manuel Mascarenhas
- Computational Biochemistry Group, Institute of Theoretical Chemistry, Pfaffenwaldring 55, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
45
|
Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 2012; 149:113-23. [PMID: 22445172 PMCID: PMC3326522 DOI: 10.1016/j.cell.2012.02.047] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/24/2011] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
Abstract
The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100° domain rotation constituting the “power stroke” that ejects substrate into the folding chamber.
Collapse
Affiliation(s)
- Daniel K Clare
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Long-distance correlations of rhinovirus capsid dynamics contribute to uncoating and antiviral activity. Proc Natl Acad Sci U S A 2012; 109:5271-6. [PMID: 22440750 DOI: 10.1073/pnas.1119174109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human rhinovirus (HRV) and other members of the enterovirus genus bind small-molecule antiviral compounds in a cavity buried within the viral capsid protein VP1. These compounds block the release of the viral protein VP4 and RNA from inside the capsid during the uncoating process. In addition, the antiviral compounds prevent "breathing" motions, the transient externalization of the N-terminal regions of VP1 and VP4 from the inside of intact viral capsid. The site for externalization of VP1/VP4 or release of RNA is likely between protomers, distant to the binding cavity for antiviral compounds. Molecular dynamics simulations were conducted to explore how the antiviral compound, WIN 52084, alters properties of the HRV 14 capsid through long-distance effect. We developed an approach to analyze capsid dynamics in terms of correlated radial motion and the shortest paths of correlated motions. In the absence of WIN, correlated radial motion is observed between residues separated by as much as 85 Å, a remarkably long distance. The most frequently populated path segments of the network were localized near the fivefold symmetry axis and included those connecting the N termini of VP1 and VP4 with other regions, in particular near twofold symmetry axes, of the capsid. The results provide evidence that the virus capsid exhibits concerted long-range dynamics, which have not been previously recognized. Moreover, the presence of WIN destroys this radial correlation network, suggesting that the underlying motions contribute to a mechanistic basis for the initial steps of VP1 and VP4 externalization and uncoating.
Collapse
|
47
|
Mizobata T, Uemura T, Isaji K, Hirayama T, Hongo K, Kawata Y. Probing the functional mechanism of Escherichia coli GroEL using circular permutation. PLoS One 2011; 6:e26462. [PMID: 22028884 PMCID: PMC3196576 DOI: 10.1371/journal.pone.0026462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Escherichia coli chaperonin GroEL subunit consists of three domains linked via two hinge regions, and each domain is responsible for a specific role in the functional mechanism. Here, we have used circular permutation to study the structural and functional characteristics of the GroEL subunit. METHODOLOGY/PRINCIPAL FINDINGS Three soluble, partially active mutants with polypeptide ends relocated into various positions of the apical domain of GroEL were isolated and studied. The basic functional hallmarks of GroEL (ATPase and chaperoning activities) were retained in all three mutants. Certain functional characteristics, such as basal ATPase activity and ATPase inhibition by the cochaperonin GroES, differed in the mutants while at the same time, the ability to facilitate the refolding of rhodanese was roughly equal. Stopped-flow fluorescence experiments using a fluorescent variant of the circularly permuted GroEL CP376 revealed that a specific kinetic transition that reflects movements of the apical domain was missing in this mutant. This mutant also displayed several characteristics that suggested that the apical domains were behaving in an uncoordinated fashion. CONCLUSIONS/SIGNIFICANCE The loss of apical domain coordination and a concomitant decrease in functional ability highlights the importance of certain conformational signals that are relayed through domain interlinks in GroEL. We propose that circular permutation is a very versatile tool to probe chaperonin structure and function.
Collapse
Affiliation(s)
- Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Dixit A, Verkhivker GM. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Comput Biol 2011; 7:e1002179. [PMID: 21998569 PMCID: PMC3188506 DOI: 10.1371/journal.pcbi.1002179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/16/2011] [Indexed: 12/15/2022] Open
Abstract
The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level. Despite recent progress in computational and experimental studies of dynamic regulation in protein kinases, a mechanistic understanding of long-range communication and mechanisms of mutation-induced signaling controlling kinase activity remains largely qualitative. In this study, we have performed a systematic modeling and analysis of allosteric activation in ABL and EGFR kinases at the increasing level of complexity - from catalytic domain to multi-domain regulatory complexes. The results of this study have revealed organizing structural and mechanistic principles of allosteric signaling in protein kinases. Although activation mechanisms in ABL and EGFR kinases have evolved through acquisition of structurally different regulatory complexes, we have found that long-range interdomain communication between common functional segments (αF-helix and αC-helix) may be important for allosteric activation. The results of study have revealed molecular signatures of activating cancer mutations and have shed the light on general mechanistic aspects of mutation-induced signaling in protein kinases. An advanced understanding and further characterization of molecular signatures of kinase mutations may aid in a better rationalization of mutational effects on clinical outcomes and facilitate molecular-based therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gennady M. Verkhivker
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Gerek ZN, Ozkan SB. Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response scanning. PLoS Comput Biol 2011; 7:e1002154. [PMID: 21998559 PMCID: PMC3188487 DOI: 10.1371/journal.pcbi.1002154] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/22/2011] [Indexed: 01/27/2023] Open
Abstract
The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation. PDZ domain proteins (PDZs) act as adapters in organizing functional protein complexes. Through dynamic interactions, PDZs play a key role in mediating key cellular functions in the cell, and they are linked to currently challenging diseases including Alzheimer's, Parkinson's and cancer. Moreover, they are associated with allosteric regulations in mediating signaling. Therefore, it is critical to have knowledge of how the allosteric transition occurs in PDZs. We investigate the allosteric response of the two most studied PDZs, PSD-95 and hPTP1E, using the perturbation response scanning (PRS) approach. The method treats the protein as an elastic network and uses linear response theory (LRT) to obtain residue fluctuations upon exerting directed random forces on selected residues. With this efficient and fast approach, we identify the key residues that mediate long-range communication and find the allosteric pathways. Although the structures of PSD-95 and hPTP1E are very similar, our analysis predicts that their allosteric pathways are different. We also observe a significant change in allosteric pathways and a decrease in binding affinity upon removal of the distal α3 helix of PSD-95. This approach enables us to understand how dynamic interactions play an important role in allosteric regulations.
Collapse
Affiliation(s)
- Z. Nevin Gerek
- Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
- Department of Physics, Arizona State University, Tempe, Arizona, United States of America
| | - S. Banu Ozkan
- Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
- Department of Physics, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
50
|
Mitternacht S, Berezovsky IN. Binding leverage as a molecular basis for allosteric regulation. PLoS Comput Biol 2011; 7:e1002148. [PMID: 21935347 PMCID: PMC3174156 DOI: 10.1371/journal.pcbi.1002148] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/21/2011] [Indexed: 12/21/2022] Open
Abstract
Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design. Allosteric protein regulation is the mechanism by which binding of a molecule to one site in a protein affects the activity at another site. Although the two classical phenomenological models, Monod-Wyman-Changeux (MWC) and Koshland-Némethy-Filmer (KNF), span from the case of hemoglobin to membrane receptors, they do not describe the intramolecular interactions involved. The coupling between two allosterically connected sites commonly takes place through coherent collective motion involving the whole protein. We therefore introduce a quantity called binding leverage to measure the strength of the coupling between particular binding sites and such motions. We show that high binding leverage is a characteristic of both allosteric sites and catalytic sites, emphasizing that both enzymatic function and allosteric regulation require a coupling between ligand binding and protein dynamics. We also consider the first known case of purely entropic allostery, where ligand binding only affects the amplitudes of fluctuations. We find that the binding site in this protein does not primarily connect to collective motions – instead the modulation of fluctuations is controlled from a deeply buried and highly connected site. Finally, sites with high binding leverage but no known biological function could be latent allosteric sites, and thus drug targets.
Collapse
Affiliation(s)
- Simon Mitternacht
- Computational Biology Unit/UNI Research, University of Bergen, Bergen, Norway
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Igor N. Berezovsky
- Computational Biology Unit/UNI Research, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|