1
|
Wang J, Wang J, Wang Y, Sun P, Zou X, Ren L, Zhang C, Liu E. Protein expression profiles in methicillin-resistant Staphylococcus aureus (MRSA) under effects of subminimal inhibitory concentrations of imipenem. FEMS Microbiol Lett 2019; 366:5570583. [PMID: 31529016 DOI: 10.1093/femsle/fnz195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Imipenem is a beta-lactam antibiotic mainly active against gram-negative bacterial pathogens and also could cause cell wall impairment in methicillin-resistant Staphylococcus aureus(MRSA). However, related antibacterial mechanisms of imipenem on MRSA and mixed infections of MRSA and gram-negative bacteria are relatively poorly revealed. This study was to identify proteins in the MRSA response to subminimal inhibitory concentrations (sub-MICs) of imipenem treatment. Our results showed that 240 and 58 different expression proteins (DEPs) in sub-MICs imipenem-treated S3 (a standard MRSA strain) and S23 (a clinical MRSA strain) strains were identified through the isobaric tag for relative and absolute quantitation method when compared with untreated S3 and S23 strains, respectively, which was further confirmed by multiple reactions monitoring. Our result also demonstrated that expressions of multiple DEPs involved in cellular proliferation, metabolism and virulence were significantly changed in S3 and S23 strains, which was proved by gene ontology annotations and qPCR analysis. Further, transmission electron microscopy and scanning electron microscopy analysis showed cell wall deficiency, cell lysis and abnormal nuclear mitosis on S23 strain. Our study provides important information for understanding the antibacterial mechanisms of imipenem on MRSA and for better usage of imipenem on patients co-infected with MRSA and other multidrug-resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Jichun Wang
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China.,Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Junrui Wang
- Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Yanyan Wang
- Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Peng Sun
- Pathogen and Immunity Research Center, College of Basic Medicine, Inner Mongolia Medical University, Jinshan Avenue, Hohhot, Inner Mongolia 010110, China
| | - Xiaohui Zou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention; China CDC, Key Laboratory for Medical Virology, Ministry of Health, Beijing 102206, China
| | - Luo Ren
- Pediatrics Institute, Children's Hospital Chongqing Medical University, No. 136, Zhong Shan 2nd Road, Yuzhong District, Chongqing 400014, China
| | - Chunxia Zhang
- Department of Pediatrics, Affiliated Hospital of Inner Mongolia Medical University, No. 1, Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China
| | - Enmei Liu
- Pediatrics Institute, Children's Hospital Chongqing Medical University, No. 136, Zhong Shan 2nd Road, Yuzhong District, Chongqing 400014, China
| |
Collapse
|
2
|
Tajbakhsh G, Golemi-Kotra D. The dimerization interface in VraR is essential for induction of the cell wall stress response in Staphylococcus aureus: a potential druggable target. BMC Microbiol 2019; 19:153. [PMID: 31277575 PMCID: PMC6612188 DOI: 10.1186/s12866-019-1529-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022] Open
Abstract
Background Staphylococcus aureus remains a medical challenge in the treatment of bacterial infections. It has acquired resistance to commonly used antibiotics, and to those considered to be the last weapons in treating staphylococcal infections, such as vancomycin. Studies have revealed that S. aureus is capable of mounting a rapid response to antibiotics that target cell wall peptidoglycan biosynthesis, such as β-lactams and vancomycin. The two-component system VraSR has been linked to the coordination of this response. VraS is a histidine kinase that undergoes autophosphorylation in the presence of signals elicited upon cell wall damage and it then transfers its phosphoryl group to VraR. VraR is a response regulator protein that functions as a transcription factor. Phosphorylation of VraR leads to its dimerization, which is required for optimum binding to its target promoters. Two-component systems have been targeted for the development of antibacterial agents. Deletion of the vraS or vraR gene has been shown to re-sensitize S. aureus to β-lactams and vancomycin. Results In this study, we explored perturbation of the VraR phosphorylation-induced activation as a means to inhibit the VraSR-mediated signal transduction pathway. We show that dimerization of VraR is essential for the phosphorylation-induced activation of VraR. A single point mutation in the dimerization interface of VraR, in which Met13 was replaced by Ala, led to the inability of VraR to dimerize and to bind optimally to the target promoter. The consequences of these in vitro molecular deficiencies are equally dramatic in vivo. Complementation of a vraR deletion S. aureus strain with the vraRM13Ala mutant gene failed to induce the cell wall stress response. Conclusions This study highlights the potential of targeting the phosphorylation-induced dimerization of VraR to disrupt the S. aureus cell wall stress response and in turn to re-sensitize S. aureus to β-lactams and vancomycin. Electronic supplementary material The online version of this article (10.1186/s12866-019-1529-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ghazal Tajbakhsh
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
| | | |
Collapse
|
3
|
Lee Y, Villar MT, Artigues A, Beamer LJ. Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase. J Biol Chem 2014; 289:4674-82. [PMID: 24403075 DOI: 10.1074/jbc.m113.532226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa catalyzes an intramolecular phosphoryl transfer across its phosphosugar substrates, which are precursors in the synthesis of exoproducts involved in bacterial virulence. Previous structural studies of PMM/PGM have established a key role for conformational change in its multistep reaction, which requires a dramatic 180° reorientation of the intermediate within the active site. Here hydrogen-deuterium exchange by mass spectrometry and small angle x-ray scattering were used to probe the conformational flexibility of different forms of PMM/PGM in solution, including its active, phosphorylated state and the unphosphorylated state that occurs transiently during the catalytic cycle. In addition, the effects of ligand binding were assessed through use of a substrate analog. We found that both phosphorylation and binding of ligand produce significant effects on deuterium incorporation. Phosphorylation of the conserved catalytic serine has broad effects on residues in multiple domains and is supported by small angle x-ray scattering data showing that the unphosphorylated enzyme is less compact in solution. The effects of ligand binding are generally manifested near the active site cleft and at a domain interface that is a site of conformational change. These results suggest that dephosphorylation of the enzyme may play two critical functional roles: a direct role in the chemical step of phosphoryl transfer and secondly through propagation of structural flexibility. We propose a model whereby increased enzyme flexibility facilitates the reorientation of the reaction intermediate, coupling changes in structural dynamics with the unique catalytic mechanism of this enzyme.
Collapse
|
4
|
Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. Proc Natl Acad Sci U S A 2013; 110:8525-30. [PMID: 23650349 DOI: 10.1073/pnas.1302819110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus VraR, a vancomycin-resistance-associated response regulator, activates a cell-wall-stress stimulon in response to antibiotics that inhibit cell wall formation. X-ray crystal structures of VraR in both unphosphorylated and beryllofluoride-activated states have been determined, revealing a mechanism of phosphorylation-induced dimerization that features a deep hydrophobic pocket at the center of the receiver domain interface. Unphosphorylated VraR exists in a closed conformation that inhibits dimer formation. Phosphorylation at the active site promotes conformational changes that are propagated throughout the receiver domain, promoting the opening of a hydrophobic pocket that is essential for homodimer formation and enhanced DNA-binding activity. This prominent feature in the VraR dimer can potentially be exploited for the development of novel therapeutics to counteract antibiotic resistance in this important pathogen.
Collapse
|
5
|
Moorthy BS, Anand GS. Multistate Allostery in Response Regulators: Phosphorylation and Mutagenesis Activate RegA via Alternate Modes. J Mol Biol 2012; 417:468-87. [DOI: 10.1016/j.jmb.2012.01.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
|
6
|
Rob T, Wilson DJ. Time-resolved mass spectrometry for monitoring millisecond time-scale solution-phase processes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2012; 18:205-214. [PMID: 22641726 DOI: 10.1255/ejms.1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many chemical and biochemical reactions equilibrate within a few seconds of initiation under "native" conditions. To understand the microscopic processes underlying these reactions, the most direct approach is to monitor the reaction as equilibrium is established (i.e. the reaction kinetics). However, this requires the ability to characterize the reaction mixture on the millisecond time-scale. In this review, we survey the contributions of time-resolved mass spectrometry (TR-MS) to the characterization of millisecond time-scale (bio)chemical processes, with a focus on biochemical applications. Compared to conventional time-resolved techniques, which use optical detection, the primary advantage of TR-MS is the ability to detect virtually all reactive species simultaneously. This provides a singularly high detail account of the reaction without the need for a chromophoric change on turnover or artificial chromophoric probes. To provide millisecond time-resolution, TR-MS set-ups usually employ continuous-flow rapid mixers, corresponding either to a fixed "tee" that provides a single reaction time-point or an adjustable position mixer that allows continuous reaction monitoring. TR-MS has been used to monitor processes with rates up to 500 s(-1) and to provide a detailed account of complex reactions involving 10 co- populated species. This corresponds to significantly lower time-resolution than optical methods, which can measure rates in excess of 900 s(-1) under ideal conditions, but substantially more detail (optical studies are typically limited to one or two analytes). TR-MS has been implemented on a number of platforms, including capillary and microfluidic set-ups. Capillary-based implementations are straightforward to fabricate and provide the most efficient rapid mixing. Microfluidic implementations have also been devised to enable multi-step experimental workflows that incorporate TR-MS. As a general method for time-resolved measurements, the applications for TR-MS are wide ranging. TR-MS has been used to identify intermediates in organic reactions, reveal protein (un)folding mechanisms, monitor enzyme catalysis in the pre-steady-state and, in conjunction with hydrogen-deuterium exchange, characterize protein conformational dynamics. While not without limitations, TR-MS represents a powerful alternative for measuring solution phase processes on the millisecond time-scale and a new, promising approach for revealing mechanistic details in (bio)chemical reactions.
Collapse
Affiliation(s)
- Tamanna Rob
- Department of Chemistry, York University, 4700 Keele St, Toronto, Ontario, M3J 1P3 Canada
| | | |
Collapse
|
7
|
Pan Y, Brown L, Konermann L. Hydrogen exchange mass spectrometry of bacteriorhodopsin reveals light-induced changes in the structural dynamics of a biomolecular machine. J Am Chem Soc 2011; 133:20237-44. [PMID: 22043856 DOI: 10.1021/ja206197h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many proteins act as molecular machines that are fuelled by a nonthermal energy source. Examples include transmembrane pumps and stator-rotor complexes. These systems undergo cyclic motions (CMs) that are being driven along a well-defined conformational trajectory. Superimposed on these CMs are thermal fluctuations (TFs) that are coupled to stochastic motions of the solvent. Here we explore whether the TFs of a molecular machine are affected by the occurrence of CMs. Bacteriorhodopsin (BR) is a light-driven proton pump that serves as a model system in this study. The function of BR is based on a photocycle that involves trans/cis isomerization of a retinal chromophore, as well as motions of transmembrane helices. Hydrogen/deuterium exchange (HDX) mass spectrometry was used to monitor the TFs of BR, focusing on the monomeric form of the protein. Comparative HDX studies were conducted under illumination and in the dark. The HDX kinetics of BR are dramatically accelerated in the presence of light. The isotope exchange rates and the number of backbone amides involved in EX2 opening transitions increase roughly 2-fold upon illumination. In contrast, light/dark control experiments on retinal-free protein produced no discernible differences. It can be concluded that the extent of TFs in BR strongly depends on photon-driven CMs. The light-induced differences in HDX behavior are ascribed to protein destabilization. Specifically, the thermodynamic stability of the dark-adapted protein is estimated to be 5.5 kJ mol(-1) under the conditions of our work. This value represents the free energy difference between the folded state F and a significantly unfolded conformer U. Illumination reduces the stability of F by 2.2 kJ mol(-1). Mechanical agitation caused by isomerization of the chromophore is transferred to the surrounding protein scaffold, and subsequently, the energy dissipates into the solvent. Light-induced retinal motions therefore act analogously to an internal heat source that promotes the occurrence of TFs. Overall, our data highlight the potential of HDX methods for probing the structural dynamics of molecular machines under "engine on" and "engine off" conditions.
Collapse
Affiliation(s)
- Yan Pan
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | |
Collapse
|
8
|
Konermann L, Pan J, Liu YH. Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem Soc Rev 2010; 40:1224-34. [PMID: 21173980 DOI: 10.1039/c0cs00113a] [Citation(s) in RCA: 604] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) has become a key technique for monitoring structural and dynamic aspects of proteins in solution. This approach relies on the fact that exposure of a protein to D(2)O induces rapid amide H → D exchange in disordered regions that lack stable hydrogen-bonding. Tightly folded elements are much more protected from HDX, resulting in slow isotope exchange that is mediated by the structural dynamics ("breathing motions") of the protein. MS-based peptide mapping is a well established technique for measuring the mass shifts of individual protein segments. This tutorial review briefly discusses basic fundamentals of HDX/MS, before highlighting a number of recent developments and applications. Gas phase fragmentation strategies represent a promising alternative to the traditional proteolysis-based approach, but experimentalists have to be aware of scrambling phenomena that can be encountered under certain conditions. Electron-based dissociation methods provide a solution to this problem. We also discuss recent advances that facilitate the applicability of HDX/MS to membrane proteins, and to the characterization of short-lived protein folding intermediates. It is hoped that this review will provide a starting point for novices, as well as a useful reference for practitioners, who require an overview of some recent trends in HDX/MS.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada.
| | | | | |
Collapse
|
9
|
Abstract
The Lia system, a cell envelope stress response module of Bacillus subtilis, is comprised of the LiaRS two-component system and a membrane-anchored inhibitor protein, LiaF. It is highly conserved in the Firmicutes bacteria, and all orthologs investigated so far are activated by cell wall antibiotics. In response to envelope stress, the systems in Firmicutes cocci induce the expression of a number of genes that are involved in conferring resistance against its inducers. In contrast, a complete picture of the LiaR regulon of B. subtilis is still missing and no phenotypes could be associated with mutants lacking LiaRS. Here, we performed genome-wide transcriptomic, proteomic, and in-depth phenotypic profiling of constitutive "Lia ON" and "Lia OFF" mutants to obtain a comprehensive picture of the Lia response of Bacillus subtilis. In addition to the known targets liaIH and yhcYZ-yhdA, we identified ydhE as a novel gene affected by LiaR-dependent regulation. The results of detailed follow-up gene expression studies, together with proteomic analysis, demonstrate that the liaIH operon represents the only relevant LiaR target locus in vivo. It encodes a small membrane protein (LiaI) and a phage shock protein homolog (LiaH). LiaH forms large oligomeric rings reminiscent of those described for Escherichia coli PspA or Arabidopsis thaliana Vipp1. The results of comprehensive phenotype studies demonstrated that the gene products of the liaIH operon are involved in protecting the cell against oxidative stress and some cell wall antibiotics. Our data suggest that the LiaFSR system of B. subtilis and, presumably, other Firmicutes bacilli coordinates a phage shock protein-like response.
Collapse
|