1
|
Moreno MJ, Salvador A. Ligand's Partition to the Lipid Bilayer Should Be Accounted for When Estimating Their Affinity to Proteins. Molecules 2023; 28:3136. [PMID: 37049898 PMCID: PMC10095633 DOI: 10.3390/molecules28073136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Ligand-protein interactions are usually studied in complex media that also contain lipids. This is particularly relevant for membrane proteins that are always associated with lipid bilayers, but also for water-soluble proteins studied in in vivo conditions. This work addresses the following two questions: (i) How does the neglect of the lipid bilayer influence the apparent ligand-protein affinity? (ii) How can the intrinsic ligand-protein affinity be obtained? Here we present a framework to quantitatively characterize ligand-protein interactions in complex media for proteins with a single binding site. The apparent affinity obtained when following some often-used approximations is also explored, to establish these approximations' validity limits and to allow the estimation of the true affinities from data reported in literature. It is found that an increase in the ligand lipophilicity or in the volume of the lipid bilayer always leads to a decrease in the apparent ligand-protein affinity, both for water-soluble and for membrane proteins. The only exceptions are very polar ligands (excluded from the lipid bilayer) and ligands whose binding affinity to the protein increases supralinearly with ligand lipophilicity. Finally, this work discusses which are the most relevant parameters to consider when exploring the specificity of membrane proteins.
Collapse
Affiliation(s)
- Maria João Moreno
- Department of Chemistry, Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - Armindo Salvador
- Department of Chemistry, Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
2
|
Biological Calorimetry: Old Friend, New Insights. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Calorimetry is an old experimental technique (first instrument developed in S. XVIII), but it is broadly used and still provides key information for understanding biological processes at the molecular level, particularly, cooperative phenomena in protein interactions. Here, we review and highlight some key aspects of biological calorimetry. Several biological systems will be described in which calorimetry was instrumental for modeling the behavior of the protein and obtaining further biological insight.
Collapse
|
3
|
Bobde RC, Kumar A, Vasudevan D. Plant-specific HDT family histone deacetylases are nucleoplasmins. THE PLANT CELL 2022; 34:4760-4777. [PMID: 36069647 PMCID: PMC9709999 DOI: 10.1093/plcell/koac275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Histone acetyltransferase (HAT)- and histone deacetylase (HDAC)-mediated histone acetylation and deacetylation regulate nucleosome dynamics and gene expression. HDACs are classified into different families, with HD-tuins or HDTs being specific to plants. HDTs show some sequence similarity to nucleoplasmins, the histone chaperones that aid in binding, storing, and loading H2A/H2B dimers to assemble nucleosomes. Here, we solved the crystal structure of the N-terminal domain (NTD) of all four HDTs (HDT1, HDT2, HDT3, and HDT4) from Arabidopsis (Arabidopsis thaliana). The NTDs form a nucleoplasmin fold, exist as pentamers in solution, and are resistant to protease treatment, high temperature, salt, and urea conditions. Structurally, HDTs do not form a decamer, unlike certain classical nucleoplasmins. The HDT-NTD requires an additional A2 acidic tract C-terminal to the nucleoplasmin domain for interaction with histone H3/H4 and H2A/H2B oligomers. We also report the in-solution structures of HDT2 pentamers in complex with histone oligomers. Our study provides a detailed structural and in vitro functional characterization of HDTs, revealing them to be nucleoplasmin family histone chaperones. The experimental confirmation that HDTs are nucleoplasmins may spark new interest in this enigmatic family of proteins.
Collapse
Affiliation(s)
- Ruchir C Bobde
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
- Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Ashish Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | | |
Collapse
|
4
|
Singh AK, Saharan K, Baral S, Vasudevan D. The plant nucleoplasmin AtFKBP43 needs its extended arms for histone interaction. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194872. [PMID: 36058470 DOI: 10.1016/j.bbagrm.2022.194872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The nucleoplasmin family of histone chaperones is a key player in governing the dynamic architecture of chromatin, thereby regulating various DNA-templated processes. The crystal structure of the N-terminal domain of Arabidopsis thaliana FKBP43 (AtFKBP43), an FK506-binding immunophilin protein, revealed a characteristic nucleoplasmin fold, thus confirming it to be a member of the FKBP nucleoplasmin class. Small-Angle X-ray Scattering (SAXS) analyses confirmed its pentameric nature in solution, and additional studies confirmed the nucleoplasmin fold to be highly stable. Unlike its homolog AtFKBP53, the AtFKBP43 nucleoplasmin core domain could not interact with histones and required the acidic arms, C-terminal to the core, for histone association. However, SAXS generated low-resolution envelope structure, ITC, and AUC results revealed that an AtFKBP43 pentamer with C-terminal extensions interacts with H2A/H2B dimer and H3/H4 tetramer in an equimolar ratio, like AtFKBP53. Put together, AtFKBP43 belongs to a hitherto unreported subclass of FKBP nucleoplasmins that requires the C-terminal acidic stretches emanating from the core domain for histone interaction.
Collapse
Affiliation(s)
| | - Ketul Saharan
- Institute of Life Sciences, Bhubaneswar 751023, India; Regional Centre for Biotechnology, Faridabad 121001, India
| | - Somanath Baral
- Institute of Life Sciences, Bhubaneswar 751023, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | | |
Collapse
|
5
|
Moreno MJ, Loura LMS, Martins J, Salvador A, Velazquez-Campoy A. Analysis of the Equilibrium Distribution of Ligands in Heterogeneous Media–Approaches and Pitfalls. Int J Mol Sci 2022; 23:ijms23179757. [PMID: 36077155 PMCID: PMC9478965 DOI: 10.3390/ijms23179757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The equilibrium distribution of small molecules (ligands) between binding agents in heterogeneous media is an important property that determines their activity. Heterogeneous systems containing proteins and lipid membranes are particularly relevant due to their prevalence in biological systems, and their importance to ligand distribution, which, in turn, is crucial to ligand’s availability and biological activity. In this work, we review several approaches and formalisms for the analysis of the equilibrium distribution of ligands in the presence of proteins, lipid membranes, or both. Special attention is given to common pitfalls in the analysis, with the establishment of the validity limits for the distinct approaches. Due to its widespread use, special attention is given to the characterization of ligand binding through the analysis of Stern–Volmer plots of protein fluorescence quenching. Systems of increasing complexity are considered, from proteins with single to multiple binding sites, from ligands interacting with proteins only to biomembranes containing lipid bilayers and membrane proteins. A new formalism is proposed, in which ligand binding is treated as a partition process, while considering the saturation of protein binding sites. This formalism is particularly useful for the characterization of interaction with membrane proteins.
Collapse
Affiliation(s)
- Maria João Moreno
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence:
| | - Luís M. S. Loura
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Jorge Martins
- Centro de Ciências do Mar (CCMAR/CIMAR, LA) and DCBB-FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Armindo Salvador
- Coimbra Chemistry Center—Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Adrian Velazquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
6
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
7
|
Mechanistic and structural insights into histone H2A–H2B chaperone in chromatin regulation. Biochem J 2020; 477:3367-3386. [DOI: 10.1042/bcj20190852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Histone chaperones include a wide variety of proteins which associate with histones and regulate chromatin structure. The classic H2A–H2B type of histone chaperones, and the chromatin remodeling complex components possessing H2A–H2B chaperone activity, show a broad range of structures and functions. Rapid progress in the structural and functional study of H2A–H2B chaperones extends our knowledge about the epigenetic regulation of chromatin. In this review, we summarize the most recent advances in the understanding of the structure and function of H2A–H2B chaperones that interact with either canonical or variant H2A–H2B dimers. We discuss the current knowledge of the H2A–H2B chaperones, which present no preference for canonical and variant H2A–H2B dimers, describing how they interact with H2A–H2B to fulfill their functions. We also review recent advances of H2A variant-specific chaperones, demarcating how they achieve specific recognition for histone variant H2A.Z and how these interactions regulate chromatin structure by nucleosome editing. We highlight the universal mechanism underlying H2A–H2B dimers recognition by a large variety of histone chaperones. These findings will shed insight into the biological impacts of histone chaperone, chromatin remodeling complex, and histone variants in chromatin regulation.
Collapse
|
8
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
9
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Singh AK, Datta A, Jobichen C, Luan S, Vasudevan D. AtFKBP53: a chimeric histone chaperone with functional nucleoplasmin and PPIase domains. Nucleic Acids Res 2020; 48:1531-1550. [PMID: 31807785 PMCID: PMC7026663 DOI: 10.1093/nar/gkz1153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022] Open
Abstract
FKBP53 is one of the seven multi-domain FK506-binding proteins present in Arabidopsis thaliana, and it is known to get targeted to the nucleus. It has a conserved PPIase domain at the C-terminus and a highly charged N-terminal stretch, which has been reported to bind to histone H3 and perform the function of a histone chaperone. To better understand the molecular details of this PPIase with histone chaperoning activity, we have solved the crystal structures of its terminal domains and functionally characterized them. The C-terminal domain showed strong PPIase activity, no role in histone chaperoning and revealed a monomeric five-beta palm-like fold that wrapped over a helix, typical of an FK506-binding domain. The N-terminal domain had a pentameric nucleoplasmin-fold; making this the first report of a plant nucleoplasmin structure. Further characterization revealed the N-terminal nucleoplasmin domain to interact with H2A/H2B and H3/H4 histone oligomers, individually, as well as simultaneously, suggesting two different binding sites for H2A/H2B and H3/H4. The pentameric domain assists nucleosome assembly and forms a discrete complex with pre-formed nucleosomes; wherein two pentamers bind to a nucleosome.
Collapse
Affiliation(s)
- Ajit Kumar Singh
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Aritreyee Datta
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| | - Chacko Jobichen
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore 117543
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dileep Vasudevan
- Institute of Life Sciences, Nalco Square, Chandrasekharpur, Bhubaneswar 751023, India
| |
Collapse
|
11
|
Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition. Sci Rep 2019; 9:9487. [PMID: 31263230 PMCID: PMC6602930 DOI: 10.1038/s41598-019-45726-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Nucleoplasmin (NP) is a pentameric histone chaperone that regulates the condensation state of chromatin in different cellular processes. We focus here on the interaction of NP with the histone octamer, showing that NP could bind sequentially the histone components to assemble an octamer-like particle, and crosslinked octamers with high affinity. The three-dimensional reconstruction of the NP/octamer complex generated by single-particle cryoelectron microscopy, revealed that several intrinsically disordered tail domains of two NP pentamers, facing each other through their distal face, encage the histone octamer in a nucleosome-like conformation and prevent its dissociation. Formation of this complex depended on post-translational modification and exposure of the acidic tract at the tail domain of NP. Finally, NP was capable of transferring the histone octamers to DNA in vitro, assembling nucleosomes. This activity may have biological relevance for processes in which the histone octamer must be rapidly removed from or deposited onto the DNA.
Collapse
|
12
|
Cheung CT, Pasquier J, Bouleau A, Nguyen T, Chesnel F, Guiguen Y, Bobe J. Double maternal-effect: duplicated nucleoplasmin 2 genes, npm2a and npm2b, with essential but distinct functions are shared by fish and tetrapods. BMC Evol Biol 2018; 18:167. [PMID: 30419815 PMCID: PMC6233590 DOI: 10.1186/s12862-018-1281-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Nucleoplasmin 2 (npm2) is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin. Recently, two npm2 (npm2a and npm2b) genes have been annotated in zebrafish. Thus, we examined the evolution of npm2a and npm2b in a variety of vertebrates, their potential phylogenetic relationships, and their biological functions using knockout models via the CRISPR/cas9 system. RESULTS We demonstrated that the two npm2 duplicates exist in a wide range of vertebrates, including sharks, ray-finned fish, amphibians, and sauropsids, while npm2a was lost in coelacanth and mammals, as well as some specific teleost lineages. Using phylogeny and synteny analyses, we traced their origins to the early stages of vertebrate evolution. Our findings suggested that npm2a and npm2b resulted from an ancient local gene duplication, and their functions diverged although key protein domains were conserved. We then investigated their functions by examining their tissue distribution in a wide variety of species and found that they shared ovarian-specific expression, a key feature of maternal-effect genes. We also demonstrated that both npm2a and npm2b are maternally-inherited transcripts in vertebrates, and that they play essential, but distinct, roles in early embryogenesis using zebrafish knockout models. Both npm2a and npm2b function early during oogenesis and may play a role in cortical granule function that impact egg activation and fertilization, while npm2b is also involved in early embryogenesis. CONCLUSION These novel findings will broaden our knowledge on the evolutionary history of maternal-effect genes and underlying mechanisms that contribute to vertebrate reproductive success. In addition, our results demonstrate the existence of a newly described maternal-effect gene, npm2a, that contributes to egg competence, an area that still requires further comprehension.
Collapse
Affiliation(s)
| | | | | | - Thaovi Nguyen
- INRA LPGP UR1037, Campus de Beaulieu, 35042, Rennes, France
| | - Franck Chesnel
- CNRS/UMR6290, Université de Rennes 1, 35000, Rennes, France
| | - Yann Guiguen
- INRA LPGP UR1037, Campus de Beaulieu, 35042, Rennes, France
| | - Julien Bobe
- INRA LPGP UR1037, Campus de Beaulieu, 35042, Rennes, France. .,Laboratory of fish physiology and genomics (LPGP), National Institute of Agricultural Research (INRA), Campus de Beaulieu, 35042, Rennes Cedex, France.
| |
Collapse
|
13
|
Warren C, Matsui T, Karp JM, Onikubo T, Cahill S, Brenowitz M, Cowburn D, Girvin M, Shechter D. Dynamic intramolecular regulation of the histone chaperone nucleoplasmin controls histone binding and release. Nat Commun 2017; 8:2215. [PMID: 29263320 PMCID: PMC5738438 DOI: 10.1038/s41467-017-02308-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleoplasmin (Npm) is a highly conserved histone chaperone responsible for the maternal storage and zygotic release of histones H2A/H2B. Npm contains a pentameric N-terminal core domain and an intrinsically disordered C-terminal tail domain. Though intrinsically disordered regions are common among histone chaperones, their roles in histone binding and chaperoning remain unclear. Using an NMR-based approach, here we demonstrate that the Xenopus laevis Npm tail domain controls the binding of histones at its largest acidic stretch (A2) via direct competition with both the C-terminal basic stretch and basic nuclear localization signal. NMR and small-angle X-ray scattering (SAXS) structural analyses allowed us to construct models of both the tail domain and the pentameric complex. Functional analyses demonstrate that these competitive intramolecular interactions negatively regulate Npm histone chaperone activity in vitro. Together these data establish a potentially generalizable mechanism of histone chaperone regulation via dynamic and specific intramolecular shielding of histone interaction sites.
Collapse
Affiliation(s)
- Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Tsutomu Matsui
- Department of Chemistry, Stanford University, Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jerome M Karp
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Takashi Onikubo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sean Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Mark Girvin
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
14
|
Warren C, Shechter D. Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches. J Mol Biol 2017; 429:2401-2426. [PMID: 28610839 DOI: 10.1016/j.jmb.2017.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/21/2023]
Abstract
Chromatin is the complex of eukaryotic DNA and proteins required for the efficient compaction of the nearly 2-meter-long human genome into a roughly 10-micron-diameter cell nucleus. The fundamental repeating unit of chromatin is the nucleosome: 147bp of DNA wrapped about an octamer of histone proteins. Nucleosomes are stable enough to organize the genome yet must be dynamically displaced and reassembled to allow access to the underlying DNA for transcription, replication, and DNA damage repair. Histone chaperones are a non-catalytic group of proteins that are central to the processes of nucleosome assembly and disassembly and thus the fluidity of the ever-changing chromatin landscape. Histone chaperones are responsible for binding the highly basic histone proteins, shielding them from non-specific interactions, facilitating their deposition onto DNA, and aiding in their eviction from DNA. Although most histone chaperones perform these common functions, recent structural studies of many different histone chaperones reveal that there are few commonalities in their folds. Importantly, sequence-based predictions show that histone chaperones are highly enriched in intrinsically disordered regions (IDRs) and acidic stretches. In this review, we focus on the molecular mechanisms underpinning histone binding, selectivity, and regulation of these highly dynamic protein regions. We highlight new evidence suggesting that IDRs are often critical for histone chaperone function and play key roles in chromatin assembly and disassembly pathways.
Collapse
Affiliation(s)
- Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Scott DD, Oeffinger M. Nucleolin and nucleophosmin: nucleolar proteins with multiple functions in DNA repair. Biochem Cell Biol 2016; 94:419-432. [PMID: 27673355 DOI: 10.1139/bcb-2016-0068] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolus represents a highly multifunctional intranuclear organelle in which, in addition to the canonical ribosome assembly, numerous processes such as transcription, DNA repair and replication, the cell cycle, and apoptosis are coordinated. The nucleolus is further a key hub in the sensing of cellular stress and undergoes major structural and compositional changes in response to cellular perturbations. Numerous nucleolar proteins have been identified that, upon sensing nucleolar stress, deploy additional, non-ribosomal roles in the regulation of varied cell processes including cell cycle arrest, arrest of DNA replication, induction of DNA repair, and apoptosis, among others. The highly abundant proteins nucleophosmin (NPM1) and nucleolin (NCL) are two such factors that transit to the nucleoplasm in response to stress, and participate directly in the repair of numerous different DNA damages. This review discusses the contributions made by NCL and (or) NPM1 to the different DNA repair pathways employed by mammalian cells to repair DNA insults, and examines the implications of such activities for the regulation, pathogenesis, and therapeutic targeting of NPM1 and NCL.
Collapse
Affiliation(s)
- Daniel D Scott
- a Laboratory of RNP Biochemistry, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- b Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H3A 2A3, Canada
| | - Marlene Oeffinger
- a Laboratory of RNP Biochemistry, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- b Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC H3A 2A3, Canada
- c Département de biochimie et médecine moléculaire, Faculté de Médecine, Université de Montréal, QC H3T 1J4, Canada
| |
Collapse
|
16
|
A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility. Sci Rep 2016; 6:32114. [PMID: 27558753 PMCID: PMC4997359 DOI: 10.1038/srep32114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/02/2016] [Indexed: 01/29/2023] Open
Abstract
Nucleoplasmin (NP) is an abundant histone chaperone in vertebrate oocytes and embryos involved in storing and releasing maternal histones to establish and maintain the zygotic epigenome. NP has been considered a H2A-H2B histone chaperone, and recently it has been shown that it can also interact with H3-H4. However, its interaction with different types of histones has not been quantitatively studied so far. We show here that NP binds H2A-H2B, H3-H4 and linker histones with Kd values in the subnanomolar range, forming different complexes. Post-translational modifications of NP regulate exposure of the polyGlu tract at the disordered distal face of the protein and induce an increase in chaperone affinity for all histones. The relative affinity of NP for H2A-H2B and linker histones and the fact that they interact with the distal face of the chaperone could explain their competition for chaperone binding, a relevant process in NP-mediated sperm chromatin remodelling during fertilization. Our data show that NP binds H3-H4 tetramers in a nucleosomal conformation and dimers, transferring them to DNA to form disomes and tetrasomes. This finding might be relevant to elucidate the role of NP in chromatin disassembly and assembly during replication and transcription.
Collapse
|
17
|
On the link between conformational changes, ligand binding and heat capacity. Biochim Biophys Acta Gen Subj 2016; 1860:868-878. [DOI: 10.1016/j.bbagen.2015.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
18
|
Biophysical Characterization of Nucleophosmin Interactions with Human Immunodeficiency Virus Rev and Herpes Simplex Virus US11. PLoS One 2015; 10:e0143634. [PMID: 26624888 PMCID: PMC4704560 DOI: 10.1371/journal.pone.0143634] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/06/2015] [Indexed: 02/07/2023] Open
Abstract
Nucleophosmin (NPM1, also known as B23, numatrin or NO38) is a pentameric RNA-binding protein with RNA and protein chaperon functions. NPM1 has increasingly emerged as a potential cellular factor that directly associates with viral proteins; however, the significance of these interactions in each case is still not clear. In this study, we have investigated the physical interaction of NPM1 with both human immunodeficiency virus type 1 (HIV-1) Rev and Herpes Simplex virus type 1 (HSV-1) US11, two functionally homologous proteins. Both viral proteins show, in mechanistically different modes, high affinity for a binding site on the N-terminal oligomerization domain of NPM1. Rev, additionally, exhibits low-affinity for the central histone-binding domain of NPM1. We also showed that the proapoptotic cyclic peptide CIGB-300 specifically binds to NPM1 oligomerization domain and blocks its association with Rev and US11. Moreover, HIV-1 virus production was significantly reduced in the cells treated with CIGB-300. Results of this study suggest that targeting NPM1 may represent a useful approach for antiviral intervention.
Collapse
|
19
|
Edlich-Muth C, Artero JB, Callow P, Przewloka MR, Watson AA, Zhang W, Glover DM, Debski J, Dadlez M, Round AR, Forsyth VT, Laue ED. The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins. J Mol Biol 2015; 427:1949-63. [PMID: 25813344 PMCID: PMC4414354 DOI: 10.1016/j.jmb.2015.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/28/2022]
Abstract
Nucleoplasmin is a histone chaperone that consists of a pentameric N-terminal domain and an unstructured C-terminal tail. The pentameric core domain, a doughnut-like structure with a central pore, is only found in the nucleoplasmin family. Here, we report the first structure of a nucleoplasmin-like domain (NPL) from the unrelated Drosophila protein, FKBP39, and we present evidence that this protein associates with chromatin. Furthermore, we show that two other chromatin proteins, Arabidopsis thaliana histone deacetylase type 2 (HD2) and Saccharomyces cerevisiae Fpr4, share the NPL fold and form pentamers, or a dimer of pentamers in the case of HD2. Thus, we propose a new family of proteins that share the pentameric nucleoplasmin-like NPL domain and are found in protists, fungi, plants and animals.
Collapse
Affiliation(s)
- Christian Edlich-Muth
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Jean-Baptiste Artero
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, Grenoble, Cedex 9, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, United Kingdom
| | - Phil Callow
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, Grenoble, Cedex 9, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, United Kingdom
| | - Marcin R Przewloka
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH Cambridge, United Kingdom
| | - Aleksandra A Watson
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - Wei Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH Cambridge, United Kingdom
| | - Janusz Debski
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Street, 02-106 Warsaw, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawinskiego Street, 02-106 Warsaw, Poland
| | - Adam R Round
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France; Unit for Virus Host-Cell Interactions, University Grenoble Alpes-European Molecular Biology Laboratory-CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, United Kingdom
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, Grenoble, Cedex 9, France; Faculty of Natural Sciences, Keele University, ST5 5BG Staffordshire, United Kingdom
| | - Ernest D Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, United Kingdom.
| |
Collapse
|
20
|
Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition. Cell Rep 2015; 10:1735-1748. [PMID: 25772360 DOI: 10.1016/j.celrep.2015.02.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 01/09/2015] [Accepted: 02/13/2015] [Indexed: 11/23/2022] Open
Abstract
Nucleoplasmin (Npm) is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs) specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.
Collapse
|
21
|
Vitorazi L, Ould-Moussa N, Sekar S, Fresnais J, Loh W, Chapel JP, Berret JF. Evidence of a two-step process and pathway dependency in the thermodynamics of poly(diallyldimethylammonium chloride)/poly(sodium acrylate) complexation. SOFT MATTER 2014; 10:9496-9505. [PMID: 25347132 DOI: 10.1039/c4sm01461h] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent studies have pointed out the importance of polyelectrolyte assembly in the elaboration of innovative nanomaterials. Beyond their structures, many important questions on the thermodynamics of association remain unanswered. Here, we investigate the complexation between poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium acrylate) (PANa) chains using a combination of three techniques: isothermal titration calorimetry (ITC), static and dynamic light scattering and electrophoresis. Upon addition of PDADMAC to PANa or vice-versa, the results obtained by the different techniques agree well with each other, and reveal a two-step process. The primary process is the formation of highly charged polyelectrolyte complexes of size 100 nm. The secondary process is the transition towards a coacervate phase made of rich and poor polymer droplets. The binding isotherms measured are accounted for using a phenomenological model that provides the thermodynamic parameters for each reaction. Small positive enthalpies and large positive entropies consistent with a counterion release scenario are found throughout this study. Furthermore, this work stresses the importance of the underestimated formulation pathway or mixing order in polyelectrolyte complexation.
Collapse
Affiliation(s)
- L Vitorazi
- Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Vega S, Abian O, Velazquez-Campoy A. A unified framework based on the binding polynomial for characterizing biological systems by isothermal titration calorimetry. Methods 2014; 76:99-115. [PMID: 25305413 DOI: 10.1016/j.ymeth.2014.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023] Open
Abstract
Isothermal titration calorimetry (ITC) has become the gold-standard technique for studying binding processes due to its high precision and sensitivity, as well as its capability for the simultaneous determination of the association equilibrium constant, the binding enthalpy and the binding stoichiometry. The current widespread use of ITC for biological systems has been facilitated by technical advances and the availability of commercial calorimeters. However, the complexity of data analysis for non-standard models is one of the most significant drawbacks in ITC. Many models for studying macromolecular interactions can be found in the literature, but it looks like each biological system requires specific modeling and data analysis approaches. The aim of this article is to solve this lack of unity and provide a unified methodological framework for studying binding interactions by ITC that can be applied to any experimental system. The apparent complexity of this methodology, based on the binding polynomial, is overcome by its easy generalization to complex systems.
Collapse
Affiliation(s)
- Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain; Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain; IIS Aragón, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain; Fundacion ARAID, Government of Aragon, Spain.
| |
Collapse
|
23
|
Ramos I, Fernández-Rivero N, Arranz R, Aloria K, Finn R, Arizmendi JM, Ausió J, Valpuesta JM, Muga A, Prado A. The intrinsically disordered distal face of nucleoplasmin recognizes distinct oligomerization states of histones. Nucleic Acids Res 2013; 42:1311-25. [PMID: 24121686 PMCID: PMC3902905 DOI: 10.1093/nar/gkt899] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of Nucleoplasmin (NP) as a H2A-H2B histone chaperone has been extensively characterized. To understand its putative interaction with other histone ligands, we have characterized its ability to bind H3-H4 and histone octamers. We find that the chaperone forms distinct complexes with histones, which differ in the number of molecules that build the assembly and in their spatial distribution. When complexed with H3-H4 tetramers or histone octamers, two NP pentamers form an ellipsoidal particle with the histones located at the center of the assembly, in stark contrast with the NP/H2A-H2B complex that contains up to five histone dimers bound to one chaperone pentamer. This particular assembly relies on the ability of H3-H4 to form tetramers either in solution or as part of the octamer, and it is not observed when a variant of H3 (H3C110E), unable to form stable tetramers, is used instead of the wild-type protein. Our data also suggest that the distal face of the chaperone is involved in the interaction with distinct types of histones, as supported by electron microscopy analysis of the different NP/histone complexes. The use of the same structural region to accommodate all type of histones could favor histone exchange and nucleosome dynamics.
Collapse
Affiliation(s)
- Isbaal Ramos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del PaísVasco, P. O. Box 644, 48080 Bilbao, Spain, Unidad de Biofísica (Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea), Barrio Sarriena s/n, 48080 Leioa Spain, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain and Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The historical origins and current interpretation of the molecular chaperone concept are presented, with the emphasis on the distinction between folding chaperones and assembly chaperones. Definitions of some basic terms in this field are offered and misconceptions pointed out. Two examples of assembly chaperone are discussed in more detail: the role of numerous histone chaperones in fundamental nuclear processes and the co-operation of assembly chaperones with folding chaperones in the production of the world's most important enzyme.
Collapse
Affiliation(s)
- R John Ellis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
25
|
Diverse functional manifestations of intrinsic structural disorder in molecular chaperones. Biochem Soc Trans 2013; 40:963-8. [PMID: 22988848 DOI: 10.1042/bst20120108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IDPs (intrinsically disordered proteins) represent a unique class of proteins which show diverse molecular mechanisms in key biological functions. The aim of the present mini-review is to summarize IDP chaperones that have increasingly been studied in the last few years, by focusing on the role of intrinsic disorder in their molecular mechanism. Disordered regions in both globular and disordered chaperones are often involved directly in chaperone action, either by modulating activity or through direct involvement in substrate identification and binding. They might also be responsible for the subcellular localization of the protein. In outlining the state of the art, we survey known IDP chaperones discussing the following points: (i) globular chaperones that have an experimentally proven functional disordered region(s), (ii) chaperones that are completely disordered along their entire length, and (iii) the possible mechanisms of action of disordered chaperones. Through all of these details, we chart out how far the field has progressed, only to emphasize the long road ahead before the chaperone function can be firmly established as part of the physiological mechanistic arsenal of the emerging group of IDPs.
Collapse
|
26
|
Le VH, Buscaglia R, Chaires JB, Lewis EA. Modeling complex equilibria in isothermal titration calorimetry experiments: thermodynamic parameters estimation for a three-binding-site model. Anal Biochem 2012; 434:233-41. [PMID: 23262283 DOI: 10.1016/j.ab.2012.11.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
Isothermal titration calorimetry (ITC) is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g., K(eq) (or ΔG), ΔH, ΔS, and n) for a ligand-binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combining equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example, one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models, for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding, need to be developed on a case-by-case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the nonlinear regression analysis of a multiple-binding-site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g., up to nine parameters in the three-binding-site model) yields thermodynamic parameters with acceptable accuracy.
Collapse
Affiliation(s)
- Vu H Le
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | |
Collapse
|
27
|
Finn RM, Ellard K, Eirín-López JM, Ausió J. Vertebrate nucleoplasmin and NASP: egg histone storage proteins with multiple chaperone activities. FASEB J 2012; 26:4788-804. [PMID: 22968912 DOI: 10.1096/fj.12-216663] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent reviews have focused on the structure and function of histone chaperones involved in different aspects of somatic cell chromatin metabolism. One of the most dramatic chromatin remodeling processes takes place immediately after fertilization and is mediated by egg histone storage chaperones. These include members of the nucleoplasmin (NPM2/NPM3), which are preferentially associated with histones H2A-H2B in the egg and the nuclear autoantigenic sperm protein (NASP) families. Interestingly, in addition to binding and providing storage to H3/H4 in the egg and in somatic cells, NASP has been shown to be a unique genuine chaperone for histone H1. This review revolves around the structural and functional roles of these two families of chaperones whose activity is modulated by their own post-translational modifications (PTMs), particularly phosphorylation. Beyond their important role in the remodeling of paternal chromatin in the early stages of embryogenesis, NPM and NASP members can interact with a plethora of proteins in addition to histones in somatic cells and play a critical role in processes of functional cell alteration, such as in cancer. Despite their common presence in the egg, these two histone chaperones appear to be evolutionarily unrelated. In contrast to members of the NPM family, which share a common monophyletic evolutionary origin, the different types of NASP appear to have evolved recurrently within different taxa.
Collapse
Affiliation(s)
- Ron M Finn
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | | | | | | |
Collapse
|
28
|
Platonova O, Akey IV, Head JF, Akey CW. Crystal structure and function of human nucleoplasmin (npm2): a histone chaperone in oocytes and embryos. Biochemistry 2011; 50:8078-89. [PMID: 21863821 DOI: 10.1021/bi2006652] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human Npm2 is an ortholog of Xenopus nucleoplasmin (Np), a chaperone that binds histones. We have determined the crystal structure of a truncated Npm2-core at 1.9 Å resolution and show that the N-terminal domains of Npm2 and Np form similar pentamers. This allowed us to model an Npm2 decamer which may be formed by hydrogen bonds between quasi-conserved residues in the interface between two pentamers. Interestingly, the Npm2 pentamer lacks a prototypical A1-acidic tract in each of its subunits. This feature may be responsible for the inability of Npm2-core to bind histones. However, Npm2 with a large acidic tract in its C-terminal tail (Npm2-A2) is able to bind histones and form large complexes. Fluorescence resonance energy transfer experiments and biochemical analysis of loop mutations support the premise that nucleoplasmins form decamers when they bind H2A-H2B dimers and H3-H4 tetramers simultaneously. In the absence of histone tetramers, these chaperones bind H2A-H2B dimers with a single pentamer forming the central hub. When taken together, our data provide insights into the mechanism of histone binding by nucleoplasmins.
Collapse
Affiliation(s)
- Olga Platonova
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118-2526, USA
| | | | | | | |
Collapse
|
29
|
Arregi I, Falces J, Bañuelos S, Urbaneja MA, Taneva SG. The Nuclear Transport Machinery Recognizes Nucleoplasmin–Histone Complexes. Biochemistry 2011; 50:7104-10. [DOI: 10.1021/bi2008867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Igor Arregi
- Unidad de Biofı́sica (CSIC/UPV-EHU),
Departamento de Bioquı́mica y Biologı́a Molecular, Universidad del Paı́s Vasco, POB 644, 48080 Bilbao,
Spain
| | - Jorge Falces
- Unidad de Biofı́sica (CSIC/UPV-EHU),
Departamento de Bioquı́mica y Biologı́a Molecular, Universidad del Paı́s Vasco, POB 644, 48080 Bilbao,
Spain
| | - Sonia Bañuelos
- Unidad de Biofı́sica (CSIC/UPV-EHU),
Departamento de Bioquı́mica y Biologı́a Molecular, Universidad del Paı́s Vasco, POB 644, 48080 Bilbao,
Spain
| | - Marı́a A. Urbaneja
- Unidad de Biofı́sica (CSIC/UPV-EHU),
Departamento de Bioquı́mica y Biologı́a Molecular, Universidad del Paı́s Vasco, POB 644, 48080 Bilbao,
Spain
| | - Stefka G. Taneva
- Unidad de Biofı́sica (CSIC/UPV-EHU),
Departamento de Bioquı́mica y Biologı́a Molecular, Universidad del Paı́s Vasco, POB 644, 48080 Bilbao,
Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
30
|
Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 2010; 24:1-16. [DOI: 10.1002/jmr.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Narayanan MS, Kushwaha M, Ersfeld K, Fullbrook A, Stanne TM, Rudenko G. NLP is a novel transcription regulator involved in VSG expression site control in Trypanosoma brucei. Nucleic Acids Res 2010; 39:2018-31. [PMID: 21076155 PMCID: PMC3064810 DOI: 10.1093/nar/gkq950] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly post-transcriptionally, and how ESs are mono-allelically controlled remains a mystery. Here we identify a novel transcription regulator, which resembles a nucleoplasmin-like protein (NLP) with an AT-hook motif. NLP is key for ES control in bloodstream form T. brucei, as NLP knockdown results in 45- to 65-fold derepression of the silent VSG221 ES. NLP is also involved in repression of transcription in the inactive VSG Basic Copy arrays, minichromosomes and procyclin loci. NLP is shown to be enriched on the 177- and 50-bp simple sequence repeats, the non-transcribed regions around rDNA and procyclin, and both active and silent ESs. Blocking NLP synthesis leads to downregulation of the active ES, indicating that NLP plays a role in regulating appropriate levels of transcription of ESs in both their active and silent state. Discovery of the unusual transcription regulator NLP provides new insight into the factors that are critical for ES control.
Collapse
Affiliation(s)
- Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
32
|
Falces J, Arregi I, Konarev PV, Urbaneja MA, Svergun DI, Taneva SG, Bañuelos S. Recognition of nucleoplasmin by its nuclear transport receptor importin α/β: insights into a complete import complex. Biochemistry 2010; 49:9756-69. [PMID: 20925424 DOI: 10.1021/bi101179g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear import of the pentameric histone chaperone nucleoplasmin (NP) is mediated by importin α, which recognizes its nuclear localization sequence (NLS), and importin β, which interacts with α and is in charge of the translocation of the NP/α/β complex through the nuclear pore. Herein, we characterize the assembly of a functional transport complex formed by full-length NP with importin α/β. Isothermal titration calorimetry (ITC) was used to analyze the thermodynamics of the interactions of importin α with β, α with NP, and the α/β heterodimer with NP. Our data show that binding of both importin α and α/β to NP is governed by a favorable enthalpic contribution and that NP can accommodate up to five importin molecules per NP pentamer. Phosphomimicking mutations of NP, which render the protein active in histone chaperoning, do not modulate the interaction with importin. Using small-angle X-ray scattering, we model the α/β heterodimer, NP/α, and NP/α/β solution structures, which reveal a glimpse of a complete nuclear import complex with an oligomeric cargo protein. The set of alternative models, equally well fitting the scattering data, yields asymmetric elongated particles that might represent consecutive geometries the complex can adopt when stepping through the nuclear pore.
Collapse
Affiliation(s)
- Jorge Falces
- Unidad de Biofísica (CSIC/UPV-EHU), Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, POB 644, 48080 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Ramos I, Martín-Benito J, Finn R, Bretaña L, Aloria K, Arizmendi JM, Ausió J, Muga A, Valpuesta JM, Prado A. Nucleoplasmin binds histone H2A-H2B dimers through its distal face. J Biol Chem 2010; 285:33771-8. [PMID: 20696766 DOI: 10.1074/jbc.m110.150664] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoplasmin (NP) is a pentameric chaperone that regulates the condensation state of chromatin extracting specific basic proteins from sperm chromatin and depositing H2A-H2B histone dimers. It has been proposed that histones could bind to either the lateral or distal face of the pentameric structure. Here, we combine different biochemical and biophysical techniques to show that natural, hyperphosphorylated NP can bind five H2A-H2B dimers and that the amount of bound ligand depends on the overall charge (phosphorylation level) of the chaperone. Three-dimensional reconstruction of NP/H2A-H2B complex carried out by electron microscopy reveals that histones interact with the chaperone distal face. Limited proteolysis and mass spectrometry indicate that the interaction results in protection of the histone fold and most of the H2A and H2B C-terminal tails. This structural information can help to understand the function of NP as a histone chaperone.
Collapse
Affiliation(s)
- Isbaal Ramos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The histone shuffle: histone chaperones in an energetic dance. Trends Biochem Sci 2010; 35:476-89. [PMID: 20444609 DOI: 10.1016/j.tibs.2010.04.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022]
Abstract
Our genetic information is tightly packaged into a rather ingenious nucleoprotein complex called chromatin in a manner that enables it to be rapidly accessed during genomic processes. Formation of the nucleosome, which is the fundamental unit of chromatin, occurs via a stepwise process that is reversed to enable the disassembly of nucleosomes. Histone chaperone proteins have prominent roles in facilitating these processes as well as in replacing old histones with new canonical histones or histone variants during the process of histone exchange. Recent structural, biophysical and biochemical studies have begun to shed light on the molecular mechanisms whereby histone chaperones promote chromatin assembly, disassembly and histone exchange to facilitate DNA replication, repair and transcription.
Collapse
|
35
|
AtFKBP53 is a histone chaperone required for repression of ribosomal RNA gene expression in Arabidopsis. Cell Res 2010; 20:357-66. [DOI: 10.1038/cr.2010.22] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|