1
|
Dannenberg RL, Cardina JA, Washington H, Gao S, Greenberg MM, Hedglin M. A human high-fidelity DNA polymerase holoenzyme has a wide range of lesion bypass activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618244. [PMID: 39464047 PMCID: PMC11507776 DOI: 10.1101/2024.10.14.618244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
During replication, lagging strand lesions are initially encountered by high-fidelity DNA polymerase (pol) holoenzymes comprised of pol δ and the PCNA sliding clamp. To proceed unhindered, pol δ holoenzymes must bypass lesions without stalling. This entails dNMP incorporation opposite the lesion (insertion) and the 5' template nucleotide (extension). Historically, it was viewed that high-fidelity pol holoenzymes stall upon encountering lesions, activating DNA damage tolerance pathways that are ultimately responsible for lesion bypass. Our recent study of 4 prominent lesions revealed that human pol δ holoenzymes support insertion and/or bypass for multiple lesions and the extents of these activities depends on the lesion and pol δ proofreading. In the present study, we expand these analyses to other prominent lesions. Collectively, analyses of 10 lesions from both studies reveal that the insertion and bypass efficiencies of pol δ holoenzymes each span a complete range (0 - 100%). Consequently, the fates of pol δ holoenzymes upon encountering lesions are quite diverse. Furthermore, pol δ proofreading promoted holoenzyme progression at 7 of the 10 lesions and did not deter progression at any. Altogether, the results significantly alter our understanding of the replicative capacity of high-fidelity pol holoenzymes and their functional role(s) in lesion bypass.
Collapse
Affiliation(s)
- Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Joseph A. Cardina
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Helen Washington
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
2
|
Ravnik V, Jukič M, Bren U. Identifying Metal Binding Sites in Proteins Using Homologous Structures, the MADE Approach. J Chem Inf Model 2023; 63:5204-5219. [PMID: 37557084 PMCID: PMC10466382 DOI: 10.1021/acs.jcim.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 08/11/2023]
Abstract
In order to identify the locations of metal ions in the binding sites of proteins, we have developed a method named the MADE (MAcromolecular DEnsity and Structure Analysis) approach. The MADE approach represents an evolution of our previous toolset, the ProBiS H2O (MD) methodology, for the identification of conserved water molecules. Our method uses experimental structures of proteins homologous to a query, which are subsequently superimposed upon it. Areas with a particular species present in a similar location among many homologous protein structures are identified using a clustering algorithm. Dense clusters likely represent positions containing species important to the query protein structure or function. We analyze well-characterized apo protein structures and show that the MADE approach can identify clusters corresponding to the expected positions of metal ions in their binding sites. The greatest advantage of our method lies in its generality. It can in principle be applied to any species found in protein records; it is not only limited to metal ions. We additionally demonstrate that the MADE approach can be successfully applied to predict the location of cofactors in computer-modeled structures, e.g., via AlphaFold. We also conduct a careful protein superposition method comparison and find our methodology robust and the results largely independent of the selected protein superposition algorithm. We postulate that with increasing structural data availability, additional applications of the MADE approach will be possible such as non-protein systems, water network identification, protein binding site elaboration, and analysis of binding events, all in a dynamic manner. We have implemented the MADE approach as a plugin for the PyMOL molecular visualization tool. The MADE plugin is available free of charge at https://gitlab.com/Jukic/made_software.
Collapse
Affiliation(s)
- Vid Ravnik
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
| | - Marko Jukič
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
- The
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper SI-6000, Slovenia
- Institute
for Environmental Protection and Sensors, Beloruska ulica 7, Maribor SI-2000, Slovenia
| | - Urban Bren
- Faculty
of Chemistry and Chemical Engineering, University
of Maribor, Smetanova
ulica 17, Maribor SI-2000, Slovenia
- The
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper SI-6000, Slovenia
- Institute
for Environmental Protection and Sensors, Beloruska ulica 7, Maribor SI-2000, Slovenia
| |
Collapse
|
3
|
Kathuria P, Singh P, Sharma P, Wetmore SD. Replication of the Aristolochic Acid I Adenine Adduct (ALI-N6-A) by a Model Translesion Synthesis DNA Polymerase: Structural Insights on the Induction of Transversion Mutations from Molecular Dynamics Simulations. Chem Res Toxicol 2020; 33:2573-2583. [DOI: 10.1021/acs.chemrestox.0c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Preetleen Kathuria
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Prebhleen Singh
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Mi C, Zhang S, Huang W, Dai M, Chai Z, Yang W, Deng S, Ao L, Zhang H. Strand displacement DNA synthesis by DNA polymerase gp90 exo - of Pseudomonas aeruginosa phage 1. Biochimie 2020; 170:73-87. [PMID: 31911177 DOI: 10.1016/j.biochi.2019.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/31/2019] [Indexed: 12/27/2022]
Abstract
Strand displacement DNA synthesis is essential for DNA replication. Gp90, the sole DNA polymerase of Pseudomonas aeruginosa phage 1, can bypass multiply DNA lesions. However, whether it can perform strand displacement synthesis is still unknown. In this work, we found that gp90 exo- could perform strand displacement synthesis, albeit its activity and processivity were lower than those of primer extension. Gp90 exo- itself could not unwind Y-shaped or fork DNA. Tail and gap at DNA fork were necessary for efficient synthesis. High GC content obviously inhibited strand displacement synthesis. Consecutive GC sequence at the entrance of fork showed more inhibition effect on DNA synthesis than that in the downstream DNA fork. The fraction of productive polymerase and DNA complex (A values) was higher for fork than gap; while their average extension rates (kp values) were similar. However, both A and kp values were lower than those for the primer/template (P/T) substrate. The binding of gp90 exo- to fork was tighter than P/T or gap in the absence of dATP. In the presence of dATP to form ternary complex, the binding affinity of gp90 exo- to P/T or gap was increased compared with that in the binary complex. Abasic site, 8-oxoG, and O6-MeG inhibited and even blocked strand displacement synthesis. This work shows that gp90 exo- could perform strand displacement DNA synthesis at DNA fork, discovering the presence of new functions of PaP1 DNA polymerase in DNA replication and propagation of PaP1.
Collapse
Affiliation(s)
- Chenyang Mi
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenxin Huang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyuan Dai
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Zili Chai
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Wang Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Shanshan Deng
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China.
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Zhang S, Li B, Du K, Liang T, Dai M, Huang W, Zhang H, Ling Y, Zhang H. Epigenetically modified N6-methyladenine inhibits DNA replication by human DNA polymerase iota. Biochimie 2020; 168:134-143. [DOI: 10.1016/j.biochi.2019.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
|
6
|
Epigenetic DNA modification N6-methyladenine inhibits DNA replication by Sulfolobus solfataricus Y-family DNA polymerase Dpo4. Arch Biochem Biophys 2019; 675:108120. [DOI: 10.1016/j.abb.2019.108120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
|
7
|
Zou Z, Xu W, Mi C, Xu Y, Du K, Li B, Ye Y, Ling Y, Zhang H. Ribonucleoside triphosphates promote T7 DNA replication and the lysis of T7-Infected Escherichia coli. Biochimie 2019; 167:25-33. [PMID: 31493471 DOI: 10.1016/j.biochi.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/01/2019] [Indexed: 11/19/2022]
Abstract
rNTPs are structurally similar to dNTPs, but their concentrations are much higher than those of dNTPs in cells. rNTPs in solutions or rNMP at the primer terminus or embedded in template always inhibit or block DNA replication, due to the reduced Mg2+ apparent concentration, competition of rNTPs with dNTPs, and the extra repulsive interaction of rNTP or rNMP with polymerase active site. In this work, unexpectedly, we found rNTPs can promote T7 DNA replication with the maximal promotion at rNTPs/dNTPs concentration ratio of 20. This promotion was not due to the optimized Mg2+ apparent concentration or the direct incorporation of extra rNMPs into DNA. This promotion was dependent on the concentrations and types of rNTPs. Kinetic analysis showed that this promotion was originated from the increased fraction of polymerase-DNA productive complex and the accelerated DNA polymerization. Further evidence showed that more polymerase-DNA complex was formed and their binding affinity was also enhanced in the presence of extra rNTPs. Moreover, this promotion in T7 DNA replication also accelerated the lysis of T7-infected host Escherichia coli. This work discovered that rNTPs could promote DNA replication, completely different from the traditional concept that rNTPs always inhibit DNA replication.
Collapse
Affiliation(s)
- Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Wendi Xu
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, 750021, China
| | - Chenyang Mi
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Du
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianbian Li
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Ye
- Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital, Yanjiang West Road 107, Guangzhou, Guangdong, 510120, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 510000, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Li B, Du K, Gu S, Xie J, Liang T, Xu Z, Gao H, Ling Y, Lu S, Sun Z, Zhang H. Epigenetic DNA Modification N 6-Methyladenine Inhibits DNA Replication by DNA Polymerase of Pseudomonas aeruginosa Phage PaP1. Chem Res Toxicol 2019; 32:840-849. [PMID: 30938985 DOI: 10.1021/acs.chemrestox.8b00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N6-methyladenine (6mA), a newly identified epigenetic modification, plays important roles in regulation of various biological processes. However, the effect of 6mA on DNA replication has been little addressed. In this work, we investigated how 6mA affected DNA replication by DNA polymerase of Pseudomonas aeruginosa Phage PaP1 (gp90 exo-). The presence of 6mA, as well as its intermediate hypoxanthine (Hyp), inhibited DNA replication by gp90 exo-. The 6mA reduced dTTP incorporation efficiency by 10-fold and inhibited next-base extension efficiency by 100-fold. Differently, dCTP was preferentially incorporated opposite Hyp among four dNTPs. Gp90 exo- reduced the extension priority beyond the 6mA:T pair rather than the 6mA:C mispair and preferred to extend beyond Hyp:C rather than the Hyp:T pair. Incorporation of dTTP opposite 6mA and dCTP opposite Hyp showed fast burst phases. The burst rate and burst amplitude were both reduced for 6mA compared with unmodified A. Moreover, the total incorporation efficiency ( kpol/ Kd,dNTP) was decreased for dTTP incorporation opposite 6mA and dCTP incorporation opposite Hyp compared with dTTP incorporation opposite A. 6mA reduced the incorporation rate ( kpol), and Hyp increased the dissociation constant ( Kd,dNTP). However, 6mA or Hyp on template did not affect the binding of DNA polymerase to DNA in binary or ternary complexes. This work provides new insight into the inhibited effects of epigenetic modification of 6mA on DNA replication in PaP1.
Collapse
Affiliation(s)
- Bianbian Li
- School of Biological Engineering , Dalian Polytechnic University , Dalian , 116034 , China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Ke Du
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Shiling Gu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Jiayu Xie
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Tingting Liang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| | - Hui Gao
- School of Biological Engineering , Dalian Polytechnic University , Dalian , 116034 , China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis , Guangzhou Medical University , Xinzao, Panyu District, Guangzhou , China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Science , Third Military Medical University , Chongqing , China
| | - Zhen Sun
- School of Biological Engineering , Dalian Polytechnic University , Dalian , 116034 , China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health and West China Fourth Hospital , Sichuan University , Chengdu , China
| |
Collapse
|
9
|
Du K, Zhang X, Zou Z, Li B, Gu S, Zhang S, Qu X, Ling Y, Zhang H. Epigenetically modified N 6-methyladenine inhibits DNA replication by human DNA polymerase η. DNA Repair (Amst) 2019; 78:81-90. [PMID: 30991231 DOI: 10.1016/j.dnarep.2019.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
N6-methyladenine (6mA), as a newly reported epigenetic marker, plays significant roles in regulation of various biological processes in eukaryotes. However, the effect of 6mA on human DNA replication remain elusive. In this work, we used Y-family human DNA polymerase η as a model to investigate the kinetics of bypass of 6mA by hPol η. We found 6mA and its intermediate hypoxanthine (I) on template partially inhibited DNA replication by hPol η. dTMP incorporation opposite 6mA and dCMP incorporation opposite I can be considered as correct incorporation. However, both 6mA and I reduced correct incorporation efficiency, next-base extension efficiency, and the priority in extension beyond correct base pair. Both dTMP incorporation opposite 6mA and dCTP opposite I showed fast burst phases. However, 6mA and I reduced the burst incorporation rates (kpol) and increased the dissociation constant (Kd,dNTP), compared with that of dTMP incorporation opposite unmodified A. Biophysical binding assays revealed that both 6mA and I on template reduced the binding affinity of hPol η to DNA in binary or ternary complex compared with unmodified A. All the results explain the inhibition effects of 6mA and I on DNA replication by hPol η, providing new insight in the effects of epigenetically modified 6mA on human DNA replication.
Collapse
Affiliation(s)
- Ke Du
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China; Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiangqian Zhang
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Zhenyu Zou
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Bianbian Li
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiling Gu
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuming Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoyi Qu
- College of Life Science, Yan´an University, Yan'an, Shaanxi, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Xinzao Panyu District, Guangzhou, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zou Z, Wu S, Xiong J, Li H, Jiang Y, Zhang H. ssDNA hybridization facilitated by T7 ssDNA binding protein (gp2.5) rapidly initiates from the strand terminus or internally followed by a slow zippering step. Biochimie 2018; 147:1-12. [DOI: 10.1016/j.biochi.2017.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/26/2017] [Indexed: 01/23/2023]
|
11
|
General misincorporation frequency: Re-evaluation of the fidelity of DNA polymerases. Biochem Biophys Res Commun 2018; 496:1076-1081. [DOI: 10.1016/j.bbrc.2018.01.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 01/07/2023]
|
12
|
Gladovic M, Spaninger E, Bren U. Nucleic Bases Alkylation with Acrylonitrile and Cyanoethylene Oxide: A Computational Study. Chem Res Toxicol 2018; 31:97-104. [DOI: 10.1021/acs.chemrestox.7b00268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Martin Gladovic
- Faculty
of Chemistry and Chemical Technology, University of Maribor, Smetanova
17, SI-2000 Maribor, Slovenia
- Faculty
of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot
113, SI-1000 Ljubljana, Slovenia
| | - Eva Spaninger
- Faculty
of Chemistry and Chemical Technology, University of Maribor, Smetanova
17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty
of Chemistry and Chemical Technology, University of Maribor, Smetanova
17, SI-2000 Maribor, Slovenia
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Liu X, Zou X, Li H, Zou Z, Yang J, Wang C, Wu S, Zhang H. Bypass of an Abasic Site via the A-Rule by DNA Polymerase of Pseudomonas aeruginosa Phage PaP1. Chem Res Toxicol 2017; 31:58-65. [PMID: 29183115 DOI: 10.1021/acs.chemrestox.7b00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoying Liu
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Xiaoli Zou
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Huangyuan Li
- Key
Laboratory of Environment and Health among Universities and Colleges
in Fujian, School of Public Health, Fujian Medical University, Minhou
County, Fuzhou 350108, China
| | - Zhenyu Zou
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Jie Yang
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| | - Chenlu Wang
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Shunhua Wu
- School
of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Huidong Zhang
- Public
Health Laboratory Sciences and Toxicology, West China School of Public
Health, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Gu S, Xiong J, Shi Y, You J, Zou Z, Liu X, Zhang H. Error-prone bypass of O 6-methylguanine by DNA polymerase of Pseudomonas aeruginosa phage PaP1. DNA Repair (Amst) 2017. [PMID: 28651167 DOI: 10.1016/j.dnarep.2017.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O6-Methylguanine (O6-MeG) is highly mutagenic and is commonly found in DNA exposed to methylating agents, generally leads to G:C to A:T mutagenesis. To study DNA replication encountering O6-MeG by the DNA polymerase (gp90) of P. aeruginosa phage PaP1, we analyzed steady-state and pre-steady-state kinetics of nucleotide incorporation opposite O6-MeG by gp90 exo-. O6-MeG partially inhibited full-length extension by gp90 exo-. O6-MeG greatly reduces dNTP incorporation efficiency, resulting in 67-fold preferential error-prone incorporation of dTTP than dCTP. Gp90 exo- extends beyond T:O6-MeG 2-fold more efficiently than C:O6-MeG. Incorporation of dCTP opposite G and incorporation of dCTP or dTTP opposite O6-MeG show fast burst phases. The pre-steady-state incorporation efficiency (kpol/Kd,dNTP) is decreased in the order of dCTP:G>dTTP:O6-MeG>dCTP:O6-MeG. The presence of O6-MeG at template does not affect the binding affinity of polymerase to DNA but it weakened their binding in the presence of dCTP and Mg2+. Misincorporation of dTTP opposite O6-MeG further weakens the binding affinity of polymerase to DNA. The priority of dTTP incorporation opposite O6-MeG is originated from the fact that dTTP can induce a faster conformational change step and a faster chemical step than dCTP. This study reveals that gp90 bypasses O6-MeG in an error-prone manner and provides further understanding in DNA replication encountering mutagenic alkylation DNA damage for P. aeruginosa phage PaP1.
Collapse
Affiliation(s)
- Shiling Gu
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jingyuan Xiong
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ying Shi
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Jia You
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhenyu Zou
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xiaoying Liu
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Gu S, Xue Q, Liu Q, Xiong M, Wang W, Zhang H. Error-Free Bypass of 7,8-dihydro-8-oxo-2'-deoxyguanosineby DNA Polymerase of Pseudomonas aeruginosa Phage PaP1. Genes (Basel) 2017; 8:genes8010018. [PMID: 28067844 PMCID: PMC5295013 DOI: 10.3390/genes8010018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/26/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
As one of the most common forms of oxidative DNA damage, 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG) generally leads to G:C to T:A mutagenesis. To study DNA replication encountering 8-oxoG by the sole DNA polymerase (Gp90) of Pseudomonasaeruginosa phage PaP1, we performed steady-state and pre-steady-state kinetic analyses of nucleotide incorporation opposite 8-oxoG by Gp90 D234A that lacks exonuclease activities on ssDNA and dsDNA substrates. Gp90 D234A could bypass 8-oxoG in an error-free manner, preferentially incorporate dCTP opposite 8-oxoG, and yield similar misincorporation frequency to unmodified G. Gp90 D234A could extend beyond C:8-oxoG or A:8-oxoG base pairs with the same efficiency. dCTP incorporation opposite G and dCTP or dATP incorporation opposite 8-oxoG showed fast burst phases. The burst of incorporation efficiency (kpol/Kd,dNTP) is decreased as dCTP:G > dCTP:8-oxoG > dATP:8-oxoG. The presence of 8-oxoG in DNA does not affect its binding to Gp90 D234A in a binary complex but it does affect it in a ternary complex with dNTP and Mg2+, and dATP misincorporation opposite 8-oxoG further weakens the binding of Gp90 D234A to DNA. This study reveals Gp90 D234A can bypass 8-oxoG in an error-free manner, providing further understanding in DNA replication encountering oxidation lesion for P.aeruginosa phage PaP1.
Collapse
Affiliation(s)
- Shiling Gu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, No. 29 Hongguang Street, Banan District, Chongqing 400054, China.
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No. 17 People's South Road, Chengdu 610041, China.
| | - Qizhen Xue
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No. 17 People's South Road, Chengdu 610041, China.
| | - Qin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, No. 29 Hongguang Street, Banan District, Chongqing 400054, China.
| | - Mei Xiong
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No. 17 People's South Road, Chengdu 610041, China.
| | - Wanneng Wang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, No. 29 Hongguang Street, Banan District, Chongqing 400054, China.
| | - Huidong Zhang
- Public Health Laboratory Sciences and Toxicology, West China School of Public Health, Sichuan University, No. 17 People's South Road, Chengdu 610041, China.
| |
Collapse
|
16
|
Ogrizek M, Konc J, Bren U, Hodošček M, Janežič D. Role of magnesium ions in the reaction mechanism at the interface between Tm1631 protein and its DNA ligand. Chem Cent J 2016; 10:41. [PMID: 27398092 PMCID: PMC4939058 DOI: 10.1186/s13065-016-0188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
A protein, Tm1631 from the hyperthermophilic organism Thermotoga maritima belongs to a domain of unknown function protein family. It was predicted that Tm1631 binds with the DNA and that the Tm1631–DNA complex is an endonuclease repair system with a DNA repair function (Konc et al. PLoS Comput Biol 9(11): e1003341, 2013). We observed that the severely bent, strained DNA binds to the protein for the entire 90 ns of classical molecular dynamics (MD) performed; we could observe no significant changes in the most distorted region of the DNA, where the cleavage of phosphodiester bond occurs. In this article, we modeled the reaction mechanism at the interface between Tm1631 and its proposed ligand, the DNA molecule, focusing on cleavage of the phosphodiester bond. After addition of two Mg2+ ions to the reaction center and extension of classical MD by 50 ns (totaling 140 ns), the DNA ligand stayed bolted to the protein. Results from density functional theory quantum mechanics/molecular mechanics (QM/MM) calculations suggest that the reaction is analogous to known endonuclease mechanisms: an enzyme reaction mechanism with two Mg2+ ions in the reaction center and a pentacovalent intermediate. The minimum energy pathway profile shows that the phosphodiester bond cleavage step of the reaction is kinetically controlled and not thermodynamically because of a lack of any energy barrier above the accuracy of the energy profile calculation. The role of ions is shown by comparing the results with the reaction mechanisms in the absence of the Mg2+ ions where there is a significantly higher reaction barrier than in the presence of the Mg2+ ions.A protein, Tm1631 from the hyperthermophilic organism Thermotoga maritima belongs to a domain of unknown function protein family. We modeled the reaction mechanism at the interface between Tm1631 and its proposed ligand, the DNA molecule, focusing on cleavage of the phosphodiester bond ![]()
Collapse
Affiliation(s)
- Mitja Ogrizek
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Janez Konc
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia ; Laboratory for Physical Chemistry and Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia ; Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Urban Bren
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia ; Laboratory for Physical Chemistry and Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia ; Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| | - Milan Hodošček
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia
| |
Collapse
|
17
|
Pseudomonas aeruginosa phage PaP1 DNA polymerase is an A-family DNA polymerase demonstrating ssDNA and dsDNA 3′–5′ exonuclease activity. Virus Genes 2016; 52:538-51. [DOI: 10.1007/s11262-016-1329-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
|
18
|
Liu B, Xue Q, Tang Y, Cao J, Guengerich FP, Zhang H. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 768:53-67. [PMID: 27234563 PMCID: PMC5237373 DOI: 10.1016/j.mrrev.2016.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 02/07/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis.
Collapse
Affiliation(s)
- Binyan Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Qizhen Xue
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Yong Tang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Huidong Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China.
| |
Collapse
|
19
|
Kinetic analysis of bypass of O(6)- methylguanine by the catalytic core of yeast DNA polymerase eta. Arch Biochem Biophys 2016; 596:99-107. [PMID: 26976707 DOI: 10.1016/j.abb.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Alkylating agents can form O(6)-methylguansine (O(6)-MeG). To study the intrinsic kinetic behaviors of bypassing O(6)-MeG, we used the catalytic core of yeast DNA polymerase η (Pol ηcore, residues 1-513), instead of the full-length Pol η, to study their elementary steps, eliminating the effects of the C-terminal C2H2 motif on dNTP incorporation. The misincorporation frequencies were 10(-4) for G and 0.055-0.446 for O(6)-MeG. O(6)-MeG does not affect the extension efficiency. Pol ηcore showed no fast burst phase for any incorporation opposite G or O(6)-MeG. Primer extension was greatly blocked by O(6)-MeG and about 67% dTTP, 31% dCTP and 2% dATP were incorporated opposite O(6)-MeG. This study provides further understanding of the mutation mechanism of alkylated lesion for yeast DNA polymerase η.
Collapse
|
20
|
Walsh JM, Beuning PJ. Synthetic nucleotides as probes of DNA polymerase specificity. J Nucleic Acids 2012; 2012:530963. [PMID: 22720133 PMCID: PMC3377560 DOI: 10.1155/2012/530963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/21/2012] [Indexed: 12/17/2022] Open
Abstract
The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.
Collapse
Affiliation(s)
- Jason M. Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
21
|
Figueroa H, Peddi D, Osborne JM, Wilson BM, Pesaru RR, Kurva B, Ramaraju S, Milletti MC, Heyl DL. Modeling the Interface between Islet Amyloid Polypeptide and Insulin-Based Aggregation Inhibitors: Correlation to Aggregation Kinetics and Membrane Damage. J Chem Inf Model 2012; 52:1298-307. [DOI: 10.1021/ci300119c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hector Figueroa
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Durgaprasad Peddi
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Joshua M. Osborne
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Brenan M. Wilson
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Ranadheer Reddy Pesaru
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Balakrishna Kurva
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Swathi Ramaraju
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Maria C. Milletti
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| | - Deborah L. Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
22
|
Nguyen TT, Mai BK, Li MS. Study of Tamiflu sensitivity to variants of A/H5N1 virus using different force fields. J Chem Inf Model 2011; 51:2266-76. [PMID: 21834591 DOI: 10.1021/ci2000743] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An accurate estimation of binding free energy of a ligand to receptor ΔG(bind) is one of the most important problems in drug design. The success of solution of this problem is expected to depend on force fields used for modeling a ligand-receptor complex. In this paper, we consider the impact of four main force fields, AMBER99SB, CHARMM27, GROMOS96 43a1, and OPLS-AA/L, on the binding affinity of Oseltamivir carboxylate to the wild-type and Y252H, N294S, and H274Y mutants of glycoprotein neuraminidase from the pandemic A/H5N1 virus. Having used the molecular mechanic-Poisson-Boltzmann surface area method, we have shown that ΔG(bind), obtained by AMBER99SB, OPLS-AA/L, and CHARMM27, shows the high correlation with the available experimental data. They correctly capture the binding ranking Y252H → WT → N294S → H274Y observed in experiments (Collins, P. J. et al. Nature 2008, 453, 1258). In terms of absolute values of binding scores, results obtained by AMBER99SB are in the nearest range with experiments, while OPLS-AA/L, which is applied to study binding of Oseltamivir to the influenza virus for the first time, gives rather big negative values for ΔG(bind). GROMOS96 43a1 provides a lower correlation as it supports Oseltamivir to be more resistant to N294S than H274Y. Our study suggests that force fields have pronounced influence on theoretical estimations of binding free energy of a ligand to receptor. The effect of all-atom models on dynamics of the binding pocket as well as on the hydrogen-bond network between Oseltamivir and receptors is studied in detail. The hydrogen network, obtained by GROMOS, is weakest among four studied force fields.
Collapse
Affiliation(s)
- Trang Truc Nguyen
- Institute for Computational Science and Technology, Thu Duc District, Ho Chi Minh City, Vietnam
| | | | | |
Collapse
|
23
|
Bren M, Janezic D, Bren U. Microwave catalysis revisited: an analytical solution. J Phys Chem A 2010; 114:4197-202. [PMID: 20192257 DOI: 10.1021/jp100374x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In our previous work [Bren, U., et al. J. Phys. Chem. A 2008, 112, 166] we proposed a novel physical mechanism for microwave catalysis based on rotationally hot reactive species and verified its validity through a Monte Carlo simulation of a realistic chemical reaction: neutral ester hydrolysis. This article represents a continuation of our ongoing effort toward quantitative understanding of the microwave catalytic effect. It provides a derivation of an analytical solution for the microwave catalysis. The obtained expression is compared with the results of the Monte Carlo simulation and is applied to reproduce the microwave catalytic effect experimentally observed in the polyethylene terephthalate solvolysis. Implications for the interactions of microwaves with living organisms in the context of widespread mobile telephony are also discussed.
Collapse
Affiliation(s)
- Matevz Bren
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
24
|
Lyons DM, O'Brien PJ. Efficient recognition of an unpaired lesion by a DNA repair glycosylase. J Am Chem Soc 2010; 131:17742-3. [PMID: 19924854 DOI: 10.1021/ja908378y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The duplex structure of DNA, with its internal base pairing, protects the nucleobases from chemical damage, but it also poses a barrier to DNA-modifying enzymes, including the enzymes that recognize and repair DNA damage. It is known that unpaired (or bulged) nucleotides are significantly more accessible, but it is not known whether they might be recognized by nucleotide-flipping enzymes. We have investigated this question with human alkyladenine DNA glycosylase (AAG). AAG recognizes a wide variety of structurally disparate lesions, including deoxyinosine (I), which results from the spontaneous oxidative deamination of adenosine, and catalyzes the hydrolysis of the N-glycosidic bond to release the lesion base and initiate the base excision repair pathway. We used single-turnover kinetics to characterize the reactions of AAG with synthetic 25-mer oligonucleotides containing a single I lesion in single-stranded, mismatched, or single-nucleotide bulge contexts. We found that AAG has the highest catalytic efficiency toward a lesion that is presented in a single-nucleotide bulge. In contrast, AAG has more than 2000-fold reduced catalytic efficiency toward a single-stranded I-containing oligonucleotide relative to the duplexes. We have observed 20-fold differences in catalytic efficiency for the excision of the presumed biological target (paired with T) relative to alternative pairings such as C that might be formed by the replication of an unrepaired I. Furthermore, a linear free-energy relationship shows a strong inverse correlation between duplex stability and catalytic efficiency (slope = -0.6 to -1.0), indicating that gaining access to the base lesion provides a substantial barrier to AAG-catalyzed initiation of DNA repair. The observation that AAG recognizes a single-nucleotide bulge as efficiently as a mismatch implies that the recognition of DNA damage is remarkably plastic.
Collapse
Affiliation(s)
- Derek M Lyons
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
25
|
Ortore G, Di Colo F, Martinelli A. Docking of hydroxamic acids into HDAC1 and HDAC8: a rationalization of activity trends and selectivities. J Chem Inf Model 2010; 49:2774-85. [PMID: 19947584 DOI: 10.1021/ci900288e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A docking protocol using Gold software was developed to predict the binding disposition of histone deacetylase (HDAC) inhibitors, starting from the X-ray structures of HDAC8. The optimized procedure was subsequently utilized to dock into HDAC8 and into a homology model of HDAC1 nearly 40 compounds that had been tested for their inhibitory activity against the two HDAC isozymes. Evaluation of the best binding poses allowed us to identify the ligand properties and the protein residues important for activity and selectivity. HDACs are important anticancer drug targets, and their study is currently being actively pursued. As such, our results could help design new isozyme-selective HDAC inhibitors. Furthermore, this strategy may also be used for the investigation of other HDACs.
Collapse
Affiliation(s)
- Gabriella Ortore
- Dipartimento di Scienze Farmaceutiche, Universita di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | | | | |
Collapse
|
26
|
Zhang H, Beckman JW, Guengerich FP. Frameshift deletion by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W is selective for purines and involves normal conformational change followed by slow phosphodiester bond formation. J Biol Chem 2009; 284:35144-53. [PMID: 19837980 DOI: 10.1074/jbc.m109.067397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The human DNA polymerase kappa homolog Sulfolobus solfataricus DNA polymerase IV (Dpo4) produces "-1" frameshift deletions while copying unmodified DNA and, more frequently, when bypassing DNA adducts. As judged by steady-state kinetics and mass spectrometry, bypass of purine template bases to produce these deletions occurred rarely but with 10-fold higher frequency than with pyrimidines. The DNA adduct 1,N(2)-etheno-2'-deoxyguanosine, with a larger stacking surface than canonical purines, showed the highest frequency of formation of -1 frameshift deletions. Dpo4 T239W, a mutant we had previously shown to produce fluorescence changes attributed to conformational change following dNTP binding opposite cognate bases (Beckman, J. W., Wang, Q., and Guengerich, F. P. (2008) J. Biol. Chem. 283, 36711-36723), reported similar conformational changes when the incoming dNTP complemented the base following a templating purine base or bulky adduct (i.e. the "+1" base). However, in all mispairing cases, phosphodiester bond formation was inefficient. The frequency of -1 frameshift events and the associated conformational changes were not dependent on the context of the remainder of the sequence. Collectively, our results support a mechanism for -1 frameshift deletions by Dpo4 that involves formation of active complexes via a favorable conformational change that skips the templating base, without causing slippage or flipping out of the base, to incorporate a complementary residue opposite the +1 base, in a mechanism previously termed "dNTP-stabilized incorporation." The driving force is attributed to be the stacking potential between the templating base and the incoming dNTP base.
Collapse
Affiliation(s)
- Huidong Zhang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|