1
|
Jiang J, Schmitz KR. Bioinformatic identification of ClpI, a distinct class of Clp unfoldases in Actinomycetota. Front Microbiol 2023; 14:1161764. [PMID: 37138635 PMCID: PMC10149685 DOI: 10.3389/fmicb.2023.1161764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
All clades of bacteria possess Hsp100/Clp family unfoldase enzymes that contribute to aspects of protein quality control. In Actinomycetota, these include ClpB, which functions as an independent chaperone and disaggregase, and ClpC, which cooperates with the ClpP1P2 peptidase to carry out regulated proteolysis of client proteins. We initially sought to algorithmically catalog Clp unfoldase orthologs from Actinomycetota into ClpB and ClpC categories. In the process, we uncovered a phylogenetically distinct third group of double-ringed Clp enzymes, which we term ClpI. ClpI enzymes are architecturally similar to ClpB and ClpC, with intact ATPase modules and motifs associated with substrate unfolding and translation. While ClpI possess an M-domain similar in length to that of ClpC, its N-terminal domain is more variable than the strongly conserved N-terminal domain of ClpC. Surprisingly, ClpI sequences are divisible into sub-classes that either possess or lack the LGF-motifs required for stable assembly with ClpP1P2, suggesting distinct cellular roles. The presence of ClpI enzymes likely provides bacteria with expanded complexity and regulatory control over protein quality control programs, supplementing the conserved roles of ClpB and ClpC.
Collapse
Affiliation(s)
- Jialiu Jiang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | - Karl R. Schmitz
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
2
|
Lee G, Kim RS, Lee SB, Lee S, Tsai FT. Deciphering the mechanism and function of Hsp100 unfoldases from protein structure. Biochem Soc Trans 2022; 50:1725-1736. [PMID: 36454589 PMCID: PMC9784670 DOI: 10.1042/bst20220590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Hsp100 chaperones, also known as Clp proteins, constitute a family of ring-forming ATPases that differ in 3D structure and cellular function from other stress-inducible molecular chaperones. While the vast majority of ATP-dependent molecular chaperones promote the folding of either the nascent chain or a newly imported polypeptide to reach its native conformation, Hsp100 chaperones harness metabolic energy to perform the reverse and facilitate the unfolding of a misfolded polypeptide or protein aggregate. It is now known that inside cells and organelles, different Hsp100 members are involved in rescuing stress-damaged proteins from a previously aggregated state or in recycling polypeptides marked for degradation. Protein degradation is mediated by a barrel-shaped peptidase that physically associates with the Hsp100 hexamer to form a two-component system. Notable examples include the ClpA:ClpP (ClpAP) and ClpX:ClpP (ClpXP) proteases that resemble the ring-forming FtsH and Lon proteases, which unlike ClpAP and ClpXP, feature the ATP-binding and proteolytic domains in a single polypeptide chain. Recent advances in electron cryomicroscopy (cryoEM) together with single-molecule biophysical studies have now provided new mechanistic insight into the structure and function of this remarkable group of macromolecular machines.
Collapse
Affiliation(s)
- Grace Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Rice University, Houston, Texas 77005, USA
| | - Rebecca S. Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sang Bum Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Advanced Technology Core for Macromolecular X-ray Crystallography, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Mulvenna N, Hantke I, Burchell L, Nicod S, Bell D, Turgay K, Wigneshweraraj S. Xenogeneic modulation of the ClpCP protease of Bacillus subtilis by a phage-encoded adaptor-like protein. J Biol Chem 2019; 294:17501-17511. [PMID: 31362989 PMCID: PMC6873191 DOI: 10.1074/jbc.ra119.010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Indexed: 11/06/2022] Open
Abstract
Like eukaryotic and archaeal viruses, which coopt the host's cellular pathways for their replication, bacteriophages have evolved strategies to alter the metabolism of their bacterial host. SPO1 bacteriophage infection of Bacillus subtilis results in comprehensive remodeling of cellular processes, leading to conversion of the bacterial cell into a factory for phage progeny production. A cluster of 26 genes in the SPO1 genome, called the host takeover module, encodes for potentially cytotoxic proteins that specifically shut down various processes in the bacterial host, including transcription, DNA synthesis, and cell division. However, the properties and bacterial targets of many genes of the SPO1 host takeover module remain elusive. Through a systematic analysis of gene products encoded by the SPO1 host takeover module, here we identified eight gene products that attenuated B. subtilis growth. Of the eight phage gene products that attenuated bacterial growth, a 25-kDa protein called Gp53 was shown to interact with the AAA+ chaperone protein ClpC of the ClpCP protease of B. subtilis Our results further reveal that Gp53 is a phage-encoded adaptor-like protein that modulates the activity of the ClpCP protease to enable efficient SPO1 phage progeny development. In summary, our findings indicate that the bacterial ClpCP protease is the target of xenogeneic (dys)regulation by a SPO1 phage-derived factor and add Gp53 to the list of antibacterial products that target bacterial protein degradation and therefore may have utility for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Nancy Mulvenna
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ingo Hantke
- Institute für Mikrobiologie, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Lynn Burchell
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sophie Nicod
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - David Bell
- SynbiCITE, iHub, Imperial College London, White City, London W12 0BZ, United Kingdom
| | - Kürşad Turgay
- Institute für Mikrobiologie, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.,Max Planck Unit for the Science of Pathogens, Chariteplatz 1, 10117 Berlin, Germany
| | - Sivaramesh Wigneshweraraj
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Arginine phosphorylation marks proteins for degradation by a Clp protease. Nature 2016; 539:48-53. [PMID: 27749819 DOI: 10.1038/nature20122] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/29/2016] [Indexed: 11/08/2022]
Abstract
Protein turnover is a tightly controlled process that is crucial for the removal of aberrant polypeptides and for cellular signalling. Whereas ubiquitin marks eukaryotic proteins for proteasomal degradation, a general tagging system for the equivalent bacterial Clp proteases is not known. Here we describe the targeting mechanism of the ClpC-ClpP proteolytic complex from Bacillus subtilis. Quantitative affinity proteomics using a ClpP-trapping mutant show that proteins phosphorylated on arginine residues are selectively targeted to ClpC-ClpP. In vitro reconstitution experiments demonstrate that arginine phosphorylation by the McsB kinase is required and sufficient for the degradation of substrate proteins. The docking site for phosphoarginine is located in the amino-terminal domain of the ClpC ATPase, as resolved at high resolution in a co-crystal structure. Together, our data demonstrate that phosphoarginine functions as a bona fide degradation tag for the ClpC-ClpP protease. This system, which is widely distributed across Gram-positive bacteria, is functionally analogous to the eukaryotic ubiquitin-proteasome system.
Collapse
|
6
|
Burmann BM, Hiller S. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:41-64. [PMID: 25919198 DOI: 10.1016/j.pnmrs.2015.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 05/20/2023]
Abstract
The majority of proteins depend on a well-defined three-dimensional structure to obtain their functionality. In the cellular environment, the process of protein folding is guided by molecular chaperones to avoid misfolding, aggregation, and the generation of toxic species. To this end, living cells contain complex networks of molecular chaperones, which interact with substrate polypeptides by a multitude of different functionalities: transport them towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver them towards a proteolysis machinery. Despite the availability of high-resolution crystal structures of many important chaperones in their substrate-free apo forms, structural information about how substrates are bound by chaperones and how they are protected from misfolding and aggregation is very sparse. This lack of information arises from the highly dynamic nature of chaperone-substrate complexes, which so far has largely hindered their crystallization. This highly dynamic nature makes chaperone-substrate complexes good targets for NMR spectroscopy. Here, we review the results achieved by NMR spectroscopy to understand chaperone function in general and details of chaperone-substrate interactions in particular. We assess the information content and applicability of different NMR techniques for the characterization of chaperones and chaperone-substrate complexes. Finally, we highlight three recent studies, which have provided structural descriptions of chaperone-substrate complexes at atomic resolution.
Collapse
Affiliation(s)
- Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
7
|
Battesti A, Gottesman S. Roles of adaptor proteins in regulation of bacterial proteolysis. Curr Opin Microbiol 2013; 16:140-7. [PMID: 23375660 DOI: 10.1016/j.mib.2013.01.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/28/2012] [Accepted: 01/04/2013] [Indexed: 12/31/2022]
Abstract
Elimination of non-functional or unwanted proteins is critical for cell growth and regulation. In bacteria, ATP-dependent proteases target cytoplasmic proteins for degradation, contributing to both protein quality control and regulation of specific proteins, thus playing roles parallel to that of the proteasome in eukaryotic cells. Adaptor proteins provide a way to modulate the substrate specificity of the proteases and allow regulated proteolysis. Advances over the past few years have provided new insight into how adaptor proteins interact with both substrates and proteases and how adaptor functions are regulated. An important advance has come with the recognition of the critical roles of anti-adaptor proteins in regulating adaptor availability.
Collapse
Affiliation(s)
- Aurelia Battesti
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892, United States
| | | |
Collapse
|
8
|
Abstract
Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.
Collapse
|
9
|
Derrien B, Majeran W, Effantin G, Ebenezer J, Friso G, van Wijk KJ, Steven AC, Maurizi MR, Vallon O. The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features. PLANT MOLECULAR BIOLOGY 2012; 80:189-202. [PMID: 22772861 PMCID: PMC3500782 DOI: 10.1007/s11103-012-9939-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/28/2012] [Indexed: 05/23/2023]
Abstract
The ClpP peptidase is a major constituent of the proteolytic machinery of bacteria and organelles. The chloroplast ClpP complex is unusual, in that it associates a large number of subunits, one of which (ClpP1) is encoded in the chloroplast, the others in the nucleus. The complexity of these large hetero-oligomeric complexes has been a major difficulty in their overproduction and biochemical characterization. In this paper, we describe the purification of native chloroplast ClpP complex from the green alga Chlamydomonas reinhardtii, using a strain that carries the Strep-tag II at the C-terminus of the ClpP1 subunit. Similar to land plants, the algal complex comprises active and inactive subunits (3 ClpP and 5 ClpR, respectively). Evidence is presented that a sub-complex can be produced by dissociation, comprising ClpP1 and ClpR1, 2, 3 and 4, similar to the ClpR-ring described in land plants. Our Chlamydomonas ClpP preparation also contains two ClpT subunits, ClpT3 and ClpT4, which like the land plant ClpT1 and ClpT2 show 2 Clp-N domains. ClpTs are believed to function in substrate binding and/or assembly of the two heptameric rings. Phylogenetic analysis indicates that ClpT subunits have appeared independently in Chlorophycean algae, in land plants and in dispersed cyanobacterial genomes. Negative staining electron microscopy shows that the Chlamydomonas complex retains the barrel-like shape of homo-oligomeric ClpPs, with 4 additional peripheral masses that we speculate represent either the additional IS1 domain of ClpP1 (a feature unique to algae) or ClpTs or extensions of ClpR subunits.
Collapse
Affiliation(s)
- Benoît Derrien
- UMR7141 CNRS/UPMC, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Sciences du Végétal, UPR 2355 CNRS, 1 Avenue de la Terrasse, 91198 Gif/Yvette cedex, France
| | - Grégory Effantin
- Laboratory of Structural Biology Research, NIAMS, NIH, Bethesda, USA
| | | | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | | | | | - Olivier Vallon
- UMR7141 CNRS/UPMC, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
10
|
Pietrosiuk A, Lenherr ED, Falk S, Bönemann G, Kopp J, Zentgraf H, Sinning I, Mogk A. Molecular basis for the unique role of the AAA+ chaperone ClpV in type VI protein secretion. J Biol Chem 2011; 286:30010-21. [PMID: 21733841 DOI: 10.1074/jbc.m111.253377] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ring-forming AAA(+) ATPases act in a plethora of cellular processes by remodeling macromolecules. The specificity of individual AAA(+) proteins is achieved by direct or adaptor-mediated association with substrates via distinct recognition domains. We investigated the molecular basis of substrate interaction for Vibrio cholerae ClpV, which disassembles tubular VipA/VipB complexes, an essential step of type VI protein secretion and bacterial virulence. We identified the ClpV recognition site within VipB, showed that productive ClpV-VipB interaction requires the oligomeric state of both proteins, solved the crystal structure of a ClpV N-domain-VipB peptide complex, and verified the interaction surface by mutant analysis. Our results show that the substrate is bound to a hydrophobic groove, which is formed by the addition of a single α-helix to the core N-domain. This helix is absent from homologous N-domains, explaining the unique substrate specificity of ClpV. A limited interaction surface between both proteins accounts for the dramatic increase in binding affinity upon ATP-driven ClpV hexamerization and VipA/VipB tubule assembly by coupling multiple weak interactions. This principle ensures ClpV selectivity toward the VipA/VipB macromolecular complex.
Collapse
Affiliation(s)
- Aleksandra Pietrosiuk
- Zentrum für Molekulare Biologie Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis. Res Microbiol 2009; 160:637-44. [DOI: 10.1016/j.resmic.2009.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/20/2009] [Accepted: 08/20/2009] [Indexed: 12/13/2022]
|
12
|
Abstract
Members of the AAA+ protein superfamily contribute to many diverse aspects of protein homeostasis in prokaryotic cells. As a fundamental component of numerous proteolytic machines in bacteria, AAA+ proteins play a crucial part not only in general protein quality control but also in the regulation of developmental programmes, through the controlled turnover of key proteins such as transcription factors. To manage these many, varied tasks, Hsp100/Clp and AAA+ proteases use specific adaptor proteins to enhance or expand the substrate recognition abilities of their cognate protease. Here, we review our current knowledge of the modulation of bacterial AAA+ proteases by these cellular arbitrators.
Collapse
|