1
|
Hofmann SM, Frost CV, Podewin T, Gailer M, Weber E, Zacharias M, Zinth W, Hoffmann-Röder A. Folding and Unfolding of the Short Light-Triggered β-Hairpin Peptide AzoChignolin Occurs within 100 ns. J Phys Chem B 2020; 124:5113-5121. [PMID: 32479079 DOI: 10.1021/acs.jpcb.0c02021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To map the underlying molecular mechanisms of folding dynamics in proteins, light-operated peptides have emerged as promising tools. In this study, we reveal the complete sequence of light-induced structural changes of AzoChignolin, a short β-hairpin peptide containing an azobenzene photoswitch in its loop region. Light-triggered structural changes were monitored by time-resolved IR spectroscopy. Formation and destruction of the hairpin structure is very fast and occurs within 100 ns for AzoChignolin in methanol. Atomistic molecular dynamics simulations using two explicit solvents, methanol and water, revealed the underlying molecular processes and allowed us to gain further insight into the reaction mechanism. Despite its rapid reaction time, hairpin formation in these solvents is not force-driven by the molecular switch but proceeded via formation of interstrand hydrogen bonds and contacts between aromatic residues. Moreover, the combined experimental and theoretical study demonstrates that the solvent (methanol vs water) does not dictate the velocity of β-hairpin formation in the AzoChignolin peptide comprising only a few hydrophobic residues in the strands.
Collapse
Affiliation(s)
- Stefan M Hofmann
- BioMolecular Optics and Center for Integrated Protein Science, Faculty of Physics, Ludwig-Maximilians-Universität München, Oettingenstr. 67, München 80538, Germany
| | - Christina V Frost
- TUM Department of Physics T38, Technical University of Munich, James-Franck-Str. 1, Garching 85748, Germany
| | - Tom Podewin
- Department of Organic Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München 81377, Germany
| | - Manuel Gailer
- Department of Organic Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München 81377, Germany
| | - Elisa Weber
- BioMolecular Optics and Center for Integrated Protein Science, Faculty of Physics, Ludwig-Maximilians-Universität München, Oettingenstr. 67, München 80538, Germany
| | - Martin Zacharias
- TUM Department of Physics T38, Technical University of Munich, James-Franck-Str. 1, Garching 85748, Germany
| | - Wolfgang Zinth
- BioMolecular Optics and Center for Integrated Protein Science, Faculty of Physics, Ludwig-Maximilians-Universität München, Oettingenstr. 67, München 80538, Germany
| | - Anja Hoffmann-Röder
- Department of Organic Chemistry and Center for Integrated Protein Science, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, München 81377, Germany
| |
Collapse
|
2
|
Hridya VM, Mukherjee A. Probing the Viscosity Dependence of Rate: Internal Friction or the Lack of Friction? J Phys Chem B 2018; 122:9081-9086. [DOI: 10.1021/acs.jpcb.8b05585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. M. Hridya
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
3
|
Rampp MS, Hofmann SM, Podewin T, Hoffmann-Röder A, Moroder L, Zinth W. Time-resolved infrared studies of the unfolding of a light triggered β-hairpin peptide. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Ding B, Hilaire MR, Gai F. Infrared and Fluorescence Assessment of Protein Dynamics: From Folding to Function. J Phys Chem B 2016; 120:5103-13. [PMID: 27183318 DOI: 10.1021/acs.jpcb.6b03199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While folding or performing functions, a protein can sample a rich set of conformational space. However, experimentally capturing all of the important motions with sufficient detail to allow a mechanistic description of their dynamics is nontrivial since such conformational events often occur over a wide range of time and length scales. Therefore, many methods have been employed to assess protein conformational dynamics, and depending on the nature of the conformational transition in question, some may be more advantageous than others. Herein, we describe our recent efforts, and also those of others, wherever appropriate, to use infrared- and fluorescence-based techniques to interrogate protein folding and functional dynamics. Specifically, we focus on discussing how to use extrinsic spectroscopic probes to enhance the structural resolution of these techniques and how to exploit various cross-linking strategies to acquire dynamic and mechanistic information that was previously difficult to attain.
Collapse
Affiliation(s)
- Bei Ding
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Mary Rose Hilaire
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Feng Gai
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Razavi AM, Voelz VA. Kinetic Network Models of Tryptophan Mutations in β-Hairpins Reveal the Importance of Non-Native Interactions. J Chem Theory Comput 2015; 11:2801-12. [DOI: 10.1021/acs.jctc.5b00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Asghar M. Razavi
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Vincent A. Voelz
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
6
|
Markiewicz BN, Yang L, Culik RM, Gao YQ, Gai F. How quickly can a β-hairpin fold from its transition state? J Phys Chem B 2014; 118:3317-25. [PMID: 24611730 PMCID: PMC3969101 DOI: 10.1021/jp500774q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Understanding the structural nature
of the free energy bottleneck(s)
encountered in protein folding is essential to elucidating the underlying
dynamics and mechanism. For this reason, several techniques, including
Φ-value analysis, have previously been developed to infer the
structural characteristics of such high free-energy or transition
states. Herein we propose that one (or few) appropriately placed backbone
and/or side chain cross-linkers, such as disulfides, could be used
to populate a thermodynamically accessible conformational state that
mimics the folding transition state. Specifically, we test this hypothesis
on a model β-hairpin, Trpzip4, as its folding mechanism has
been extensively studied and is well understood. Our results show
that cross-linking the two β-strands near the turn region increases
the folding rate by an order of magnitude, to about (500 ns)−1, whereas cross-linking the termini results in a hyperstable β-hairpin
that has essentially the same folding rate as the uncross-linked peptide.
Taken together, these findings suggest that cross-linking is not only
a useful strategy to manipulate folding free energy barriers, as shown
in other studies, but also, in some cases, it can be used to stabilize
a folding transition state analogue and allow for direct assessment
of the folding process on the downhill side of the free energy barrier.
The calculated free energy landscape of the cross-linked Trpzip4 also
supports this picture. An empirical analysis further suggests, when
folding of β-hairpins does not involve a significant free energy
barrier, the folding time (τ) follows a power law dependence
on the number of hydrogen bonds to be formed (nH), namely, τ = τ0nHα, with
τ0 = 20 ns and α = 2.3.
Collapse
Affiliation(s)
- Beatrice N Markiewicz
- Department of Chemistry and ‡Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
7
|
Markiewicz BN, Oyola R, Du D, Gai F. Aggregation gatekeeper and controlled assembly of Trpzip β-hairpins. Biochemistry 2014; 53:1146-54. [PMID: 24498924 PMCID: PMC3985754 DOI: 10.1021/bi401568a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein and peptide aggregation is an important issue both in vivo and in vitro. Herein, we examine the aggregation behaviors of two well-studied β-hairpins, Trpzip1 and Trpzip2. Previous studies suggested that Trpzip2 remains monomeric up to a concentration of ~15 mM whereas Trpzip1 readily aggregates at micromolar concentrations at acidic or neutral pH. This disparity is puzzling considering that these two peptides differ only in their turn sequences (i.e., GN vs NG). We hypothesize that these peptides can aggregate from their folded states via native edge-to-edge interactions and that the Lys8 residue in Trpzip2 is a more effective aggregation gatekeeper, because of a more favorable orientation. In support of this hypothesis, we find that increasing the pH to 13 or replacing Lys8 with a hydrophobic and photolabile Lys analogue, Lys(nvoc), leads to a significant increase in the aggregation propensity of Trpzip2, and that the aggregation of this Trpzip2 mutant can be reversed upon restoring the native Lys side chain via photocleavage of the nvoc moiety. In addition, we find that while both Trpzip1 and Trpzip2 form parallel β-sheet aggregates, the Lys(nvoc) Trpzip2 mutant forms antiparallel β-sheets and more stable fibrils. Taken together, these findings provide another example showing how sensitive peptide and protein aggregation is to minor sequence variation and that it is possible to use a photolabile non-natural amino acid, such as Lys(nvoc), to tune the rate of peptide aggregation and to control fibrillar structure.
Collapse
Affiliation(s)
- Beatrice N Markiewicz
- Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
8
|
Deeg AA, Rampp MS, Popp A, Pilles BM, Schrader TE, Moroder L, Hauser K, Zinth W. Isomerization- and temperature-jump-induced dynamics of a photoswitchable β-hairpin. Chemistry 2013; 20:694-703. [PMID: 24415361 DOI: 10.1002/chem.201303189] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/28/2013] [Indexed: 11/09/2022]
Abstract
Conformational changes in proteins and peptides can be initiated by diverse processes. This raises the question how the variation of initiation mechanisms is connected to differences in folding or unfolding processes. In this work structural dynamics of a photoswitchable β-hairpin model peptide were initiated by two different mechanisms: temperature jump (T-jump) and isomerization of a backbone element. In both experiments the structural changes were followed by time-resolved IR spectroscopy in the nanosecond to microsecond range. When the photoisomerization of the azobenzene backbone switch initiated the folding reaction, pronounced absorption changes related to folding into the hairpin structure were found with a time constant of about 16 μs. In the T-jump experiment kinetics with the same time constant were observed. For both initiation processes the reaction dynamics revealed the same strong dependence of the reaction time on temperature. The highly similar transients in the microsecond range show that the peptide dynamics induced by T-jump and isomerization are both determined by the same mechanism and exclude a downhill-folding process. Furthermore, the combination of the two techniques allows a detailed model for folding and unfolding to be presented: The isomerization-induced folding process ends in a transition-state reaction scheme, in which a high energetic barrier of 48 kJ mol(-1) separates unfolded and folded structures.
Collapse
Affiliation(s)
- Andreas A Deeg
- Institute for BioMolecular Optics and Munich Center or Integrated Protein Science CIPSM, University of Munich, Oettingenstrasse 67, 80538 Munich (Germany), Fax: (+49) 89-2180-9202
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Prigozhin MB, Gruebele M. Microsecond folding experiments and simulations: a match is made. Phys Chem Chem Phys 2013; 15:3372-88. [PMID: 23361200 PMCID: PMC3632410 DOI: 10.1039/c3cp43992e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
For the past two decades, protein folding experiments have been speeding up from the second or millisecond time scale to the microsecond time scale, and full-atom simulations have been extended from the nanosecond to the microsecond and even millisecond time scale. Where the two meet, it is now possible to compare results directly, allowing force fields to be validated and refined, and allowing experimental data to be interpreted in atomistic detail. In this perspective we compare recent experiments and simulations on the microsecond time scale, pointing out the progress that has been made in determining native structures from physics-based simulations, refining experiments and simulations to provide more quantitative underlying mechanisms, and tackling the problems of multiple reaction coordinates, downhill folding, and complex underlying structure of unfolded or misfolded states.
Collapse
Affiliation(s)
- M. B. Prigozhin
- Department of Chemistry, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
| | - M. Gruebele
- Department of Chemistry, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
- Department of Physics, Center for Biophsyics and Computational Biology, 600 South Mathews Ave. Box 5–6, Urbana IL 61801, USA
| |
Collapse
|
10
|
Folding of a heterogeneous β-hairpin peptide from temperature-jump 2D IR spectroscopy. Proc Natl Acad Sci U S A 2013; 110:2828-33. [PMID: 23382249 DOI: 10.1073/pnas.1211968110] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We provide a time- and structure-resolved characterization of the folding of the heterogeneous β-hairpin peptide Tryptophan Zipper 2 (Trpzip2) using 2D IR spectroscopy. The amide I' vibrations of three Trpzip2 isotopologues are used as a local probe of the midstrand contacts, β-turn, and overall β-sheet content. Our experiments distinguish between a folded state with a type I' β-turn and a misfolded state with a bulged turn, providing evidence for distinct conformations of the peptide backbone. Transient 2D IR spectroscopy at 45 °C following a laser temperature jump tracks the nanosecond and microsecond kinetics of unfolding and the exchange between conformers. Hydrogen bonds to the peptide backbone are loosened rapidly compared with the 5-ns temperature jump. Subsequently, all relaxation kinetics are characterized by an observed 1.2 ± 0.2-μs exponential. Our time-dependent 2D IR spectra are explained in terms of folding of either native or nonnative contacts from a common compact disordered state. Conversion from the disordered state to the folded state is consistent with a zip-out folding mechanism.
Collapse
|
11
|
Lannan FM, Mamajanov I, Hud NV. Human Telomere Sequence DNA in Water-Free and High-Viscosity Solvents: G-Quadruplex Folding Governed by Kramers Rate Theory. J Am Chem Soc 2012; 134:15324-30. [DOI: 10.1021/ja303499m] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ford M. Lannan
- School of
Chemistry and Biochemistry, Petit Institute
for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United
States
| | - Irena Mamajanov
- School of
Chemistry and Biochemistry, Petit Institute
for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United
States
| | - Nicholas V. Hud
- School of
Chemistry and Biochemistry, Petit Institute
for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United
States
| |
Collapse
|
12
|
Culik RM, Jo H, DeGrado WF, Gai F. Using thioamides to site-specifically interrogate the dynamics of hydrogen bond formation in β-sheet folding. J Am Chem Soc 2012; 134:8026-9. [PMID: 22540162 PMCID: PMC3354031 DOI: 10.1021/ja301681v] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioamides are sterically almost identical to their oxoamide counterparts, but they are weaker hydrogen bond acceptors. Therefore, thioamide amino acids are excellent candidates for perturbing the energetics of backbone-backbone H-bonds in proteins and hence should be useful in elucidating protein folding mechanisms in a site-specific manner. Herein, we validate this approach by applying it to probe the dynamic role of interstrand H-bond formation in the folding kinetics of a well-studied β-hairpin, tryptophan zipper. Our results show that reducing the strength of the peptide's backbone-backbone H-bonds, except the one directly next to the β-turn, does not change the folding rate, suggesting that most native interstrand H-bonds in β-hairpins are formed only after the folding transition state.
Collapse
Affiliation(s)
- Robert M Culik
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
13
|
Xu Y, Du D, Oyola R. Infrared study of the stability and folding kinetics of a series of β-hairpin peptides with a common NPDG turn. J Phys Chem B 2011; 115:15332-8. [PMID: 22136248 DOI: 10.1021/jp2046867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The thermal stability and folding kinetics of a series of 15-residue β-hairpins with a common Type I [3:5] NPDG turn were studied using Fourier transform infrared spectroscopy (FTIR) and laser-induced temperature jump (T-jump) with infrared detection, respectively. Mutations at positions 3, 5, or 13 in the peptide sequence SEXYXNPDGTWTXTE, where X represents the position of mutation, were performed to study the roles of hydrophobic interactions in determining the thermodynamic and kinetic properties of β-hairpin folding. The thermal stability studies show a broad thermal folding/unfolding transition for all the peptides. T-jump studies indicate that these β-hairpin peptides fold in less than 2 μs. In addition, both folding and unfolding rate constants decrease with increasing strength of hydrophobic interactions. Kinetically, the hydrophobic interactions have more significant influence on the unfolding rate than the folding rate. Φ-value analysis indicates that the hydrophobic interactions between the side chains are mainly formed at the latter part of the transition-state region during the folding process. In summary, the results suggest that the formation of the native structure of these β-hairpins depends on the correct topology of the hydrophobic cluster. Besides the formation of the turn region as a key process for folding as suggested by previous studies, a hydrophobic collapse process may also play a crucial role during β-hairpin folding.
Collapse
Affiliation(s)
- Yao Xu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
14
|
Wu L, McElheny D, Setnicka V, Hilario J, Keiderling TA. Role of different β-turns in β-hairpin conformation and stability studied by optical spectroscopy. Proteins 2011; 80:44-60. [DOI: 10.1002/prot.23140] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/28/2011] [Accepted: 07/21/2011] [Indexed: 12/28/2022]
|
15
|
Sosnick TR, Barrick D. The folding of single domain proteins--have we reached a consensus? Curr Opin Struct Biol 2010; 21:12-24. [PMID: 21144739 DOI: 10.1016/j.sbi.2010.11.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/03/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
Abstract
Rather than stressing the most recent advances in the field, this review highlights the fundamental topics where disagreement remains and where adequate experimental data are lacking. These topics include properties of the denatured state and the role of residual structure, the nature of the fundamental steps and barriers, the extent of pathway heterogeneity and non-native interactions, recent comparisons between theory and experiment, and finally, dynamical properties of the folding reaction.
Collapse
Affiliation(s)
- Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
16
|
Buchner GS, Murphy RD, Buchete NV, Kubelka J. Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:1001-20. [PMID: 20883829 DOI: 10.1016/j.bbapap.2010.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
The problem of spontaneous folding of amino acid chains into highly organized, biologically functional three-dimensional protein structures continues to challenge the modern science. Understanding how proteins fold requires characterization of the underlying energy landscapes as well as the dynamics of the polypeptide chains in all stages of the folding process. In recent years, important advances toward these goals have been achieved owing to the rapidly growing interdisciplinary interest and significant progress in both experimental techniques and theoretical methods. Improvements in the experimental time resolution led to determination of the timescales of the important elementary events in folding, such as formation of secondary structure and tertiary contacts. Sensitive single molecule methods made possible probing the distributions of the unfolded and folded states and following the folding reaction of individual protein molecules. Discovery of proteins that fold in microseconds opened the possibility of atomic-level theoretical simulations of folding and their direct comparisons with experimental data, as well as of direct experimental observation of the barrier-less folding transition. The ultra-fast folding also brought new questions, concerning the intrinsic limits of the folding rates and experimental signatures of barrier-less "downhill" folding. These problems will require novel approaches for even more detailed experimental investigations of the folding dynamics as well as for the analysis of the folding kinetic data. For theoretical simulations of folding, a main challenge is how to extract the relevant information from overwhelmingly detailed atomistic trajectories. New theoretical methods have been devised to allow a systematic approach towards a quantitative analysis of the kinetic network of folding-unfolding transitions between various configuration states of a protein, revealing the transition states and the associated folding pathways at multiple levels, from atomistic to coarse-grained representations. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.
Collapse
Affiliation(s)
- Ginka S Buchner
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA; Universität Würzbug, Würzburg, Germany
| | | | | | | |
Collapse
|
17
|
Hu KN, Tycko R. What can solid state NMR contribute to our understanding of protein folding? Biophys Chem 2010; 151:10-21. [PMID: 20542371 PMCID: PMC2906680 DOI: 10.1016/j.bpc.2010.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 11/29/2022]
Abstract
Complete understanding of the folding process that connects a structurally disordered state of a protein to an ordered, biochemically functional state requires detailed characterization of intermediate structural states with high resolution and site specificity. While the intrinsically inhomogeneous and dynamic nature of unfolded and partially folded states limits the efficacy of traditional X-ray diffraction and solution NMR in structural studies, solid state NMR methods applied to frozen solutions can circumvent the complications due to molecular motions and conformational exchange encountered in unfolded and partially folded states. Moreover, solid state NMR methods can provide both qualitative and quantitative structural information at the site-specific level, even in the presence of structural inhomogeneity. This article reviews relevant solid state NMR methods and their initial applications to protein folding studies. Using either chemical denaturation to prepare unfolded states at equilibrium or a rapid freezing apparatus to trap non-equilibrium, transient structural states on a sub-millisecond time scale, recent results demonstrate that solid state NMR can contribute essential information about folding processes that is not available from more familiar biophysical methods.
Collapse
Affiliation(s)
- Kan-Nian Hu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, United States
| | | |
Collapse
|
18
|
Hu KN, Yau WM, Tycko R. Detection of a transient intermediate in a rapid protein folding process by solid-state nuclear magnetic resonance. J Am Chem Soc 2010; 132:24-5. [PMID: 20000466 DOI: 10.1021/ja908471n] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the use of solid-state NMR spectroscopy to characterize a partially folded state of the 35-residue helical protein HP35 created by rapid freeze-quenching from a thermally unfolded state on the 10-20 micros time scale. Two-dimensional solid-state (13)C NMR spectra of (13)C-labeled HP35 in frozen glycerol/water solution exhibit two sets of signals, one corresponding to strongly unfolded protein molecules and the other to an ensemble of molecules having native helical secondary structure but incomplete tertiary structure. The NMR data indicate that secondary structure forms within the freeze-quenching time scale but that full folding involves a slower phase of structural annealing. The approximately 5 micros folding time observed in earlier studies of HP35 by time-resolved optical techniques may not represent the time scale for full folding.
Collapse
Affiliation(s)
- Kan-Nian Hu
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | |
Collapse
|