1
|
Lowary TL, Achkar JM. Tailor Made: New Insights Into Lipoarabinomannan Structure May Improve TB Diagnosis. J Biol Chem 2022; 298:101678. [PMID: 35122792 PMCID: PMC8913296 DOI: 10.1016/j.jbc.2022.101678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/17/2022] Open
Abstract
Detecting the mycobacterial glycolipid lipoarabinomannan (LAM) in urine by anti-LAM antibodies fills a gap in the diagnostic armamentarium of much needed simple rapid tests for tuberculosis, but lacks high sensitivity in all patient groups. A better understanding of LAM structure from clinically relevant strains may allow improvements in diagnostic performance. De et al. have recently determined the structures of LAM from three epidemiologically important lineages of Mycobacterium tuberculosis and probed their interaction with an anti-LAM monoclonal antibody. Their results not only identify a series of tailoring modifications that impact antibody binding but also provide a roadmap for improving U-LAM-based diagnostics.
Collapse
Affiliation(s)
- Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Ward EM, Kizer ME, Imperiali B. Strategies and Tactics for the Development of Selective Glycan-Binding Proteins. ACS Chem Biol 2021; 16:1795-1813. [PMID: 33497192 PMCID: PMC9200409 DOI: 10.1021/acschembio.0c00880] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The influences of glycans impact all biological processes, disease states, and pathogenic interactions. Glycan-binding proteins (GBPs), such as lectins, are decisive tools for interrogating glycan structure and function because of their ease of use and ability to selectively bind defined carbohydrate epitopes and glycosidic linkages. GBP reagents are prominent tools for basic research, clinical diagnostics, therapeutics, and biotechnological applications. However, the study of glycans is hindered by the lack of specific and selective protein reagents to cover the massive diversity of carbohydrate structures that exist in nature. In addition, existing GBP reagents often suffer from low affinity or broad specificity, complicating data interpretation. There have been numerous efforts to expand the GBP toolkit beyond those identified from natural sources through protein engineering, to improve the properties of existing GBPs or to engineer novel specificities and potential applications. This review details the current scope of proteins that bind carbohydrates and the engineering methods that have been applied to enhance the affinity, selectivity, and specificity of binders.
Collapse
Affiliation(s)
- Elizabeth M. Ward
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 31 Ames St, Cambridge, MA 02142, USA
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Ishida E, Corrigan DT, Malonis RJ, Hofmann D, Chen T, Amin AG, Chatterjee D, Joe M, Lowary TL, Lai JR, Achkar JM. Monoclonal antibodies from humans with Mycobacterium tuberculosis exposure or latent infection recognize distinct arabinomannan epitopes. Commun Biol 2021; 4:1181. [PMID: 34642445 PMCID: PMC8511196 DOI: 10.1038/s42003-021-02714-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
The surface polysacharide arabinomannan (AM) and related glycolipid lipoarabinomannan (LAM) play critical roles in tuberculosis pathogenesis. Human antibody responses to AM/LAM are heterogenous and knowledge of reactivity to specific glycan epitopes at the monoclonal level is limited, especially in individuals who can control M. tuberculosis infection. We generated human IgG mAbs to AM/LAM from B cells of two asymptomatic individuals exposed to or latently infected with M. tuberculosis. Here, we show that two of these mAbs have high affinity to AM/LAM, are non-competing, and recognize different glycan epitopes distinct from other anti-AM/LAM mAbs reported. Both mAbs recognize virulent M. tuberculosis and nontuberculous mycobacteria with marked differences, can be used for the detection of urinary LAM, and can detect M. tuberculosis and LAM in infected lungs. These mAbs enhance our understanding of the spectrum of antibodies to AM/LAM epitopes in humans and are valuable for tuberculosis diagnostic and research applications. Elise Ishida et al. generate human monoclonal antibodies that can selectively recognize specific oligosaccharide epitopes of the polysaccharides arabinomannan and lipoarabinomannan, which are critical for M. tuberculosis pathogenesis. The authors demonstrate the utility of these antibodies in both diagnostic and laboratory settings, making them important tools for M. tuberculosis research.
Collapse
Affiliation(s)
- Elise Ishida
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Devin T Corrigan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Hofmann
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maju Joe
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.,Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
De P, Amin AG, Flores D, Simpson A, Dobos K, Chatterjee D. Structural implications of lipoarabinomannan glycans from global clinical isolates in diagnosis of Mycobacterium tuberculosis infection. J Biol Chem 2021; 297:101265. [PMID: 34600887 PMCID: PMC8531672 DOI: 10.1016/j.jbc.2021.101265] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
In Mycobacterium tuberculosis (Mtb), surface-exposed Lipoarabinomannan (LAM) is a key determinant of immunogenicity, yet its intrinsic heterogeneity confounds typical structure–function analysis. Recently, LAM gained a strong foothold as a validated marker for active tuberculosis (TB) infection and has shown great potential in new diagnostic efforts. However, no efforts have yet been made to model or evaluate the impact of mixed polyclonal Mtb infections (infection with multiple strains) on TB diagnostic procedures other than antibiotic susceptibility testing. Here, we selected three TB clinical isolates (HN878, EAI, and IO) and purified LAM from these strains to present an integrated analytical approach of one-dimensional and two-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy, as well as enzymatic digestion and site-specific mass spectrometry (MS) to probe LAM structure and behavior at multiple levels. Overall, we found that the glycan was similar in all LAM preparations, albeit with subtle variations. Succinates, lactates, hydroxybutyrate, acetate, and the hallmark of Mtb LAM-methylthioxylose (MTX), adorned the nonreducing terminal arabinan of these LAM species. Newly identified acetoxy/hydroxybutyrate was present only in LAM from EAI and IO Mtb strains. Notably, detailed LC/MS-MS unambiguously showed that all acyl modifications and the lactyl ether in LAM are at the 3-OH position of the 2-linked arabinofuranose adjacent to the terminal β-arabinofuranose. Finally, after sequential enzymatic deglycosylation of LAM, the residual glycan that has ∼50% of α−arabinofuranose -(1→5) linked did not bind to monoclonal antibody CS35. These data clearly indicate the importance of the arabinan termini arrangements for the antigenicity of LAM.
Collapse
Affiliation(s)
- Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Danara Flores
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anne Simpson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Karen Dobos
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
5
|
Okajima R, Hiraoka S, Yamashita T. Environmental Effects on Salt Bridge Stability in the Protein-Protein Interface: The Case of Hen Egg-White Lysozyme and Its Antibody, HyHEL-10. J Phys Chem B 2021; 125:1542-1549. [PMID: 33544613 DOI: 10.1021/acs.jpcb.0c09248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the stability of two salt bridges between hen egg-white lysozyme (HEL) and its antibody, HyHEL-10, by using molecular dynamics simulations. It was observed that one salt bridge, D32H-K97Y, was stable, whereas the other, D99H-K97Y, was not. To understand this difference, we compared several reduced salt bridge models that incorporated the salt bridges and nearby residues. The results showed the importance of nearby residues, especially Y33H and W98H. Furthermore, to understand the effects of nearby salt bridges, we investigated two mutants, D32HA and D99HA. We found that the D32HA mutation considerably stabilized the D99H-K97Y salt bridge. The reduced model analysis indicated that this can be largely attributed to a conformational change of the main chain.
Collapse
Affiliation(s)
- Ryo Okajima
- Department of Basic Science, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.,Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
6
|
Chen T, Blanc C, Liu Y, Ishida E, Singer S, Xu J, Joe M, Jenny-Avital ER, Chan J, Lowary TL, Achkar JM. Capsular glycan recognition provides antibody-mediated immunity against tuberculosis. J Clin Invest 2020; 130:1808-1822. [PMID: 31935198 DOI: 10.1172/jci128459] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
A better understanding of all immune components involved in protecting against Mycobacterium tuberculosis infection is urgently needed to inform strategies for novel immunotherapy and tuberculosis (TB) vaccine development. Although cell-mediated immunity is critical, increasing evidence supports that antibodies also have a protective role against TB. Yet knowledge of protective antigens is limited. Analyzing sera from 97 US immigrants at various stages of M. tuberculosis infection, we showed protective in vitro and in vivo efficacy of polyclonal IgG against the M. tuberculosis capsular polysaccharide arabinomannan (AM). Using recently developed glycan arrays, we established that anti-AM IgG induced in natural infection is highly heterogeneous in its binding specificity and differs in both its reactivity to oligosaccharide motifs within AM and its functions in bacillus Calmette-Guérin vaccination and/or in controlled (latent) versus uncontrolled (TB) M. tuberculosis infection. We showed that anti-AM IgG from asymptomatic but not from diseased individuals was protective and provided data suggesting a potential role of IgG2 and specific AM oligosaccharides. Filling a gap in the current knowledge of protective antigens in humans, our data support the key role of the M. tuberculosis surface glycan AM and suggest the importance of targeting specific glycan epitopes within AM in antibody-mediated immunity against TB.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Caroline Blanc
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yanyan Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Elise Ishida
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sarah Singer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jiayong Xu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - John Chan
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jacqueline M Achkar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
7
|
Carboni F, Adamo R. Structure-based glycoconjugate vaccine design: The example of Group B Streptococcus type III capsular polysaccharide. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:23-33. [PMID: 33388125 DOI: 10.1016/j.ddtec.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Microbial surface polysaccharides are important virulence factors and targets for vaccine development. Glycoconjugate vaccines, obtained by covalently linking carbohydrates and proteins, are well established tools for prevention of bacterial infections. Elucidation of the minimal portion involved in the interactions with functional antibodies is of utmost importance for the understanding of their mechanism of induction of protective immune responses and the design of synthetic glycan based vaccines. Typically, this is achieved by combination of different techniques, which include ELISA, glycoarray, Surface Plasmon Resonance in conjunction with approaches for mapping at atomic level the position involved in binding, such as Saturation Transfer NMR and X-ray crystallography. This review provides an overview of the structural studies performed to map glycan epitopes (glycotopes), with focus on the highly complex structure of Group B Streptococcus type III (GBSIII) capsular polysaccharide. Furthermore, it describes the rational process followed to translate the obtained information into the design of a protective glycoconjugate vaccine based on a well-defined synthetic glycan epitope.
Collapse
|
8
|
Structure of a protective epitope reveals the importance of acetylation of Neisseria meningitidis serogroup A capsular polysaccharide. Proc Natl Acad Sci U S A 2020; 117:29795-29802. [PMID: 33158970 PMCID: PMC7703565 DOI: 10.1073/pnas.2011385117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Meningococcal meningitis remains a substantial cause of mortality and morbidity worldwide. Until recently, countries in the African meningitis belt were susceptible to devastating outbreaks, largely attributed to serogroup A Neisseria meningitidis (MenA). Vaccination with glycoconjugates of MenA capsular polysaccharide led to an almost complete elimination of MenA clinical cases. To understand the molecular basis of vaccine-induced protection, we generated a panel of oligosaccharide fragments of different lengths and tested them with polyclonal and monoclonal antibodies by inhibition enzyme-linked immunosorbent assay, surface plasmon resonance, and competitive human serum bactericidal assay, which is a surrogate for protection. The epitope was shown to optimize between three and six repeating units and to be O-acetylated. The molecular interactions between a protective monoclonal antibody and a MenA capsular polysaccharide fragment were further elucidated at the atomic level by saturation transfer difference NMR spectroscopy and X-ray crystallography. The epitope consists of a trisaccharide anchored to the antibody via the O- and N-acetyl moieties through either H-bonding or CH-π interactions. In silico docking showed that 3-O-acetylation of the upstream residue is essential for antibody binding, while O-acetate could be equally accommodated at three and four positions of the other two residues. These results shed light on the mechanism of action of current MenA vaccines and provide a foundation for the rational design of improved therapies.
Collapse
|
9
|
De P, Shi L, Boot C, Ordway D, McNeil M, Chatterjee D. Comparative Structural Study of Terminal Ends of Lipoarabinomannan from Mice Infected Lung Tissues and Urine of a Tuberculosis Positive Patient. ACS Infect Dis 2020; 6:291-301. [PMID: 31762254 DOI: 10.1021/acsinfecdis.9b00355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis lipoarabinomannan (LAM) is a biomarker for active tuberculosis (TB) disease. The presence of LAM in the urine of TB patients, whether HIV positive or negative, has been validated by a gas chromatography/mass spectral method with good specificity (84%) and sensitivity (99%). However, point-of-care (POC) methods to detect TB LAM in urine using immunoassays have poor sensitivity and are limited to only HIV coinfected TB diagnosis. We hypothesized that these disappointing results with the POC methods may be due to the antibodies used in the immunoassays as there could be structural differences between LAM in vivo and LAM in vitro. To address this issue, we infected C3HeB/FeJ mice with M.tb W. Beijing SA161 and purified LAM from the lung. Analysis of these sources of LAM using a panel of existing mAbs revealed differences in epitope patterns. Conventionally, the non-reducing termini of LAM are identified by their release with endoarabinanase. These epitopes correspond to linear tetra-(Ara4), branched hexa-(Ara6) arabinofuranosides, and their mannose-capped versions. We discovered two distinct epitopes. In the first case, it was found that the non-reducing termini of LAM from M.tb strain SA161 are highly succinylated, especially when the LAM was isolated from the mouse lungs. In the second case, it was found that Cellulomonas endoarabinanase digestion of LAM from both SA161 and LAM from a TB+ HIV- patient's urine yielded epitopes based on 5 arabinoses as major components and a profound lack of Ara6. The epitopes based on 5 arabinoses from M.tb SA161 and from the LAM in human urine must result from underlying structural and thus epitope differences. These results suggest approaches to develop specific antibodies for POC tests for LAM in the urine of suspected TB patients.
Collapse
Affiliation(s)
- Prithwiraj De
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Libin Shi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Claudia Boot
- Central Instrument Facility, Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Michael McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| |
Collapse
|
10
|
Burygin GL, Abronina PI, Podvalnyy NM, Staroverov SA, Kononov LO, Dykman LA. Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:480-493. [PMID: 32274287 PMCID: PMC7113550 DOI: 10.3762/bjnano.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
A number of bacterial glycans are specific markers for the detection and the serological identification of microorganisms and are also widely used as antigenic components of vaccines. The use of gold nanoparticles as carriers for glyco-epitopes is becoming an important alternative to the traditional conjugation with proteins and synthetic polymers. In this study, we aimed to prepare and evaluate in vivo glyco-gold nanoparticles (glyco-GNPs) bearing the terminal-branched hexaarabinofuranoside fragment (Ara6) of arabinan domains of lipoarabinomannan and arabinogalactan, which are principal polysaccharides of the cell wall of Mycobacterium tuberculosis, the causative agent of tuberculosis. In particular, we were interested whether the antibodies generated against Ara6-GNPs would recognize the natural saccharides on the cell surface of different mycobacterial strains. Two synthetic Ara6 glycosides with amino-functionalized spacer aglycons differing in length and hydrophilicity were directly conjugated with spherical gold nanoparticles (d = 15 nm) to give two sets of glyco-GNPs, which were used for the immunization of rabbits. Dot assays revealed cross-reactions between the two obtained antisera with the hexaarabinofuranoside and the 2-aminoethyl aglycon used for the preparation of glyco-GNPs. Both antisera contained high titers of antibodies specific for Mycobacteria as shown by enzyme-linked immunosorbent assay using M. bovis and M. smegmatis cells as antigens while there was only a weak response to M. phlei cells and no interaction with E. coli cells. The results obtained suggest that glyco-GNPs are promising agents for the generation of anti-mycobacterial antibodies.
Collapse
Affiliation(s)
- Gennady L Burygin
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Department of Horticulture, Breeding, and Genetics, Vavilov Saratov State Agrarian University, Teatralnaya Ploshchad 1, Saratov, 410012, Russia
| | - Polina I Abronina
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Nikita M Podvalnyy
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Sergey A Staroverov
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| | - Leonid O Kononov
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudnyi, Moscow Region, 141701, Russia
| | - Lev A Dykman
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| |
Collapse
|
11
|
Antibody recognition of bacterial surfaces and extracellular polysaccharides. Curr Opin Struct Biol 2019; 62:48-55. [PMID: 31874385 DOI: 10.1016/j.sbi.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023]
Abstract
Because of the ongoing increase in antibiotic-resistant microbes, new strategies such as therapeutic antibodies and effective vaccines are required. Bacterial carbohydrates are known to be particularly antigenic, and several monoclonal antibodies that target bacterial polysaccharides have been generated, with more in current development. This review examines the known 3D crystal structures of anti-bacterial antibodies and the structural basis for carbohydrate recognition and explores the potential mechanisms for antibody-dependent bacterial cell death. Understanding the key interactions between an antibody and its polysaccharide target on the surface of bacteria or in biofilms can provide essential information for the development of more specific and effective antibody therapeutics as well as carbohydrate-based vaccines.
Collapse
|
12
|
Chou Y, Kitova EN, Joe M, Brunton R, Lowary TL, Klassen JS, Derda R. Genetically-encoded fragment-based discovery (GE-FBD) of glycopeptide ligands with differential selectivity for antibodies related to mycobacterial infections. Org Biomol Chem 2019; 16:223-227. [PMID: 29255817 DOI: 10.1039/c7ob02783d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Accurate identification of tuberculosis (TB), caused by Mycobacterium tuberculosis, is important for global disease management. Point-of-care serological tests may improve TB diagnosis; however, specificities of available serodiagnostics are sub-optimal. We employed genetically encoded fragment-based discovery (GE-FBD) to select ligands for antibodies directed against the mycobacterial cell wall component lipoarabinomannan (LAM), a potent antigen. GE-FBD employed a phage displayed library of 108 heptapeptides, chemically modified with an arabinofuranosyl hexasaccharide fragment of LAM (Ara6), and the anti-LAM antibody CS-35 as a bait. The selection gave rise to glycopeptides with an enhanced affinity and selectivity for CS-35 but not for 906.4321 antibody, both of which bind to Ara6 with a comparable affinity. Multivalent assays incorporating the discovered ligands Ara6-ANSSFAP, Ara6-DAHATLR and Ara6-TTYVVNP exhibited up to 19-fold discrimination between CS-35 and 906.4321. The use of the Ara6 antigen alone failed to distinguish these antibodies. Thus, GE-FBD gives rise to ligands that differentiate monoclonal antibodies with enhanced specificity. This technology could facilitate the development of effective point-of-care serological tests for mycobacterial and other infections.
Collapse
Affiliation(s)
- Ying Chou
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | | | | | | | | | | | | |
Collapse
|
13
|
Paris L, Magni R, Zaidi F, Araujo R, Saini N, Harpole M, Coronel J, Kirwan DE, Steinberg H, Gilman RH, Petricoin EF, Nisini R, Luchini A, Liotta L. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med 2018; 9:9/420/eaal2807. [PMID: 29237757 PMCID: PMC6037412 DOI: 10.1126/scitranslmed.aal2807] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/25/2017] [Accepted: 10/30/2017] [Indexed: 11/12/2022]
Abstract
An accurate urine test for pulmonary tuberculosis (TB), affecting 9.6 million patients worldwide, is critically needed for surveillance and treatment management. Past attempts failed to reliably detect the mycobacterial glycan antigen lipoarabinomannan (LAM), a marker of active TB, in HIV-negative, pulmonary TB–infected patients’ urine (85% of 9.6 million patients). We apply a copper complex dye within a hydrogel nanocage that captures LAM with very high affinity, displacing interfering urine proteins. The technology was applied to study pretreatment urine from 48 Peruvian patients, all negative for HIV, with microbiologically confirmed active pulmonary TB. LAM was quantitatively measured in the urine with a sensitivity of >95%and a specificity of >80% (n = 101) in a concentration range of 14 to 2000 picograms per milliliter, as compared to non-TB, healthy and diseased, age-matched controls (evaluated by receiver operating characteristic analysis; area under the curve, 0.95; 95% confidence interval, 0.9005 to 0.9957). Urinary LAM was elevated in patients with a higher mycobacterial burden (n = 42), a higher proportion of weight loss (n = 37), or cough (n = 50). The technology can be configured in a variety of formats to detect a panel of previously undetectable very-low-abundance TB urinary analytes. Eight of nine patients who were smear-negative and culture-positive for TB tested positive for urinary LAM. This technology has broad implications for pulmonary TB screening, transmission control, and treatment management for HIV-negative patients.
Collapse
Affiliation(s)
- Luisa Paris
- George Mason University, Manassas, VA 20110, USA
| | - Ruben Magni
- George Mason University, Manassas, VA 20110, USA
| | - Fatima Zaidi
- George Mason University, Manassas, VA 20110, USA
| | - Robyn Araujo
- Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Neal Saini
- George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | - Lance Liotta
- George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
14
|
Choudhary A, Patel D, Honnen W, Lai Z, Prattipati RS, Zheng RB, Hsueh YC, Gennaro ML, Lardizabal A, Restrepo BI, Garcia-Viveros M, Joe M, Bai Y, Shen K, Sahloul K, Spencer JS, Chatterjee D, Broger T, Lowary TL, Pinter A. Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of Mycobacterium tuberculosis, and Complexity of Antibody Specificities toward This Antigen. THE JOURNAL OF IMMUNOLOGY 2018; 200:3053-3066. [PMID: 29610143 PMCID: PMC5911930 DOI: 10.4049/jimmunol.1701673] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Lipoarabinomannan (LAM), the major antigenic glycolipid of Mycobacterium tuberculosis, is an important immunodiagnostic target for detecting tuberculosis (TB) infection in HIV-1–coinfected patients, and is believed to mediate a number of functions that promote infection and disease development. To probe the human humoral response against LAM during TB infection, several novel LAM-specific human mAbs were molecularly cloned from memory B cells isolated from infected patients and grown in vitro. The fine epitope specificities of these Abs, along with those of a panel of previously described murine and phage-derived LAM-specific mAbs, were mapped using binding assays against LAM Ags from several mycobacterial species and a panel of synthetic glycans and glycoconjugates that represented diverse carbohydrate structures present in LAM. Multiple reactivity patterns were seen that differed in their specificity for LAM from different species, as well as in their dependence on arabinofuranoside branching and nature of capping at the nonreducing termini. Competition studies with mAbs and soluble glycans further defined these epitope specificities and guided the design of highly sensitive immunodetection assays capable of detecting LAM in urine of TB patients, even in the absence of HIV-1 coinfection. These results highlighted the complexity of the antigenic structure of LAM and the diversity of the natural Ab response against this target. The information and novel reagents described in this study will allow further optimization of diagnostic assays for LAM and may facilitate the development of potential immunotherapeutic approaches to inhibit the functional activities of specific structural motifs in LAM.
Collapse
Affiliation(s)
- Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Deendayal Patel
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Zhong Lai
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Raja Sekhar Prattipati
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Ruixiang Blake Zheng
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ying-Chao Hsueh
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Alfred Lardizabal
- Global Tuberculosis Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Blanca I Restrepo
- University of Texas Health Science Center at Houston, School of Public Health at Brownsville, Brownsville, TX 78520
| | | | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yu Bai
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ke Shen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Kamar Sahloul
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523; and
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523; and
| | - Tobias Broger
- Foundation for Innovative New Diagnostics, Geneva 1202, Switzerland
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103;
| |
Collapse
|
15
|
Soliman C, Walduck AK, Yuriev E, Richards JS, Cywes-Bentley C, Pier GB, Ramsland PA. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly- N-acetylglucosamine. J Biol Chem 2018; 293:5079-5089. [PMID: 29449370 DOI: 10.1074/jbc.ra117.001170] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Indexed: 01/19/2023] Open
Abstract
In response to the widespread emergence of antibiotic-resistant microbes, new therapeutic agents are required for many human pathogens. A non-mammalian polysaccharide, poly-N-acetyl-d-glucosamine (PNAG), is produced by bacteria, fungi, and protozoan parasites. Antibodies that bind to PNAG and its deacetylated form (dPNAG) exhibit promising in vitro and in vivo activities against many microbes. A human IgG1 mAb (F598) that binds both PNAG and dPNAG has opsonic and protective activities against multiple microbial pathogens and is undergoing preclinical and clinical assessments as a broad-spectrum antimicrobial therapy. Here, to understand how F598 targets PNAG, we determined crystal structures of the unliganded F598 antigen-binding fragment (Fab) and its complexes with N-acetyl-d-glucosamine (GlcNAc) and a PNAG oligosaccharide. We found that F598 recognizes PNAG through a large groove-shaped binding site that traverses the entire light- and heavy-chain interface and accommodates at least five GlcNAc residues. The Fab-GlcNAc complex revealed a deep binding pocket in which the monosaccharide and a core GlcNAc of the oligosaccharide were almost identically positioned, suggesting an anchored binding mechanism of PNAG by F598. The Fab used in our structural analyses retained binding to PNAG on the surface of an antibiotic-resistant, biofilm-forming strain of Staphylococcus aureus Additionally, a model of intact F598 binding to two pentasaccharide epitopes indicates that the Fab arms can span at least 40 GlcNAc residues on an extended PNAG chain. Our findings unravel the structural basis for F598 binding to PNAG on microbial surfaces and biofilms.
Collapse
Affiliation(s)
- Caroline Soliman
- From the School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia
| | - Anna K Walduck
- From the School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jack S Richards
- Disease Elimination Program, Burnet Institute, Melbourne, Victoria 3004, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria 3052, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Infectious Diseases, Central Clinical School, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts 02115
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts 02115
| | - Paul A Ramsland
- From the School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia, .,Disease Elimination Program, Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Immunology, Central Clinical School, Monash University, Victoria 3004, Melbourne, Australia, and.,Department of Surgery Austin Health, University of Melbourne, Heidelberg, Victoria 3084
| |
Collapse
|
16
|
Zheng RB, Jégouzo SAF, Joe M, Bai Y, Tran HA, Shen K, Saupe J, Xia L, Ahmed MF, Liu YH, Patil PS, Tripathi A, Hung SC, Taylor ME, Lowary TL, Drickamer K. Insights into Interactions of Mycobacteria with the Host Innate Immune System from a Novel Array of Synthetic Mycobacterial Glycans. ACS Chem Biol 2017; 12:2990-3002. [PMID: 29048873 PMCID: PMC5735379 DOI: 10.1021/acschembio.7b00797] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
An
array of homogeneous glycans representing all the major carbohydrate
structures present in the cell wall of the human pathogen Mycobacterium tuberculosis and other mycobacteria has been
probed with a panel of glycan-binding receptors expressed on cells
of the mammalian innate immune system. The results provide an overview
of interactions between mycobacterial glycans and receptors that mediate
uptake and survival in macrophages, dendritic cells, and sinusoidal
endothelial cells. A subset of the wide variety of glycan structures
present on mycobacterial surfaces interact with cells of the innate
immune system through the receptors tested. Endocytic receptors, including
the mannose receptor, DC-SIGN, langerin, and DC-SIGNR (L-SIGN), interact
predominantly with mannose-containing caps found on the mycobacterial
polysaccharide lipoarabinomannan. Some of these receptors also interact
with phosphatidyl-myo-inositol mannosides and mannose-containing
phenolic glycolipids. Many glycans are ligands for overlapping sets
of receptors, suggesting multiple, redundant routes by which mycobacteria
can enter cells. Receptors with signaling capability interact with
two distinct sets of mycobacterial glycans: targets for dectin-2 overlap
with ligands for the mannose-binding endocytic receptors, while mincle
binds exclusively to trehalose-containing structures such as trehalose
dimycolate. None of the receptors surveyed bind furanose residues,
which often form part of the epitopes recognized by antibodies to
mycobacteria. Thus, the innate and adaptive immune systems can target
different sets of mycobacterial glycans. This array, the first of
its kind, represents an important new tool for probing, at a molecular
level, biological roles of a broad range of mycobacterial glycans,
a task that has not previously been possible.
Collapse
Affiliation(s)
- Ruixiang Blake Zheng
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Maju Joe
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yu Bai
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Huu-Anh Tran
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ke Shen
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Jörn Saupe
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Li Xia
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Md. Faiaz Ahmed
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Yu-Hsuan Liu
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Ashish Tripathi
- Genomics
Research Centre, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Shang-Cheng Hung
- Genomics
Research Centre, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Maureen E. Taylor
- Department
of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Todd L. Lowary
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Kurt Drickamer
- Department
of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Prados-Rosales R, Carreño L, Cheng T, Blanc C, Weinrick B, Malek A, Lowary TL, Baena A, Joe M, Bai Y, Kalscheuer R, Batista-Gonzalez A, Saavedra NA, Sampedro L, Tomás J, Anguita J, Hung SC, Tripathi A, Xu J, Glatman-Freedman A, Jacobs WR, Chan J, Porcelli SA, Achkar JM, Casadevall A. Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog 2017; 13:e1006250. [PMID: 28278283 PMCID: PMC5360349 DOI: 10.1371/journal.ppat.1006250] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/21/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
Currently there are a dozen or so of new vaccine candidates in clinical trials for prevention of tuberculosis (TB) and each formulation attempts to elicit protection by enhancement of cell-mediated immunity (CMI). In contrast, most approved vaccines against other bacterial pathogens are believed to mediate protection by eliciting antibody responses. However, it has been difficult to apply this formula to TB because of the difficulty in reliably eliciting protective antibodies. Here, we developed capsular polysaccharide conjugates by linking mycobacterial capsular arabinomannan (AM) to either Mtb Ag85b or B. anthracis protective antigen (PA). Further, we studied their immunogenicity by ELISA and AM glycan microarrays and protection efficacy in mice. Immunization with either Abg85b-AM or PA-AM conjugates elicited an AM-specific antibody response in mice. AM binding antibodies stimulated transcriptional changes in Mtb. Sera from AM conjugate immunized mice reacted against a broad spectrum of AM structural variants and specifically recognized arabinan fragments. Conjugate vaccine immunized mice infected with Mtb had lower bacterial numbers in lungs and spleen, and lived longer than control mice. These findings provide additional evidence that humoral immunity can contribute to protection against Mtb. Vaccine design in the TB field has been driven by the imperative of attempting to elicit strong cell-mediated responses. However, in recent decades evidence has accumulated that humoral immunity can protect against many intracellular pathogens through numerous mechanisms. In this work, we demonstrate that immunization with mycobacterial capsular arabinomannan (AM) conjugates elicited responses that contributed to protection against Mtb infection. We developed two different conjugates including capsular AM linked to the Mtb related protein Ag85b or the Mtb unrelated PA from B. anthracis and found that immunization with AM conjugates elicited antibody populations with different specificities. These surface-specific antibodies could directly modify the transcriptional profile and metabolism of mycobacteria. In addition, we observed a prolonged survival and a reduction in bacterial numbers in lungs and spleen in mice immunized with Ag85b-AM conjugates after infection with Mtb and that the presence of AM-binding antibodies was associated with modest prolongation in survival and a marked reduction in mycobacterial dissemination. Finally, we show that AM is antigenically variable and could potentially form the basis for a serological characterization of mycobacteria based on serotypes.
Collapse
Affiliation(s)
- Rafael Prados-Rosales
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- * E-mail:
| | - Leandro Carreño
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Millennium Institute on Immunology and Immunotherapy, Programa Disciplinario de Inmunologia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tingting Cheng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Caroline Blanc
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Brian Weinrick
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Adel Malek
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Andres Baena
- Grupo de Inmunologia Celular e inmunogenetica, Universidad de Antioquia, Medellin, Colombia
| | - Maju Joe
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Yu Bai
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning-Lemieux Chemistry Center, Edmonton, Alberta, Canada
| | - Rainer Kalscheuer
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Ana Batista-Gonzalez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Noemi A. Saavedra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | | | - Julen Tomás
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Juan Anguita
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Section 2, Nankang, Taipei, Taiwan
| | - Ashish Tripathi
- Genomics Research Center, Academia Sinica, Section 2, Nankang, Taipei, Taiwan
| | - Jiayong Xu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Aharona Glatman-Freedman
- Infectious Diseases Unit, Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Israel
- Department of Pediatrics, and Department of Family and Community Medicine, New York Medical College, Valhalla, NY, United States of America
| | - Williams R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - John Chan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Jacqueline M. Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY, United States of America
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx NY, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
| |
Collapse
|
18
|
Jankute M, Alderwick LJ, Noack S, Veerapen N, Nigou J, Besra GS. Disruption of Mycobacterial AftB Results in Complete Loss of Terminal β(1 → 2) Arabinofuranose Residues of Lipoarabinomannan. ACS Chem Biol 2017; 12:183-190. [PMID: 28033704 PMCID: PMC5259755 DOI: 10.1021/acschembio.6b00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Lipoarabinomannan
(LAM) and arabinogalactan (AG) are the two major
mycobacterial cell wall (lipo)polysaccharides, which contain a structurally
similar arabinan domain that is highly branched and assembled in a
stepwise fashion by variety of arabinofuranosyltransferases (ArafT). In addition to playing an essential role in mycobacterial
physiology, LAM and its biochemical precursor lipomannan possess potent
immunomodulatory activities that affect the host immune response.
In the search of additional mycobacterial ArafTs
that participate in the synthesis of the arabinan segment of LAM,
we disrupted aftB (MSMEG_6400) in Mycobacterium smegmatis. The deletion of chromosomal aftB locus could only be achieved in the presence of a rescue
plasmid carrying a functional copy of aftB, strongly
suggesting that it is essential for the viability of M. smegmatis. Isolation and detailed structural characterization of a LAM molecule
derived from the conditional mutant deficient in AftB revealed the
absence of terminal β(1 → 2)-linked arabinofuranosyl
residues. Furthermore, we demonstrated that truncated LAM displays
proinflammatory activity, which is due to its ability to activate
Toll-like receptor 2. All together, our results indicate that AftB
is an essential mycobacterial ArafT that plays a
role in the synthesis of the arabinan domain of LAM.
Collapse
Affiliation(s)
- Monika Jankute
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Luke J. Alderwick
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Stephan Noack
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Natacha Veerapen
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Jérôme Nigou
- Institut
de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Gurdyal S. Besra
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
19
|
Abstract
![]()
The cell surface (or cell wall) of bacteria is coated with carbohydrate
(or glycan) structures that play a number of important roles. These
include providing structural integrity, serving as a permeability
barrier to extracellular compounds (e.g., drugs) and modulating the
immune system of the host. Of interest to this Account is the cell
wall structure of mycobacteria. There are a host of different mycobacterial
species, some of which cause human disease. The most well-known is Mycobacterium tuberculosis, the causative agent of tuberculosis.
The mycobacterial cell wall is characterized by the presence of unusual
carbohydrate structures that fulfill the roles described above. However,
in many cases, a molecular-level understanding of how mycobacterial
cell wall glycans mediate these processes is lacking. Inspired
by a seminar he heard as a postdoctoral fellow, the author
began his independent research program with a focus on the chemical
synthesis of mycobacterial glycans. The goals were not only to develop
synthetic approaches to these unique structures but also to provide
molecules that could be used to probe their biological function. Initial
work addressed the preparation of fragments of two key polysaccharides,
arabinogalactan and lipoarabinomannan, which contain large numbers
of sugar residues in the furanose (five-membered) ring form. At the
time these investigations began, there were few methods reported for
the synthesis of oligosaccharides containing furanose rings. Thus,
early in the program, a major area of interest was methodology development,
particularly for the preparation of 1,2-cis-furanosides.
To solve this challenge, a range of conformationally restricted donors
have been developed, both in the author’s group and others,
which provide 1,2-cis-furanosidic linkages with high
stereoselectivity. These investigations were followed by application
of the developed
methods to the synthesis of a range of target molecules containing
arabinofuranose and galactofuranose residues. These molecules have
now found application in biochemical, immunological, and structural
biology investigations, which have shed light on their biosynthesis
and how these motifs are recognized by both the innate and adaptive
immune systems. More recently, attention has been directed toward
the synthesis
of another class of immunologically active mycobacterial cell wall
glycans, the extractable glycolipids. In this case, efforts have been
primarily on phenolic glycolipids, and the compounds synthesized have
been used to evaluate their ability to modulate cytokine release.
Over the past 20 years, the use of chemical synthesis to provide increasingly
complex glycan structures has provided significant benefit to the
burgeoning field of mycobacterial glycobiology. Through the efforts
of groups from around the globe, access to these compounds is now
possible via relatively straightforward methods. As the pool of mycobacterial
glycans continues to grow, so too will our understanding of their
role in disease, which will undoubtedly lead to new strategies to
prevent or treat mycobacterial infections.
Collapse
Affiliation(s)
- Todd L. Lowary
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Gunning−Lemieux
Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
20
|
Abstract
The cell surface (or cell wall) of bacteria is coated with carbohydrate (or glycan) structures that play a number of important roles. These include providing structural integrity, serving as a permeability barrier to extracellular compounds (e.g., drugs) and modulating the immune system of the host. Of interest to this Account is the cell wall structure of mycobacteria. There are a host of different mycobacterial species, some of which cause human disease. The most well-known is Mycobacterium tuberculosis, the causative agent of tuberculosis. The mycobacterial cell wall is characterized by the presence of unusual carbohydrate structures that fulfill the roles described above. However, in many cases, a molecular-level understanding of how mycobacterial cell wall glycans mediate these processes is lacking. Inspired by a seminar he heard as a postdoctoral fellow, the author began his independent research program with a focus on the chemical synthesis of mycobacterial glycans. The goals were not only to develop synthetic approaches to these unique structures but also to provide molecules that could be used to probe their biological function. Initial work addressed the preparation of fragments of two key polysaccharides, arabinogalactan and lipoarabinomannan, which contain large numbers of sugar residues in the furanose (five-membered) ring form. At the time these investigations began, there were few methods reported for the synthesis of oligosaccharides containing furanose rings. Thus, early in the program, a major area of interest was methodology development, particularly for the preparation of 1,2-cis-furanosides. To solve this challenge, a range of conformationally restricted donors have been developed, both in the author's group and others, which provide 1,2-cis-furanosidic linkages with high stereoselectivity. These investigations were followed by application of the developed methods to the synthesis of a range of target molecules containing arabinofuranose and galactofuranose residues. These molecules have now found application in biochemical, immunological, and structural biology investigations, which have shed light on their biosynthesis and how these motifs are recognized by both the innate and adaptive immune systems. More recently, attention has been directed toward the synthesis of another class of immunologically active mycobacterial cell wall glycans, the extractable glycolipids. In this case, efforts have been primarily on phenolic glycolipids, and the compounds synthesized have been used to evaluate their ability to modulate cytokine release. Over the past 20 years, the use of chemical synthesis to provide increasingly complex glycan structures has provided significant benefit to the burgeoning field of mycobacterial glycobiology. Through the efforts of groups from around the globe, access to these compounds is now possible via relatively straightforward methods. As the pool of mycobacterial glycans continues to grow, so too will our understanding of their role in disease, which will undoubtedly lead to new strategies to prevent or treat mycobacterial infections.
Collapse
Affiliation(s)
- Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , Gunning-Lemieux Chemistry Centre, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
21
|
Chen T, Blanc C, Eder AZ, Prados-Rosales R, Souza ACO, Kim RS, Glatman-Freedman A, Joe M, Bai Y, Lowary TL, Tanner R, Brennan MJ, Fletcher HA, McShane H, Casadevall A, Achkar JM. Association of Human Antibodies to Arabinomannan With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth Reduction. J Infect Dis 2016; 214:300-10. [PMID: 27056953 PMCID: PMC4918826 DOI: 10.1093/infdis/jiw141] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/30/2016] [Indexed: 01/02/2023] Open
Abstract
Background. The relevance of antibodies (Abs) in the defense against Mycobacterium tuberculosis infection remains uncertain. We investigated the role of Abs to the mycobacterial capsular polysaccharide arabinomannan (AM) and its oligosaccharide (OS) fragments in humans. Methods. Sera obtained from 29 healthy adults before and after primary or secondary bacillus Calmette-Guerin (BCG) vaccination were assessed for Ab responses to AM via enzyme-linked immunosorbent assays, and to AM OS epitopes via novel glycan microarrays. Effects of prevaccination and postvaccination sera on BCG phagocytosis and intracellular survival were assessed in human macrophages. Results. Immunoglobulin G (IgG) responses to AM increased significantly 4–8 weeks after vaccination (P < .01), and sera were able to opsonize BCG and M. tuberculosis grown in both the absence and the presence of detergent. Phagocytosis and intracellular growth inhibition were significantly enhanced when BCG was opsonized with postvaccination sera (P < .01), and these enhancements correlated significantly with IgG titers to AM (P < .05), particularly with reactivity to 3 AM OS epitopes (P < .05). Furthermore, increased phagolysosomal fusion was observed with postvaccination sera. Conclusions. Our results provide further evidence for a role of Ab-mediated immunity to tuberculosis and suggest that IgG to AM, especially to some of its OS epitopes, could contribute to the defense against mycobacterial infection in humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Aharona Glatman-Freedman
- Department of Pediatrics Department of Family and Community Medicine, New York Medical College, Valhalla, New York Infectious Diseases Unit, Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer
| | - Maju Joe
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Yu Bai
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Rachel Tanner
- Jenner Institute, University of Oxford, United Kingdom
| | | | | | - Helen McShane
- Jenner Institute, University of Oxford, United Kingdom
| | - Arturo Casadevall
- Department of Medicine Department of Microbiology and Immunology Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
22
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
23
|
Haji-Ghassemi O, Blackler RJ, Martin Young N, Evans SV. Antibody recognition of carbohydrate epitopes†. Glycobiology 2015; 25:920-52. [PMID: 26033938 DOI: 10.1093/glycob/cwv037] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/24/2015] [Indexed: 12/14/2022] Open
Abstract
Carbohydrate antigens are valuable as components of vaccines for bacterial infectious agents and human immunodeficiency virus (HIV), and for generating immunotherapeutics against cancer. The crystal structures of anti-carbohydrate antibodies in complex with antigen reveal the key features of antigen recognition and provide information that can guide the design of vaccines, particularly synthetic ones. This review summarizes structural features of anti-carbohydrate antibodies to over 20 antigens, based on six categories of glyco-antigen: (i) the glycan shield of HIV glycoproteins; (ii) tumor epitopes; (iii) glycolipids and blood group A antigen; (iv) internal epitopes of bacterial lipopolysaccharides; (v) terminal epitopes on polysaccharides and oligosaccharides, including a group of antibodies to Kdo-containing Chlamydia epitopes; and (vi) linear homopolysaccharides.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| | - N Martin Young
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON, Canada K1A 0R6
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8P 3P6
| |
Collapse
|
24
|
Wang SK, Cheng CM. Glycan-based diagnostic devices: current progress, challenges and perspectives. Chem Commun (Camb) 2015; 51:16750-62. [DOI: 10.1039/c5cc06876b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of glycan-based diagnostic devices is illustrated with recent examples from both carbohydrate recognition and device design aspects.
Collapse
Affiliation(s)
- Sheng-Kai Wang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering
- National Tsing Hua University
- Taiwan
| |
Collapse
|
25
|
Lak P, Makeneni S, Woods RJ, Lowary TL. Specificity of furanoside-protein recognition through antibody engineering and molecular modeling. Chemistry 2014; 21:1138-48. [PMID: 25413161 DOI: 10.1002/chem.201405259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Indexed: 01/06/2023]
Abstract
Recognition of furanosides (five-membered ring sugars) by proteins plays important roles in host-pathogen interactions. In comparison to their six-membered ring counterparts (pyranosides), detailed studies of the molecular motifs involved in the recognition of furanosides by proteins are scarce. Here the first in-depth molecular characterization of a furanoside-protein interaction system, between an antibody (CS-35) and cell wall polysaccharides of mycobacteria, including the organism responsible for tuberculosis is reported. The approach was centered on the generation of the single chain variable fragment of CS-35 and a rational library of its mutants. Investigating the interaction from various aspects revealed the structural motifs that govern the interaction, as well as the relative contribution of molecular forces involved in the recognition. The specificity of the recognition was shown to originate mainly from multiple CH-π interactions and, to a lesser degree, hydrogen bonds formed in critical distances and geometries.
Collapse
Affiliation(s)
- Parnian Lak
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2 (Canada)
| | | | | | | |
Collapse
|
26
|
Farelli JD, Galvin BD, Li Z, Liu C, Aono M, Garland M, Hallett OE, Causey TB, Ali-Reynolds A, Saltzberg DJ, Carlow CKS, Dunaway-Mariano D, Allen KN. Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs. PLoS Pathog 2014; 10:e1004245. [PMID: 24992307 PMCID: PMC4081830 DOI: 10.1371/journal.ppat.1004245] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022] Open
Abstract
Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s) of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible. Here, we describe the structure of trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. This enzyme is essential to the organism; deletion of the gene encoding T6PP results in toxic accumulation of trehalose 6-phosphate. Structure-guided mutagenesis coupled with kinetic analyses revealed residues important for binding and catalysis. The model for substrate binding suggests a binding mode in which shape complementarity plays a major role. Conservation of binding residues among T6PP orthologs present in pathogenic nematodes and bacteria favors T6PP as a suitable target for broad-range anthelmintic and antibacterial drug design.
Collapse
Affiliation(s)
- Jeremiah D. Farelli
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| | - Brendan D. Galvin
- New England Biolabs, Division of Parasitology, Ipswich, Massachusetts, United States of America
| | - Zhiru Li
- New England Biolabs, Division of Parasitology, Ipswich, Massachusetts, United States of America
| | - Chunliang Liu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Miyuki Aono
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| | - Megan Garland
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| | - Olivia E. Hallett
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| | - Thomas B. Causey
- New England Biolabs, Division of Parasitology, Ipswich, Massachusetts, United States of America
| | - Alana Ali-Reynolds
- New England Biolabs, Division of Parasitology, Ipswich, Massachusetts, United States of America
| | - Daniel J. Saltzberg
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| | - Clotilde K. S. Carlow
- New England Biolabs, Division of Parasitology, Ipswich, Massachusetts, United States of America
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail: (DDM); (KNA)
| | - Karen N. Allen
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (DDM); (KNA)
| |
Collapse
|
27
|
Haji-Ghassemi O, Müller-Loennies S, Saldova R, Muniyappa M, Brade L, Rudd PM, Harvey DJ, Kosma P, Brade H, Evans SV. Groove-type recognition of chlamydiaceae-specific lipopolysaccharide antigen by a family of antibodies possessing an unusual variable heavy chain N-linked glycan. J Biol Chem 2014; 289:16644-61. [PMID: 24682362 DOI: 10.1074/jbc.m113.528224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of the antigen binding fragment of mAb S25-26, determined to 1.95 Å resolution in complex with the Chlamydiaceae family-specific trisaccharide antigen Kdo(2→8)Kdo(2→4)Kdo (Kdo = 3-deoxy-α-d-manno-oct-2-ulopyranosonic acid), displays a germ-line-coded paratope that differs significantly from previously characterized Chlamydiaceae-specific mAbs despite being raised against the identical immunogen. Unlike the terminal Kdo recognition pocket that promotes cross-reactivity in S25-2-type antibodies, S25-26 and the closely related S25-23 utilize a groove composed of germ-line residues to recognize the entire trisaccharide antigen and so confer strict specificity. Interest in S25-23 was sparked by its rare high μm affinity and strict specificity for the family-specific trisaccharide antigen; however, only the related antibody S25-26 proved amenable to crystallization. The structures of three unliganded forms of S25-26 have a labile complementary-determining region H3 adjacent to significant glycosylation of the variable heavy chain on asparagine 85 in Framework Region 3. Analysis of the glycan reveals a heterogeneous mixture with a common root structure that contains an unusually high number of terminal αGal-Gal moieties. One of the few reported structures of glycosylated mAbs containing these epitopes is the therapeutic antibody Cetuximab; however, unlike Cetuximab, one of the unliganded structures in S25-26 shows significant order in the glycan with appropriate electron density for nine residues. The elucidation of the three-dimensional structure of an αGal-containing N-linked glycan on a mAb variable heavy chain has potential clinical interest, as it has been implicated in allergic response in patients receiving therapeutic antibodies.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada
| | - Sven Müller-Loennies
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany,
| | - Radka Saldova
- GlycoScience Group, the National Institute for Bioprocessing Research and Training (NIBRT), Mount Merrion, Blackrock, Dublin 4, Ireland
| | - Mohankumar Muniyappa
- GlycoScience Group, the National Institute for Bioprocessing Research and Training (NIBRT), Mount Merrion, Blackrock, Dublin 4, Ireland
| | - Lore Brade
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany
| | - Pauline M Rudd
- GlycoScience Group, the National Institute for Bioprocessing Research and Training (NIBRT), Mount Merrion, Blackrock, Dublin 4, Ireland
| | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Paul Kosma
- University of Natural Resources and Life Sciences, Vienna, Austria, and
| | - Helmut Brade
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, Borstel D-23845, Germany
| | - Stephen V Evans
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 3P6, Canada,
| |
Collapse
|
28
|
Bundle DR, Tam PH, Tran HA, Paszkiewicz E, Cartmell J, Sadowska JM, Sarkar S, Joe M, Kitov PI. Oligosaccharides and peptide displayed on an amphiphilic polymer enable solid phase assay of hapten specific antibodies. Bioconjug Chem 2014; 25:685-97. [PMID: 24601638 DOI: 10.1021/bc400486w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copovidone, a copolymer of vinyl acetate and N-vinyl-2-pyrrolidone, was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, and after deacetylation the polymer was functionalized by introduction of amino, azide, and alkyne pendant groups to allow attachment of glycans and peptide. Candida albicans β-mannan trisaccharides 1 and 2 and M. tuberculosis arabinan hexasaccharide 3 with appropriate tethers were conjugated to the polymers by squarate or click chemistry. C. albicans T-cell peptide 4 bearing a C-terminal ε-azidolysine was also conjugated to copovidone by click chemistry. The resulting conjugates provide convenient non-protein-based antigens that are readily adsorbed on ELISA plates, and display excellent characteristics for assay of antibody binding to the haptenic group of interest. Copovidone and BSA glycoconjugates exhibited similar adsorption characteristics when used to coat ELISA plates, and both conjugates were optimal when used as coating solutions at low nanogram/mL concentrations. Provided that the copovidone conjugated glycan is stable to acid, assay plates can be easily processed for reuse at least three times without detectable variation or degradation in ELISA readout.
Collapse
Affiliation(s)
- David R Bundle
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The Evolution of a Glycoconjugate Vaccine for Candida albicans. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Asensio JL, Ardá A, Cañada FJ, Jiménez-Barbero J. Carbohydrate-aromatic interactions. Acc Chem Res 2013; 46:946-54. [PMID: 22704792 DOI: 10.1021/ar300024d] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recognition of saccharides by proteins has far reaching implications in biology, technology, and drug design. Within the past two decades, researchers have directed considerable effort toward a detailed understanding of these processes. Early crystallographic studies revealed, not surprisingly, that hydrogen-bonding interactions are usually involved in carbohydrate recognition. But less expectedly, researchers observed that despite the highly hydrophilic character of most sugars, aromatic rings of the receptor often play an important role in carbohydrate recognition. With further research, scientists now accept that noncovalent interactions mediated by aromatic rings are pivotal to sugar binding. For example, aromatic residues often stack against the faces of sugar pyranose rings in complexes between proteins and carbohydrates. Such contacts typically involve two or three CH groups of the pyranoses and the π electron density of the aromatic ring (called CH/π bonds), and these interactions can exhibit a variety of geometries, with either parallel or nonparallel arrangements of the aromatic and sugar units. In this Account, we provide an overview of the structural and thermodynamic features of protein-carbohydrate interactions, theoretical and experimental efforts to understand stacking in these complexes, and the implications of this understanding for chemical biology. The interaction energy between different aromatic rings and simple monosaccharides based on quantum mechanical calculations in the gas phase ranges from 3 to 6 kcal/mol range. Experimental values measured in water are somewhat smaller, approximately 1.5 kcal/mol for each interaction between a monosaccharide and an aromatic ring. This difference illustrates the dependence of these intermolecular interactions on their context and shows that this stacking can be modulated by entropic and solvent effects. Despite their relatively modest influence on the stability of carbohydrate/protein complexes, the aromatic platforms play a major role in determining the specificity of the molecular recognition process. The recognition of carbohydrate/aromatic interactions has prompted further analysis of the properties that influence them. Using a variety of experimental and theoretical methods, researchers have worked to quantify carbohydrate/aromatic stacking and identify the features that stabilize these complexes. Researchers have used site-directed mutagenesis, organic synthesis, or both to incorporate modifications in the receptor or ligand and then quantitatively analyzed the structural and thermodynamic features of these interactions. Researchers have also synthesized and characterized artificial receptors and simple model systems, employing a reductionistic chemistry-based strategy. Finally, using quantum mechanics calculations, researchers have examined the magnitude of each property's contribution to the interaction energy.
Collapse
Affiliation(s)
- Juan Luis Asensio
- Chemical & Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid
| | - Ana Ardá
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Jesús Jiménez-Barbero
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
31
|
Taha HA, Richards MR, Lowary TL. Conformational Analysis of Furanoside-Containing Mono- and Oligosaccharides. Chem Rev 2012; 113:1851-76. [DOI: 10.1021/cr300249c] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hashem A. Taha
- Alberta Glycomics Centre and Department of Chemistry, Gunning−Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Michele R. Richards
- Alberta Glycomics Centre and Department of Chemistry, Gunning−Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry, Gunning−Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
32
|
Moyano AL, Comín R, Vilcaes AA, Funes SC, Roth GA, Irazoqui FJ, Nores GA. Novel antibodies reacting with two neighboring gangliosides are induced in rabbits immunized with bovine brain gangliosides. Glycobiology 2012; 22:1768-74. [PMID: 22843673 DOI: 10.1093/glycob/cws117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunization of rabbits with bovine brain gangliosides induced an experimental neuropathy, with clinical signs resembling Guillain-Barré syndrome. All the immunized animals developed immunoglobulin G immunoreactivity to GM1 ganglioside. In a few (4 of 27) animals, an additional anti-ganglioside antibody population showing an unusual binding behavior was detected. Enzyme-linked immunosorbent assay and thin-layer chromatography immunostaining analyses showed that the binding of these unusual antibodies required the presence of two co-localized gangliosides. Maximal interaction was observed to a mixture of GM1 and GD1b, but the antibodies also showed "density-dependent" binding to GD1b. The antibodies were purified by affinity chromatography and displayed the ability to target antigens in biological membranes (rat synaptosomes).
Collapse
Affiliation(s)
- Ana L Moyano
- Departamento de Química Biológica Dr. Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and CIQUIBIC, CONICET, Córdoba 5000, Argentina
| | | | | | | | | | | | | |
Collapse
|
33
|
Wood R, Racow K, Bekker LG, Middelkoop K, Vogt M, Kreiswirth BN, Lawn SD. Lipoarabinomannan in urine during tuberculosis treatment: association with host and pathogen factors and mycobacteriuria. BMC Infect Dis 2012; 12:47. [PMID: 22369353 PMCID: PMC3349560 DOI: 10.1186/1471-2334-12-47] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 02/27/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Detection of lipoarabinomannan (LAM), a Mycobacterium tuberculosis (Mtb) cell wall antigen, is a potentially attractive diagnostic. However, the LAM-ELISA assay has demonstrated variable sensitivity in diagnosing TB in diverse clinical populations. We therefore explored pathogen and host factors potentially impacting LAM detection. METHODS LAM-ELISA assay testing, sputum smear and culture status, HIV status, CD4 cell count, proteinuria and TB outcomes were prospectively determined in adults diagnosed with TB and commencing TB treatment at a South African township TB clinic. Sputum TB isolates were characterised by IS61110-based restriction fragment length polymorphism (RFLP) and urines were tested for mycobacteriuria by Xpert® MTB/RIF assay. RESULTS 32/199 (16.1%) of patients tested LAM-ELISA positive. Median optical density and proportion testing LAM positive remained unchanged during 2 weeks of treatment and then declined over 24 weeks. LAM was associated with positive sputum smear and culture status, HIV infection and low CD4 cell counts but not proteinuria, RFLP strain or TB treatment outcome. The sensitivity of LAM for TB in HIV-infected patients with CD4 counts of ≥ 200, 100-199, 50-99, and < 50 cells/μl, was 15.2%, 32%, 42.9%, and 69.2% respectively. Mycobacteriuria was found in 15/32 (46.9%) of LAM positive patients and in none of the LAM negative controls. CONCLUSIONS Urinary LAM was related to host immune factors, was unrelated to Mtb strain and declined steadily after an initial 2 weeks of TB treatment. The strong association of urine LAM with mycobacteriuria is a new finding, indicating frequent TB involvement of the renal tract in advanced HIV infection.
Collapse
Affiliation(s)
- Robin Wood
- Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | | | | | | | | | | | | |
Collapse
|
34
|
Sarkar S, Tang XL, Das D, Spencer JS, Lowary TL, Suresh MR. A bispecific antibody based assay shows potential for detecting tuberculosis in resource constrained laboratory settings. PLoS One 2012; 7:e32340. [PMID: 22363820 PMCID: PMC3283739 DOI: 10.1371/journal.pone.0032340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 01/27/2012] [Indexed: 11/30/2022] Open
Abstract
The re-emergence of tuberculosis (TB) as a global public health threat highlights the necessity of rapid, simple and inexpensive point-of-care detection of the disease. Early diagnosis of TB is vital not only for preventing the spread of the disease but also for timely initiation of treatment. The later in turn will reduce the possible emergence of multi-drug resistant strains of Mycobacterium tuberculosis. Lipoarabinomannan (LAM) is an important non-protein antigen of the bacterial cell wall, which is found to be present in different body fluids of infected patients including blood, urine and sputum. We have developed a bispecific monoclonal antibody with predetermined specificities towards the LAM antigen and a reporter molecule horseradish peroxidase (HRPO). The developed antibody was subsequently used to design a simple low cost immunoswab based assay to detect LAM antigen. The limit of detection for spiked synthetic LAM was found to be 5.0 ng/ml (bovine urine), 0.5 ng/ml (rabbit serum) and 0.005 ng/ml (saline) and that for bacterial LAM from M. tuberculosis H37Rv was found to be 0.5 ng/ml (rabbit serum). The assay was evaluated with 21 stored clinical serum samples (14 were positive and 7 were negative in terms of anti-LAM titer). In addition, all 14 positive samples were culture positive. The assay showed 100% specificity and 64% sensitivity (95% confidence interval). In addition to good specificity, the end point could be read visually within two hours of sample collection. The reported assay might be used as a rapid tool for detecting TB in resource constrained laboratory settings.
Collapse
Affiliation(s)
- Susmita Sarkar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Xinli L. Tang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dipankar Das
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John S. Spencer
- Departments of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Todd L. Lowary
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, Alberta, Canada
| | - Mavanur R. Suresh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
35
|
Islam SM, Richards MR, Taha HA, Byrns SC, Lowary TL, Roy PN. Conformational Analysis of Oligoarabinofuranosides: Overcoming Torsional Barriers with Umbrella Sampling. J Chem Theory Comput 2011; 7:2989-3000. [DOI: 10.1021/ct200333p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shahidul M. Islam
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Michele R. Richards
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Hashem A. Taha
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Simon C. Byrns
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Todd L. Lowary
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
36
|
Theillet FX, Frank M, Vulliez-Le Normand B, Simenel C, Hoos S, Chaffotte A, Bélot F, Guerreiro C, Nato F, Phalipon A, Mulard LA, Delepierre M. Dynamic aspects of antibody:oligosaccharide complexes characterized by molecular dynamics simulations and saturation transfer difference nuclear magnetic resonance. Glycobiology 2011; 21:1570-9. [PMID: 21610193 DOI: 10.1093/glycob/cwr059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties.
Collapse
|
37
|
Abronina PI, Sedinkin SL, Podvalnyy NM, Fedina KG, Zinin AI, Torgov VI, Kononov LO. Formation of orthoester-linked d-arabinofuranose oligosaccharides and their isomerization into the corresponding glycosides. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Chlubnová I, Sylla B, Nugier-Chauvin C, Daniellou R, Legentil L, Kralová B, Ferrières V. Natural glycans and glycoconjugates as immunomodulating agents. Nat Prod Rep 2011; 28:937-52. [DOI: 10.1039/c1np00005e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
39
|
Taha HA, Roy PN, Lowary TL. Theoretical Investigations on the Conformation of the β-d-Arabinofuranoside Ring. J Chem Theory Comput 2010; 7:420-32. [DOI: 10.1021/ct100450s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hashem A. Taha
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2 and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Pierre-Nicholas Roy
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2 and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Todd L. Lowary
- Department of Chemistry and Alberta Ingenuity Centre for Carbohydrate Science, Gunning-Lemieux Chemistry Centre, University of Alberta, Edmonton, AB, Canada T6G 2G2 and Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
40
|
Theillet FX, Simenel C, Guerreiro C, Phalipon A, Mulard LA, Delepierre M. Effects of backbone substitutions on the conformational behavior of Shigella flexneri O-antigens: implications for vaccine strategy. Glycobiology 2010; 21:109-21. [DOI: 10.1093/glycob/cwq136] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
41
|
Zhang J, Amin AG, Hölemann A, Seeberger PH, Chatterjee D. Development of a plate-based scintillation proximity assay for the mycobacterial AftB enzyme involved in cell wall arabinan biosynthesis. Bioorg Med Chem 2010; 18:7121-31. [PMID: 20800502 DOI: 10.1016/j.bmc.2010.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/13/2010] [Accepted: 07/16/2010] [Indexed: 01/03/2023]
Abstract
A number of mycobacterial arabinosyltransferases, such as the Emb proteins, AftA, AftB, AftC, and AftD have been characterized and implicated to be involved in the cell wall arabinan assembly. These arabinosyltransferases are essential for the viability of the organism and are logically valid targets for developing new anti-tuberculosis agents. For instance, Ethambutol, a first line anti-tuberculosis drug, targets the Emb proteins involved in the formation of the arabinan of cell wall arabinogalactan. Among these arabinosyltransferases, the terminal β-(1→2) arabinosyltransferase activity has been associated with AftB. The predicted topology of AftB in Mycobacterium tuberculosis has 10 N terminal transmembrane domains and a C terminal hydrophilic domain similar to the Emb proteins. It has a conserved GT-C motif and is difficult to express. In a cell free assay, synthetic disaccharide, α-D-Araf-(1→5)-α-D-Araf-octyl, has been used as a substrate to explore the function of AftB. In our work, the disaccharide was synthesized in its pentenylated and biotinylated form, and the enzymatic product formed was identified as the β-(1→2) arabinofuranose adduct. When synthetic tri- and tetra-saccharides were used as substrates, a mixture of products containing both β-(1→2) and α-(1→5) linkages were formed. Therefore, the biotinylated disaccharide was selected to develop a scintillation proximity assay.
Collapse
Affiliation(s)
- Jian Zhang
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
42
|
Cao B, Williams SJ. Chemical approaches for the study of the mycobacterial glycolipids phosphatidylinositol mannosides, lipomannan and lipoarabinomannan. Nat Prod Rep 2010; 27:919-47. [DOI: 10.1039/c000604a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Tam PH, Lowary TL. Epimeric and amino disaccharide analogs as probes of an alpha-(1-->6)-mannosyltransferase involved in mycobacterial lipoarabinomannan biosynthesis. Org Biomol Chem 2009; 8:181-92. [PMID: 20024149 DOI: 10.1039/b916580k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycobacterial lipoarabinomannan (LAM) is an important, immunologically active glycan found in the cell wall of mycobacteria, including the human pathogen Mycobacterium tuberculosis. At the core of LAM is a mannan domain comprised of alpha-(1-->6)-linked-mannopyranose (Manp) residues. Previously, we and others have demonstrated that alpha-Manp-(1-->6)-alpha-Manp disaccharides (e.g., Manp-(1-->6)-alpha-ManpOctyl, ) are the minimum acceptor substrates for enzymes involved in the assembly of the LAM mannan core. We report here the synthesis five epimeric and three amino analogs of , and their subsequent biochemical evaluation against an alpha-(1-->6)-ManT activity present in a membrane preparation from M. smegmatis. Changing the manno- configuration of either residue of to talo- or gluco- led to a reduction or loss of activity, thus confirming earlier work showing that the C-2 and C-4 hydroxyl groups of each monosaccharide were important for enzymatic recognition. Characterization of the products formed from these analogs was done using a combination of mass spectrometry and glycosidase digestion, and full substrate kinetics were also performed. The analogs in which the acceptor hydroxyl group had been replaced with an amino group were, as expected, not substrates for the enzyme, but were weak inhibitors.
Collapse
Affiliation(s)
- Pui Hang Tam
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2, Canada
| | | |
Collapse
|