1
|
Agwa MM, Marzouk RE, Sabra SA. Advances in active targeting of ligand-directed polymeric nanomicelles via exploiting overexpressed cellular receptors for precise nanomedicine. RSC Adv 2024; 14:23520-23542. [PMID: 39071479 PMCID: PMC11273262 DOI: 10.1039/d4ra04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Many of the utilized drugs which already exist in the pharmaceutical sector are hydrophobic in nature. These drugs are characterized by being poorly absorbed and difficult to formulate in aqueous environments with low bioavailability, which could result in consuming high and frequent doses in order to fulfil the required therapeutic effect. As a result, there is a decisive demand to find modern alternatives to overcome all these drawbacks. Self-assembling polymeric nanomicelles (PMs) with their unique structure appear to be a fascinating choice as a pharmaceutical carrier system for improving the solubility & bioavailability of many drugs. PMs as drug carriers have many advantages including suitable size, high stability, prolonged circulation time, elevated cargo capacity and controlled therapeutic release. Otherwise, the pathological features of some diseased cells, like cancer, allow PMs with particle size <200 nm to be passively uptaken via enhanced permeability and retention phenomenon (EPR). However, the passive targeting approach was proven to be insufficient in many cases. Consequently, the therapeutic efficiency of these PMs can be further reinforced by enhancing their cellular internalization via incorporating targeting ligands. These targeting ligands can enhance the assemblage of loaded cargos in the intended tissues via receptor-mediated endocytosis through exploiting receptors robustly expressed on the exterior of the intended tissue while minimizing their toxic effects. In this review, the up-to-date approaches of harnessing active targeting ligands to exploit certain overexpressed receptors will be summarized concerning the functionalization of the exterior of PMs for ameliorating their targeting potential in the scope of nanomedicine.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El-Behooth St, Dokki Giza 12622 Egypt +202 33370931 +202 33371635
| | - Rehab Elsayed Marzouk
- Medical Biochemistry Department, Faculty of Medicine, Helwan University Helwan Cairo Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| |
Collapse
|
2
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
de Bever L, Popal S, van Schaik J, Rubahamya B, van Delft FL, Thurber GM, van Berkel SS. Generation of DAR1 Antibody-Drug Conjugates for Ultrapotent Payloads Using Tailored GlycoConnect Technology. Bioconjug Chem 2023; 34:538-548. [PMID: 36857521 PMCID: PMC10020967 DOI: 10.1021/acs.bioconjchem.2c00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Indexed: 03/03/2023]
Abstract
GlycoConnect technology can be readily adapted to provide different drug-to-antibody ratios (DARs) and is currently also evaluated in various clinical programs, including ADCT-601 (DAR2), MRG004a (DAR4), and XMT-1660 (DAR6). While antibody-drug conjugates (ADCs) typically feature a DAR2-8, it has become clear that ADCs with ultrapotent payloads (e.g., PBD dimers and calicheamicin) can only be administered to patients at low doses (<0.5 mg/kg), which may compromise effective biodistribution and may be insufficient to reach target receptor saturation in the tumor. Here, we show that GlycoConnect technology can be readily extended to DAR1 ADCs without the need of antibody re-engineering. We demonstrate that various ultrapotent, cytotoxic payloads are amenable to this methodology. In a follow-up experiment, HCC-1954 tumor spheroids were treated with either an AlexaFluor647-labeled DAR1 or DAR2 PBD-based ADC to study the effect on tumor penetration. Significant improvement of tumor spheroid penetration was observed for the DAR1 ADC compared to the DAR2 ADC at an equal payload dose, underlining the potential of a lower DAR for ADCs bearing ultrapotent payloads.
Collapse
Affiliation(s)
| | - Sorraya Popal
- Synaffix
BV, Kloosterstraat 9, 5349 AB Oss, The Netherlands
| | | | - Baron Rubahamya
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Greg M. Thurber
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
4
|
Yu S, Wu Y, Wang S, Siedler M, Ihnat PM, Filoti DI, Lu M, Zuo L. A High-Throughput MEMS-Based Differential Scanning Calorimeter for Direct Thermal Characterization of Antibodies. BIOSENSORS 2022; 12:422. [PMID: 35735569 PMCID: PMC9221040 DOI: 10.3390/bios12060422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Calorimeters, which can be used for rapid thermal characterization of biomolecules, are getting intense attention in drug development. This paper presents a novel MEMS-based differential scanning calorimeter (DSC) for direct thermal characterization of protein samples. The DSC consisted of a pair of temperature sensors made by vanadium oxide (VOx) film with a temperature coefficient of resistivity of -0.025/K at 300 K, a microfluidic device with high thermal insulation (2.8 K/mW), and a Peltier heater for linear temperature scanning. The DSC exhibited high sensitivity (6.1 µV/µW), low noise (0.4 µW), high scanning rate (45 K/min), and low sample consumption volume (0.63 µL). The MEMS DSC was verified by measuring the temperature-induced denaturation of lysozyme at different pH, and then used to study the thermal stability of a monoclonal antibody (mAb), an antigen-binding fragment (Fab), and a dual variable domain immunoglobulin (DVD-Ig) at pH = 6. The results showed that lysozyme is a stable protein in the pH range of 4.0-8.0. The protein stability study revealed that the transition temperatures of the intact Fab fragment, mAb, and DVD proteins were comparable with conformational stability results obtained using conventional commercial DSC. These studies demonstrated that the MEMS DSC is an effective tool for directly understanding the thermal stability of antibodies in a high-throughput and low-cost manner compared to conventional calorimeters.
Collapse
Affiliation(s)
- Shifeng Yu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (Y.W.); (S.W.)
| | - Yongjia Wu
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (Y.W.); (S.W.)
- School of Civil Engineering and Architecture, Wuhan University of Technology, No. 122, Luoshi Road, Wuhan 430070, China
| | - Shuyu Wang
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (Y.W.); (S.W.)
| | | | - Peter M. Ihnat
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (P.M.I.); (D.I.F.)
| | - Dana I. Filoti
- AbbVie Bioresearch Center, Worcester, MA 01605, USA; (P.M.I.); (D.I.F.)
| | - Ming Lu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11079, USA;
| | - Lei Zuo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (Y.W.); (S.W.)
| |
Collapse
|
5
|
Ramaswamy M, Kim T, Jones DC, Ghadially H, Mahmoud TI, Garcia A, Browne G, Zenonos Z, Puplampu-Dove Y, Riggs JM, Bhat GK, Herbst R, Schofield DJ, Carlesso G. Immunomodulation of T and NK-cell Responses by a Bispecific Antibody Targeting CD28 Homolog and PD-L1. Cancer Immunol Res 2021; 10:200-214. [PMID: 34937728 DOI: 10.1158/2326-6066.cir-21-0218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/03/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Checkpoint blockade therapies targeting PD-1/PD-L1 and CTLA-4 are clinically successful but also evoke adverse events due to systemic T-cell activation. We engineered a bispecific, monoclonal antibody targeting CD28 homolog (CD28H), a newly identified B7 family receptor that is constitutively expressed on T and natural killer (NK) cells, with a PD-L1 antibody to potentiate tumor-specific immune responses. The bispecific antibody led to T-cell costimulation, induced NK cell cytotoxicity of PD-L1-expressing tumor cells, and activated tissue-resident memory CD8+ T cells. Mechanistically, the CD28H agonistic arm of the bispecific antibody reduced PD-L1/PD-1-induced SHP2 phosphorylation, while simultaneously augmenting T-cell receptor (TCR) signaling by activating the MAPK and AKT pathways. This bispecific approach could be used to target multiple immune cells, including CD8+ T cells, tissue-resident memory T cells, and NK cells, in a tumor-specific manner that may lead to induction of durable, therapeutic antitumor responses.
Collapse
Affiliation(s)
- Madhu Ramaswamy
- Translational Science and Experimental Medicine, AstraZeneca (United States)
| | - Taeil Kim
- Oncology R, AstraZeneca (United States)
| | - Des C Jones
- Early Oncology R&D, AstraZeneca (United Kingdom)
| | | | | | - Andrew Garcia
- Antibody Discovery & Protein Engineering, AstraZeneca (United States)
| | - Gareth Browne
- Antibody Discovery and Protein Engineering R, AstraZeneca (United Kingdom)
| | - Zenon Zenonos
- Antibody Development and Protein Engineering R, AstraZeneca (United Kingdom)
| | | | | | | | | | - Darren J Schofield
- Antibody Discovery and Protein Engineering R, AstraZeneca (United Kingdom)
| | | |
Collapse
|
6
|
Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H. Design of a Trispecific Checkpoint Inhibitor and Natural Killer Cell Engager Based on a 2 + 1 Common Light Chain Antibody Architecture. Front Immunol 2021; 12:669496. [PMID: 34040611 PMCID: PMC8141644 DOI: 10.3389/fimmu.2021.669496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Natural killer cell engagers gained enormous interest in recent years due to their potent anti-tumor activity and favorable safety profile. Simultaneously, chicken-derived antibodies entered clinical studies paving the way for avian-derived therapeutics. In this study, we describe the affinity maturation of a common light chain (cLC)-based, chicken-derived antibody targeting EGFR, followed by utilization of the same light chain for the isolation of CD16a- and PD-L1-specific monoclonal antibodies. The resulting binders target their respective antigen with single-digit nanomolar affinity while blocking the ligand binding of all three respective receptors. Following library-based humanization, bispecific and trispecific variants in a standard 1 + 1 or a 2 + 1 common light chain format were generated, simultaneously targeting EGFR, CD16a, and PD-L1. The trispecific antibody mediated an elevated antibody-dependent cellular cytotoxicity (ADCC) in comparison to the EGFR×CD16a bispecific variant by effectively bridging EGFR/PD-L1 double-positive cancer cells with CD16a-positive effector cells. These findings represent, to our knowledge, the first detailed report on the generation of a trispecific 2 + 1 antibodies exhibiting a common light chain and illustrate synergistic effects of trispecific antigen binding. Overall, this generic procedure paves the way for the engineering of tri- and oligospecific therapeutic antibodies derived from avian immunizations.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibody Specificity
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- Cell Line, Tumor
- Chickens
- Cytotoxicity, Immunologic/drug effects
- Drug Design
- Epitopes
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/immunology
- ErbB Receptors/metabolism
- Immune Checkpoint Inhibitors/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immunization
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Light Chains/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- Jan P. Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - David Fiebig
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Laboratory, Biologics Technology and Development, Darmstadt, Germany
| | - Björn Hock
- Global Pharmaceutical Research and Development, Ferring International Center S.A., Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Wang B, Yang C, Jin X, Du Q, Wu H, Dall'Acqua W, Mazor Y. Regulation of antibody-mediated complement-dependent cytotoxicity by modulating the intrinsic affinity and binding valency of IgG for target antigen. MAbs 2021; 12:1690959. [PMID: 31829766 PMCID: PMC6927764 DOI: 10.1080/19420862.2019.1690959] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Complement-dependent cytotoxicity (CDC) is a potent effector mechanism, engaging both innate and adaptive immunity. Although strategies to improve the CDC activity of antibody therapeutics have primarily focused on enhancing the interaction between the antibody crystallizable fragment (Fc) and the first subcomponent of the C1 complement complex (C1q), the relative importance of intrinsic affinity and binding valency of an antibody to the target antigen is poorly understood. Here we show that antibody binding affinity to a cell surface target antigen evidently affects the extent and efficacy of antibody-mediated complement activation. We further report the fundamental role of antibody binding valency in the capacity to recruit C1q and regulate CDC. More specifically, an array of affinity-modulated variants and functionally monovalent bispecific derivatives of high-affinity anti-epidermal growth factor receptor (EGFR) and anti-human epidermal growth factor receptor 2 (HER2) therapeutic immunoglobulin Gs (IgGs), previously reported to be deficient in mediating complement activation, were tested for their ability to bind C1q by biolayer interferometry using antigen-loaded biosensors and to exert CDC against a panel of EGFR and HER2 tumor cells of various histological origins. Significantly, affinity-reduced variants or monovalent derivatives, but not their high-affinity bivalent IgG counterparts, induced near-complete cell cytotoxicity in tumor cell lines that had formerly been shown to be resistant to complement-mediated attack. Our findings suggest that monovalent target engagement may contribute to an optimal geometrical positioning of the antibody Fc to engage C1q and deploy the complement pathway.
Collapse
Affiliation(s)
- Bo Wang
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chunning Yang
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Xiaofang Jin
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Qun Du
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Herren Wu
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - William Dall'Acqua
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Yariv Mazor
- Department of Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
8
|
Su Z, Wang B, Almo SC, Wu Y. Understanding the Targeting Mechanisms of Multi-Specific Biologics in Immunotherapy with Multiscale Modeling. iScience 2020; 23:101835. [PMID: 33305190 PMCID: PMC7710644 DOI: 10.1016/j.isci.2020.101835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Immunotherapeutics are frequently associated with adverse side effects due to the elicitation of global immune modulation. To lower the risk of these side effects, recombinant DNA technology is employed to enhance the selectivity of cell targeting by genetically fusing different biomolecules, yielding new species referred to as multi-specific biologics. The design of new multi-specific biologics is a central challenge for the realization of new immunotherapies. To understand the molecular determinants responsible for regulating the binding between multi-specific biologics and surface-bound membrane receptors, we developed a multiscale computational framework that integrates various simulation approaches covering different timescales and spatial resolutions. Our model system of multi-specific biologics contains two natural ligands of immune receptors, which are covalently tethered by a peptide linker. Using this method, a number of interesting features of multi-specific biologics were identified. Our study therefore provides an important strategy to design the next-generation biologics for immunotherapy. Two proteins are connected by different linkers as a model of bispecific biologics Conformational dynamics of biologics are captured by microsecond MD simulations Coarse-grained simulations are used to test binding between biologics and receptors Biologics with long and flexible linkers are more efficient in targeting receptors
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Bo Wang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
9
|
Swope N, Chung WK, Cao M, Motabar D, Liu D, Ahuja S, Handlogten M. Impact of enzymatic reduction on bivalent bispecific antibody fragmentation and loss of product purity upon reoxidation. Biotechnol Bioeng 2020; 117:1063-1071. [PMID: 31930476 PMCID: PMC10947566 DOI: 10.1002/bit.27264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 11/11/2022]
Abstract
Antibody disulfide bond (DSB) reduction during manufacturing processes is a widely observed phenomenon attributed to host cell reductases present in harvest cell culture fluid. Enzyme-induced antibody reduction leads to product fragments and aggregates that increase the impurity burden on the purification process. The impact of reduction on bivalent bispecific antibodies (BisAbs), which are increasingly entering the clinic, has yet to be investigated. We focused on the reduction and reoxidation properties of a homologous library of bivalent BisAb formats that possess additional single-chain Fv (scFv) fragments with engineered DSBs. Despite all BisAbs having similar susceptibilities to enzymatic reduction, fragmentation pathways were dependent on the scFv-fusion site. Reduced molecules were allowed to reoxidize with and without low pH viral inactivation treatment. Both reoxidation studies demonstrated that multiple, complex BisAb species formed as a result of DSB mispairing. Furthermore, aggregate levels increased for all molecules when no low pH treatment was applied. Combined, our results show that complex DSB mispairing occurs during downstream processes while aggregate formation is dependent on sample treatment. These results are applicable to other novel monoclonal antibody-like formats containing engineered DSBs, thus highlighting the need to prevent reduction of novel protein therapeutics to avoid diminished product quality during manufacturing.
Collapse
Affiliation(s)
- Nicole Swope
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Wai Keen Chung
- Purification Process Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Mingyan Cao
- Analytical Sciences, AstraZeneca, Gaithersburg, USA
| | - Dana Motabar
- Purification Process Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Dengfeng Liu
- Analytical Sciences, AstraZeneca, Gaithersburg, USA
| | - Sanjeev Ahuja
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Handlogten
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
10
|
Steinhardt J, Wu Y, Fleming R, Ruddle BT, Patel P, Wu H, Gao C, Dimasi N. Fab-Arm Exchange Combined with Selective Protein A Purification Results in a Platform for Rapid Preparation of Monovalent Bispecific Antibodies Directly from Culture Media. Pharmaceutics 2019; 12:E3. [PMID: 31861347 PMCID: PMC7022642 DOI: 10.3390/pharmaceutics12010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Bispecific antibody (bsAb) applications have exponentially expanded with the advent of molecular engineering strategies that have addressed many of the initial challenges, including improper light chain pairing, heterodimer purity, aggregation, and pharmacokinetics. However, the lack of high-throughput methods for the generation of monovalent bsAbs has resulted in a bottleneck that has hampered their therapeutic evaluation, as current technologies can be cost-prohibitive and impractical. To address this issue, we incorporated single-matched point mutations in the CH3 domain to recapitulate the physiological process of human IgG4 Fab-arm exchange to generate monovalent bsAbs. Furthermore, we utilized the substitutions H435R and Y436F in the CH3 domain of IgG1, which incorporates residues from human IgG3, thus ablating protein A binding. By exploiting this combination of mutations and optimizing the reduction and reoxidation conditions for Fab arm exchange, highly pure monovalent bsAbs can be rapidly purified directly from combined culture media using standard protein A purification. This methodology, reported herein for the first time, allows for the high-throughput generation of monovalent bsAbs, thus increasing the capacity for evaluating monovalent bsAb iterations for therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 201878, USA; (J.S.); (Y.W.); (R.F.); (B.T.R.); (P.P.); (H.W.); (C.G.)
| |
Collapse
|
11
|
MacGregor P, Gonzalez-Munoz AL, Jobe F, Taylor MC, Rust S, Sandercock AM, Macleod OJS, Van Bocxlaer K, Francisco AF, D’Hooge F, Tiberghien A, Barry CS, Howard P, Higgins MK, Vaughan TJ, Minter R, Carrington M. A single dose of antibody-drug conjugate cures a stage 1 model of African trypanosomiasis. PLoS Negl Trop Dis 2019; 13:e0007373. [PMID: 31120889 PMCID: PMC6532856 DOI: 10.1371/journal.pntd.0007373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
Infections of humans and livestock with African trypanosomes are treated with drugs introduced decades ago that are not always fully effective and often have severe side effects. Here, the trypanosome haptoglobin-haemoglobin receptor (HpHbR) has been exploited as a route of uptake for an antibody-drug conjugate (ADC) that is completely effective against Trypanosoma brucei in the standard mouse model of infection. Recombinant human anti-HpHbR monoclonal antibodies were isolated and shown to be internalised in a receptor-dependent manner. Antibodies were conjugated to a pyrrolobenzodiazepine (PBD) toxin and killed T. brucei in vitro at picomolar concentrations. A single therapeutic dose (0.25 mg/kg) of a HpHbR antibody-PBD conjugate completely cured a T. brucei mouse infection within 2 days with no re-emergence of infection over a subsequent time course of 77 days. These experiments provide a demonstration of how ADCs can be exploited to treat protozoal diseases that desperately require new therapeutics.
Collapse
Affiliation(s)
- Paula MacGregor
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Fatoumatta Jobe
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Martin C. Taylor
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven Rust
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Alan M. Sandercock
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tristan J. Vaughan
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Ralph Minter
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Ruddle BT, Fleming R, Wu H, Gao C, Dimasi N. Characterization of Disulfide Bond Rebridged Fab-Drug Conjugates Prepared Using a Dual Maleimide Pyrrolobenzodiazepine Cytotoxic Payload. ChemMedChem 2019; 14:1185-1195. [PMID: 30980702 DOI: 10.1002/cmdc.201900077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Indexed: 12/16/2022]
Abstract
We describe the characterization of antigen binding fragments (Fab)-drug conjugates prepared using a dual maleimide pyrrolobenzodiazepine dimer cytotoxic payload (SG3710). Pyrrolobenzodiazepine dimers, which are DNA cross-linkers, are a class of payloads used in antibody-drug conjugates (ADCs). SG3710 was designed to rebridge two adjacent cysteines, such as those that form the canonical interchain disulfide bond between the light and heavy chain in Fab fragments. The rebridging generated homogenous Fab conjugates, with a drug-to-Fab ratio of one, as demonstrated by the preparation of rebridged Fabs derived from the anti-HER2 trastuzumab antibody and from a negative control antibody both prepared using recombinant expression and papain digestion. The resulting anti-HER2 trastuzumab Fab-rebridged conjugate retained antigen binding, was stable in rat serum, and demonstrated potent and antigen-dependent cancer cell-killing ability. Disulfide rebridging with SG3710 is a generic approach to prepare Fab-pyrrolobenzodiazepine dimer conjugates, which does not require the Fabs to be engineered for conjugation. Thus, SG3710 offers a flexible and straightforward platform for the controlled assembly of pyrrolobenzodiazepine dimer conjugates from any Fab for oncology applications.
Collapse
Affiliation(s)
- Ben T Ruddle
- AstraZeneca, Antibody Discovery and Protein Engineering, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Ryan Fleming
- AstraZeneca, Antibody Discovery and Protein Engineering, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Herren Wu
- AstraZeneca, Antibody Discovery and Protein Engineering, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Changshou Gao
- AstraZeneca, Antibody Discovery and Protein Engineering, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Nazzareno Dimasi
- AstraZeneca, Antibody Discovery and Protein Engineering, One MedImmune Way, Gaithersburg, MD, 20878, USA
| |
Collapse
|
13
|
Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain 2019; 160:1989-2003. [DOI: 10.1097/j.pain.0000000000001587] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
White JB, Fleming R, Masterson L, Ruddle BT, Zhong H, Fazenbaker C, Strout P, Rosenthal K, Reed M, Muniz-Medina V, Howard P, Dixit R, Wu H, Hinrichs MJ, Gao C, Dimasi N. Design and characterization of homogenous antibody-drug conjugates with a drug-to-antibody ratio of one prepared using an engineered antibody and a dual-maleimide pyrrolobenzodiazepine dimer. MAbs 2019; 11:500-515. [PMID: 30835621 DOI: 10.1080/19420862.2019.1578611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.
Collapse
Affiliation(s)
- Jason B White
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Ben T Ruddle
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Haihong Zhong
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | | | - Patrick Strout
- c Oncology Research , MedImmune , Gaithersburg , MD , USA
| | - Kim Rosenthal
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Molly Reed
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | | | - Philip Howard
- b Spirogen Ltd , QMB Innovation Center , London , UK
| | - Rakesh Dixit
- d Biologics Safety Assessment , MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | | | - Changshou Gao
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
15
|
Wang C, Vemulapalli B, Cao M, Gadre D, Wang J, Hunter A, Wang X, Liu D. A systematic approach for analysis and characterization of mispairing in bispecific antibodies with asymmetric architecture. MAbs 2018; 10:1226-1235. [PMID: 30153083 PMCID: PMC6284573 DOI: 10.1080/19420862.2018.1511198] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Immunoglobulin G–like bispecific antibodies with asymmetric architecture are among the most widely used bispecific antibody formats for diagnostic and therapeutic applications. The primary technical challenge for this format is how to achieve correctly paired assembly of four unique polypeptide chains. Advances in protein engineering and process development are being used to overcome these challenges and are driving a corresponding demand for sensitive analytical tools to monitor and control mispaired species. Here, we report a systematic approach for analysis and characterization of mispairing in asymmetric bispecific antibodies. This approach consists of three orthogonal components, the first of which is a liquid chromatography (LC)-mass spectrometry (MS)–based method to measure the mass of intact antibodies. This method is used for fast analysis of mispairing and requires minimal method development, which makes it an ideal choice for early-stage development. The second component is a hydrophobic interaction chromatography (HIC)–based mispairing method that is suitable for lot release testing. The HIC method is robust and quality control friendly, and offers great linearity, precision, and accuracy. The third component is a two-dimensional LC-MS method for on-line chromatographic peak identification, which not only expedites this task but also reduces the risk of undesirable modifications during conventional fraction collection. These three methods dovetail to form the foundation of a complementary toolbox for analysis and characterization of mispairing in asymmetric bispecific antibodies and provide guidance and support for process development throughout the drug development life cycle.
Collapse
Affiliation(s)
- Chunlei Wang
- a Department of Analytical Sciences , MedImmune, One Medimmune Way , Gaithersburg , MD , USA
| | - Bhargavi Vemulapalli
- a Department of Analytical Sciences , MedImmune, One Medimmune Way , Gaithersburg , MD , USA
| | - Mingyan Cao
- a Department of Analytical Sciences , MedImmune, One Medimmune Way , Gaithersburg , MD , USA
| | - Dhanesh Gadre
- b Department of Purification Process Sciences , MedImmune, One Medimmune Way , Gaithersburg , MD , USA
| | - Jihong Wang
- a Department of Analytical Sciences , MedImmune, One Medimmune Way , Gaithersburg , MD , USA
| | - Alan Hunter
- b Department of Purification Process Sciences , MedImmune, One Medimmune Way , Gaithersburg , MD , USA
| | - Xiangyang Wang
- a Department of Analytical Sciences , MedImmune, One Medimmune Way , Gaithersburg , MD , USA
| | - Dengfeng Liu
- a Department of Analytical Sciences , MedImmune, One Medimmune Way , Gaithersburg , MD , USA
| |
Collapse
|
16
|
Cao M, Wang C, Chung WK, Motabar D, Wang J, Christian E, Lin S, Hunter A, Wang X, Liu D. Characterization and analysis of scFv-IgG bispecific antibody size variants. MAbs 2018; 10:1236-1247. [PMID: 30130449 PMCID: PMC6284595 DOI: 10.1080/19420862.2018.1505398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bispecific antibodies are an emergent class of biologics that is of increasing interest for therapeutic applications. In one bispecific antibody format, single-chain variable fragments (scFv) are linked to or inserted in different locations of an intact immunoglobulin G (IgG) molecule to confer dual epitope binding. To improve biochemical stability, cysteine residues are often engineered on the heavy- and light-chain regions of the scFv to form an intrachain disulfide bond. Although this disulfide bond often improves stability, it can also introduce unexpected challenges to manufacturing or development. We report size variants that were observed for an appended scFv-IgG bispecific antibody. Structural characterization studies showed that the size variants resulted from the engineered disulfide bond on the scFv, whereby the engineered disulfide was found to be either open or unable to form an intrachain disulfide bond due to cysteinylation or glutathionylation of the cysteines. Furthermore, the scFv engineered cysteines also formed intermolecular disulfide bonds, leading to the formation of highly stable dimers and aggregates. Because both the monomer variants and dimers showed lower bioactivity, they were considered to be product-related impurities that must be monitored and controlled. To this end, we developed and optimized a robust, precise, and accurate high-resolution size-exclusion chromatographic method, using a statistical design-of-experiments methodology.
Collapse
Affiliation(s)
- Mingyan Cao
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Chunlei Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Wai Keen Chung
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Dana Motabar
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Jihong Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | | | - Shihua Lin
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Alan Hunter
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Xiangyang Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Dengfeng Liu
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| |
Collapse
|
17
|
Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods 2018; 154:3-9. [PMID: 30172007 DOI: 10.1016/j.ymeth.2018.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.
Collapse
Affiliation(s)
- Xiufeng Wu
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States.
| | - Stephen J Demarest
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States
| |
Collapse
|
18
|
Kinneer K, Meekin J, Tiberghien AC, Tai YT, Phipps S, Kiefer CM, Rebelatto MC, Dimasi N, Moriarty A, Papadopoulos KP, Sridhar S, Gregson SJ, Wick MJ, Masterson L, Anderson KC, Herbst R, Howard PW, Tice DA. SLC46A3 as a Potential Predictive Biomarker for Antibody–Drug Conjugates Bearing Noncleavable Linked Maytansinoid and Pyrrolobenzodiazepine Warheads. Clin Cancer Res 2018; 24:6570-6582. [DOI: 10.1158/1078-0432.ccr-18-1300] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/11/2018] [Accepted: 08/16/2018] [Indexed: 11/16/2022]
|
19
|
Dimasi N, Fleming R, Wu H, Gao C. Molecular engineering strategies and methods for the expression and purification of IgG1-based bispecific bivalent antibodies. Methods 2018; 154:77-86. [PMID: 30102989 DOI: 10.1016/j.ymeth.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, bispecific antibodies (BisAbs) have emerged as novel pharmaceutical candidates owing to their ability to engage two disease mediators simultaneously, thus providing a possible alternative therapeutic approach in complex diseases such as cancer and inflammation. Here we provide an overview of the molecular design, recombinant expression in mammalian cells and purification of BisAbs based on full-length IgG-scFv formats. Practical considerations and strategies to optimize transient expression and purification are also discussed.
Collapse
Affiliation(s)
- N Dimasi
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA.
| | - R Fleming
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - H Wu
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA
| | - C Gao
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD, USA.
| |
Collapse
|
20
|
Oganesyan V, Peng L, Bee JS, Li J, Perry SR, Comer F, Xu L, Cook K, Senthil K, Clarke L, Rosenthal K, Gao C, Damschroder M, Wu H, Dall'Acqua W. Structural insights into the mechanism of action of a biparatopic anti-HER2 antibody. J Biol Chem 2018; 293:8439-8448. [PMID: 29669810 PMCID: PMC5986207 DOI: 10.1074/jbc.m117.818013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/10/2018] [Indexed: 12/23/2022] Open
Abstract
Pathways of human epidermal growth factor (EGF) receptors are activated upon ligand-dependent or -independent homo- or heterodimerization and their subsequent transphosphorylation. Overexpression of these receptors positively correlates with transphosphorylation rates and increased tumor growth rates. MEDI4276, an anti-human epidermal growth factor receptor 2 (HER2) biparatopic antibody-drug conjugate, has two paratopes within each antibody arm. One, 39S, is aiming at the HER2 site involved in receptor dimerization and the second, single chain fragment (scFv), mimicking trastuzumab. Here we present the cocrystal structure of the 39S Fab-HER2 complex and, along with biophysical and functional assays, determine the corresponding epitope of MEDI4276 and its underlying mechanism of action. Our results reveal that MEDI4276's uniqueness is based first on the ability of its 39S paratope to block HER2 homo- or heterodimerization and second on its ability to cluster the receptors on the surface of receptor-overexpressing cells.
Collapse
Affiliation(s)
- Vaheh Oganesyan
- From the Departments of Antibody Discovery and Protein Engineering,
| | - Li Peng
- From the Departments of Antibody Discovery and Protein Engineering
| | | | - John Li
- Biosuperiors, MedImmune, Gaithersburg, Maryland 20878
| | | | - Frank Comer
- Biosuperiors, MedImmune, Gaithersburg, Maryland 20878
| | - Linda Xu
- From the Departments of Antibody Discovery and Protein Engineering
| | - Kimberly Cook
- From the Departments of Antibody Discovery and Protein Engineering
| | - Kannaki Senthil
- From the Departments of Antibody Discovery and Protein Engineering
| | - Lori Clarke
- From the Departments of Antibody Discovery and Protein Engineering
| | - Kim Rosenthal
- From the Departments of Antibody Discovery and Protein Engineering
| | - Changshou Gao
- From the Departments of Antibody Discovery and Protein Engineering
| | | | - Herren Wu
- From the Departments of Antibody Discovery and Protein Engineering
| | | |
Collapse
|
21
|
Tumor uptake of pegylated diabodies: Balancing systemic clearance and vascular transport. J Control Release 2018; 279:126-135. [DOI: 10.1016/j.jconrel.2018.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023]
|
22
|
Gilbreth RN, Oganesyan VY, Amdouni H, Novarra S, Grinberg L, Barnes A, Baca M. Crystal structure of the human 4-1BB/4-1BBL complex. J Biol Chem 2018; 293:9880-9891. [PMID: 29720399 DOI: 10.1074/jbc.ra118.002803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 11/06/2022] Open
Abstract
4-1BBL is a member of the tumor necrosis factor (TNF) superfamily and is the ligand for the TNFR superfamily receptor, 4-1BB. 4-1BB plays an immunomodulatory role in T cells and NK cells, and agonists of this receptor have garnered strong attention as potential immunotherapy agents. Broadly speaking, the structural features of TNF superfamily members, their receptors, and ligand-receptor complexes are similar. However, a published crystal structure of human 4-1BBL suggests that it may be unique in this regard, exhibiting a three-bladed propeller-like trimer assembly that is distinctly different from that observed in other family members. This unusual structure also suggests that the human 4-1BB/4-1BBL complex may be structurally unique within the TNF/TNFR superfamily, but to date no structural data have been reported. Here we report the crystal structure of the human 4-1BB/4-1BBL complex at 2.4-Å resolution. In this structure, 4-1BBL does not adopt the unusual trimer assembly previously reported, but instead forms a canonical bell-shaped trimer typical of other TNF superfamily members. The structure of 4-1BB is also largely canonical as is the 4-1BB/4-1BBL complex. Mutational data support the 4-1BBL structure reported here as being biologically relevant, suggesting that the previously reported structure is not. Together, the data presented here offer insight into structure/function relationships in the 4-1BB/4-1BBL system and improve our structural understanding of the TNF/TNFR superfamily more broadly.
Collapse
Affiliation(s)
- Ryan N Gilbreth
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Vaheh Y Oganesyan
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Hamza Amdouni
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Shabazz Novarra
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Luba Grinberg
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Arnita Barnes
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Manuel Baca
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| |
Collapse
|
23
|
A Single Tri-Epitopic Antibody Virtually Recapitulates the Potency of a Combination of Three Monoclonal Antibodies in Neutralization of Botulinum Neurotoxin Serotype A. Toxins (Basel) 2018; 10:toxins10020084. [PMID: 29462889 PMCID: PMC5848185 DOI: 10.3390/toxins10020084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 11/17/2022] Open
Abstract
The standard of treatment for botulism, equine antitoxin, is a foreign protein with associated safety issues and a short serum half-life which excludes its use as a prophylactic antitoxin and makes it a less-than-optimal therapeutic. Due to these limitations, a recombinant monoclonal antibody (mAb) product is preferable. It has been shown that combining three mAbs that bind non-overlapping epitopes leads to highly potent botulinum neurotoxin (BoNT) neutralization. Recently, a triple human antibody combination for BoNT/A has demonstrated potent toxin neutralization in mouse models with no serious adverse events when tested in a Phase I clinical trial. However, a triple antibody therapeutic poses unique development and manufacturing challenges. Thus, potentially to streamline development of BoNT antitoxins, we sought to achieve the potency of multiple mAb combinations in a single IgG-based molecule that has a long serum half-life. The design, production, and testing of a single tri-epitopic IgG1-based mAb (TeAb) containing the binding sites of each of the three parental BoNT/A mAbs yielded an antibody of nearly equal potency to the combination. The approach taken here could be applied to the design and creation of other multivalent antibodies that could be used for a variety of applications, including toxin elimination.
Collapse
|
24
|
Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9:182-212. [PMID: 28071970 PMCID: PMC5297537 DOI: 10.1080/19420862.2016.1268307] [Citation(s) in RCA: 605] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
During the past two decades we have seen a phenomenal evolution of bispecific antibodies for therapeutic applications. The 'zoo' of bispecific antibodies is populated by many different species, comprising around 100 different formats, including small molecules composed solely of the antigen-binding sites of two antibodies, molecules with an IgG structure, and large complex molecules composed of different antigen-binding moieties often combined with dimerization modules. The application of sophisticated molecular design and genetic engineering has solved many of the technical problems associated with the formation of bispecific antibodies such as stability, solubility and other parameters that confer drug properties. These parameters may be summarized under the term 'developability'. In addition, different 'target product profiles', i.e., desired features of the bispecific antibody to be generated, mandates the need for access to a diverse panel of formats. These may vary in size, arrangement, valencies, flexibility and geometry of their binding modules, as well as in their distribution and pharmacokinetic properties. There is not 'one best format' for generating bispecific antibodies, and no single format is suitable for all, or even most of, the desired applications. Instead, the bispecific formats collectively serve as a valuable source of diversity that can be applied to the development of therapeutics for various indications. Here, a comprehensive overview of the different bispecific antibody formats is provided.
Collapse
Affiliation(s)
- Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Im Nonnenwald, Penzberg, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstraße, Stuttgart, Germany
| |
Collapse
|
25
|
Bezabeh B, Fleming R, Fazenbaker C, Zhong H, Coffman K, Yu XQ, Leow CC, Gibson N, Wilson S, Stover CK, Wu H, Gao C, Dimasi N. Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties. MAbs 2017; 9:240-256. [PMID: 27981887 DOI: 10.1080/19420862.2016.1270492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By simultaneous binding two disease mediators, bispecific antibodies offer the opportunity to broaden the utility of antibody-based therapies. Herein, we describe the design and characterization of Bs4Ab, an innovative and generic bispecific tetravalent antibody platform. The Bs4Ab format comprises a full-length IgG1 monoclonal antibody with a scFv inserted into the hinge domain. The Bs4Ab design demonstrates robust manufacturability as evidenced by MEDI3902, which is currently in clinical development. To further demonstrate the applicability of the Bs4Ab technology, we describe the molecular engineering, biochemical, biophysical, and in vivo characterization of a bispecific tetravalent Bs4Ab that, by simultaneously binding vascular endothelial growth factor and angiopoietin-2, inhibits their function. We also demonstrate that the Bs4Ab platform allows Fc-engineering similar to that achieved with IgG1 antibodies, such as mutations to extend half-life or modulate effector functions.
Collapse
Affiliation(s)
- Binyam Bezabeh
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | | | | | - Karen Coffman
- c Clinical Pharmacology and DMPK , Gaithersburg , MA , USA
| | - Xiang-Qing Yu
- c Clinical Pharmacology and DMPK , Gaithersburg , MA , USA
| | | | - Nerea Gibson
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Susan Wilson
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | | | - Herren Wu
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Changshou Gao
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| |
Collapse
|
26
|
A Versatile Chemo-Enzymatic Conjugation Approach Yields Homogeneous and Highly Potent Antibody-Drug Conjugates. Int J Mol Sci 2017; 18:ijms18112284. [PMID: 29088062 PMCID: PMC5713254 DOI: 10.3390/ijms18112284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/02/2023] Open
Abstract
The therapeutic efficacy of antibodies can be successfully improved through targeted delivery of potent cytotoxic drugs in the form of antibody-drug conjugates. However, conventional conjugation strategies lead to heterogeneous conjugates with undefined stoichiometry and sites, even with considerable batch-to-batch variability. In this study, we have developed a chemo-enzymatic strategy by equipping the C-terminus of anti-CD20 ofatumumab with a click handle using Sortase A, followed by ligation of the payload based on a strain-promoted azide-alkyne cycloaddition to produce homogeneous conjugates. The resulting antibody-drug conjugates fully retained their antigen binding capability and proved to be internalized and trafficked to the lysosome, which released the payload with a favorable efficacy in vitro and in vivo. Thus, this reported method is a versatile tool with maximum flexibility for development of antibody-drug conjugates and protein modification.
Collapse
|
27
|
Multimechanistic Monoclonal Antibodies (MAbs) Targeting Staphylococcus aureus Alpha-Toxin and Clumping Factor A: Activity and Efficacy Comparisons of a MAb Combination and an Engineered Bispecific Antibody Approach. Antimicrob Agents Chemother 2017; 61:AAC.00629-17. [PMID: 28584141 PMCID: PMC5527613 DOI: 10.1128/aac.00629-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/28/2017] [Indexed: 12/23/2022] Open
Abstract
Secreted alpha-toxin and surface-localized clumping factor A (ClfA) are key virulence determinants in Staphylococcus aureus bloodstream infections. We previously demonstrated that prophylaxis with a multimechanistic monoclonal antibody (MAb) combination against alpha-toxin (MEDI4893*) and ClfA (11H10) provided greater strain coverage and improved efficacy in an S. aureus lethal bacteremia model. Subsequently, 11H10 was found to exhibit reduced affinity and impaired inhibition of fibrinogen binding to ClfA002 expressed by members of a predominant hospital-associated methicillin-resistant S. aureus (MRSA) clone, ST5. Consequently, we identified another anti-ClfA MAb (SAR114) from human tonsillar B cells with >100-fold increased affinity for three prominent ClfA variants, including ClfA002, and potent inhibition of bacterial agglutination by 112 diverse clinical isolates. We next constructed bispecific Abs (BiSAbs) comprised of 11H10 or SAR114 as IgG scaffolds and grafted anti-alpha-toxin (MEDI4893*) single-chain variable fragment to the amino or carboxy terminus of the anti-ClfA heavy chains. Although the BiSAbs exhibited in vitro potencies similar to those of the parental MAbs, only 11H10-BiSAb, but not SAR114-BiSAb, showed protective activity in murine infection models comparable to the respective MAb combination. In vivo activity with SAR114-BiSAb was observed in infection models with S. aureus lacking ClfA. Our data suggest that high-affinity binding to ClfA sequesters the SAR114-BiSAb to the bacterial surface, thereby reducing both alpha-toxin neutralization and protection in vivo These results indicate that a MAb combination targeting ClfA and alpha-toxin is more promising for future development than the corresponding BiSAb.
Collapse
|
28
|
Skegro D, Stutz C, Ollier R, Svensson E, Wassmann P, Bourquin F, Monney T, Gn S, Blein S. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. J Biol Chem 2017; 292:9745-9759. [PMID: 28450393 PMCID: PMC5465497 DOI: 10.1074/jbc.m117.782433] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Indexed: 12/03/2022] Open
Abstract
Bispecific antibodies (bsAbs) are of significant importance to the development of novel antibody-based therapies, and heavy chain (Hc) heterodimers represent a major class of bispecific drug candidates. Current technologies for the generation of Hc heterodimers are suboptimal and often suffer from contamination by homodimers posing purification challenges. Here, we introduce a new technology based on biomimicry wherein the protein-protein interfaces of two different immunoglobulin (Ig) constant domain pairs are exchanged in part or fully to design new heterodimeric domains. The method can be applied across Igs to design Fc heterodimers and bsAbs. We investigated interfaces from human IgA CH3, IgD CH3, IgG1 CH3, IgM CH4, T-cell receptor (TCR) α/β, and TCR γ/δ constant domain pairs, and we found that they successfully drive human IgG1 CH3 or IgM CH4 heterodimerization to levels similar to or above those of reference methods. A comprehensive interface exchange between the TCR α/β constant domain pair and the IgG1 CH3 homodimer was evidenced by X-ray crystallography and used to engineer examples of bsAbs for cancer therapy. Parental antibody pairs were rapidly reformatted into scalable bsAbs that were free of homodimer traces by combining interface exchange, asymmetric Protein A binding, and the scFv × Fab format. In summary, we successfully built several new CH3- or CH4-based heterodimers that may prove useful for designing new bsAb-based therapeutics, and we anticipate that our approach could be broadly implemented across the Ig constant domain family. To our knowledge, CH4-based heterodimers have not been previously reported.
Collapse
Affiliation(s)
- Darko Skegro
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Cian Stutz
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Romain Ollier
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Emelie Svensson
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Paul Wassmann
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Florence Bourquin
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Thierry Monney
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| | - Sunitha Gn
- the Department of Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Centre, Plot No. A-607, T.T.C. Industrial Area, MIDC, Mahape, Navi Mumbai 400 709, India
| | - Stanislas Blein
- From the Department of Antibody Engineering, Biologics Research, Glenmark Pharmaceuticals S.A., Chemin de la Combeta 5, 2300 La Chaux-de-Fonds, Switzerland and
| |
Collapse
|
29
|
Dimasi N, Fleming R, Zhong H, Bezabeh B, Kinneer K, Christie RJ, Fazenbaker C, Wu H, Gao C. Efficient Preparation of Site-Specific Antibody-Drug Conjugates Using Cysteine Insertion. Mol Pharm 2017; 14:1501-1516. [PMID: 28245132 DOI: 10.1021/acs.molpharmaceut.6b00995] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals that combine the specificity of antibodies with the high-potency of cytotoxic drugs. Engineering cysteine residues in the antibodies using mutagenesis is a common method to prepare site-specific ADCs. With this approach, solvent accessible amino acids in the antibody have been selected for substitution with cysteine for conjugating maleimide-bearing cytotoxic drugs, resulting in homogeneous and stable site-specific ADCs. Here we describe a cysteine engineering approach based on the insertion of cysteines before and after selected sites in the antibody, which can be used for site-specific preparation of ADCs. Cysteine-inserted antibodies have expression level and monomeric content similar to the native antibodies. Conjugation to a pyrrolobenzodiazepine dimer (SG3249) resulted in comparable efficiency of site-specific conjugation between cysteine-inserted and cysteine-substituted antibodies. Cysteine-inserted ADCs were shown to have biophysical properties, FcRn, and antigen binding affinity similar to the cysteine-substituted ADCs. These ADCs were comparable for serum stability to the ADCs prepared using cysteine-mutagenesis and had selective and potent cytotoxicity against human prostate cancer cells. Two of the cysteine-inserted variants abolish binding of the resulting ADCs to FcγRs in vitro, thereby potentially preventing non-target mediated uptake of the ADCs by cells of the innate immune system that express FcγRs, which may result in mitigating off-target toxicities. A selected cysteine-inserted ADC demonstrated potent dose-dependent anti-tumor activity in a xenograph tumor mouse model of human breast adenocarcinoma expressing the oncofetal antigen 5T4.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Ryan Fleming
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Haihong Zhong
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Binyam Bezabeh
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Krista Kinneer
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Ronald J Christie
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Christine Fazenbaker
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
30
|
Kasturirangan S, Rainey GJ, Xu L, Wang X, Portnoff A, Chen T, Fazenbaker C, Zhong H, Bee J, Zeng Z, Jenne C, Wu H, Gao C. Targeted Fcγ Receptor (FcγR)-mediated Clearance by a Biparatopic Bispecific Antibody. J Biol Chem 2017; 292:4361-4370. [PMID: 28100773 PMCID: PMC5354496 DOI: 10.1074/jbc.m116.770628] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Indexed: 11/14/2022] Open
Abstract
Soluble ligands have commonly been targeted by antibody therapeutics for cancers and other diseases. Although monoclonal antibodies targeting such ligands can block their interactions with their cognate receptors, they can also significantly increase the half-life of their ligands by FcRn-mediated antibody recycling, thereby evading ligand renal clearance and requiring increasingly high antibody doses to neutralize the increasing pool of target. To overcome this issue, we generated a bispecific/biparatopic antibody (BiSAb) that targets two different epitopes on IL-6 to block IL-6-mediated signaling. The BiSAb formed large immune complexes with IL-6 that can bind Fcγ receptors on phagocytic cells and are rapidly internalized. In addition, rapid clearance of the BiSAb·IL-6 complex was observed in mice while the parental antibodies prolonged the serum half-life of IL-6. Intravital imaging of the liver in mice confirmed that the rapid clearance of these large immune complexes was associated with Fcγ receptor-dependent binding to Kupffer cells in the liver. The approach described here provides a general strategy for therapeutic antibodies with the ability to not only neutralize but also actively drive clearance of their soluble antigens.
Collapse
Affiliation(s)
| | - G Jonah Rainey
- From the Departments of Antibody Discovery and Protein Engineering
| | - Linda Xu
- From the Departments of Antibody Discovery and Protein Engineering
| | - Xinwei Wang
- From the Departments of Antibody Discovery and Protein Engineering
| | - Alyse Portnoff
- From the Departments of Antibody Discovery and Protein Engineering
| | | | | | | | - Jared Bee
- Analytical Biotechnology, Medimmune LLC, Gaithersburg, Maryland 20878 and
| | - Zhutian Zeng
- the Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Craig Jenne
- the Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Herren Wu
- From the Departments of Antibody Discovery and Protein Engineering
| | - Changshou Gao
- From the Departments of Antibody Discovery and Protein Engineering,
| |
Collapse
|
31
|
Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017; 7:40098. [PMID: 28067257 PMCID: PMC5220356 DOI: 10.1038/srep40098] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/30/2016] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies are considered attractive bio-therapeutic agents owing to their ability to target two distinct disease mediators. Cross-arm avidity targeting of antigen double-positive cancer cells over single-positive normal tissue is believed to enhance the therapeutic efficacy, restrict major escape mechanisms and increase tumor-targeting selectivity, leading to reduced systemic toxicity and improved therapeutic index. However, the interplay of factors regulating target selectivity is not well understood and often overlooked when developing clinically relevant bispecific therapeutics. We show in vivo that dual targeting alone is not sufficient to endow selective tumor-targeting, and report the pivotal roles played by the affinity of the individual arms, overall avidity and format valence. Specifically, a series of monovalent and bivalent bispecific IgGs composed of the anti-HER2 trastuzumab moiety paired with affinity-modulated VH and VL regions of the anti-EGFR GA201 mAb were tested for selective targeting and eradication of double-positive human NCI-H358 non-small cell lung cancer target tumors over single-positive, non-target NCI-H358-HER2 CRISPR knock out tumors in nude mice bearing dual-flank tumor xenografts. Affinity-reduced monovalent bispecific variants, but not their bivalent bispecific counterparts, mediated a greater degree of tumor targeting selectivity, while the overall efficacy against the targeted tumor was not substantially affected.
Collapse
|
32
|
Dimasi N, Fleming R, Sachsenmeier KF, Bezabeh B, Hay C, Wu J, Sult E, Rajan S, Zhuang L, Cariuk P, Buchanan A, Bowen MA, Wu H, Gao C. Guiding bispecific monovalent antibody formation through proteolysis of IgG1 single-chain. MAbs 2017; 9:438-454. [PMID: 28055299 DOI: 10.1080/19420862.2016.1277301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We developed an IgG1 domain-tethering approach to guide the correct assembly of 2 light and 2 heavy chains, derived from 2 different antibodies, to form bispecific monovalent antibodies in IgG1 format. We show here that assembling 2 different light and heavy chains by sequentially connecting them with protease-cleavable polypeptide linkers results in the generation of monovalent bispecific antibodies that have IgG1 sequence, structure and functional properties. This approach was used to generate a bispecific monovalent antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor that: 1) can be produced and purified using standard IgG1 techniques; 2) exhibits stability and structural features comparable to IgG1; 3) binds both targets simultaneously; and 4) has potent anti-tumor activity. Our strategy provides new engineering opportunities for bispecific antibody applications, and, most importantly, overcomes some of the limitations (e.g., half-antibody and homodimer formation, light chains mispairing, multi-step purification), inherent with some of the previously described IgG1-based bispecific monovalent antibodies.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | | | - Binyam Bezabeh
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Carl Hay
- c Oncology Research, MedImmune , Gaithersburg , MD , USA
| | - Jincheng Wu
- d Research Bioinformatics, MedImmune , Gaithersburg , MD , USA
| | - Erin Sult
- c Oncology Research, MedImmune , Gaithersburg , MD , USA
| | - Saravanan Rajan
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Li Zhuang
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Peter Cariuk
- e Antibody Discovery and Protein Engineering, MedImmune , Cambridge , UK
| | - Andrew Buchanan
- e Antibody Discovery and Protein Engineering, MedImmune , Cambridge , UK
| | - Michael A Bowen
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| | - Changshou Gao
- a Antibody Discovery and Protein Engineering, MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
33
|
Jee PF, Chen FS, Shu MH, Wong WF, Abdul Rahim R, AbuBakar S, Chang LY. Insertion of single-chain variable fragment (scFv) peptide linker improves surface display of influenza hemagglutinin (HA1) on non-recombinant Lactococcus lactis. Biotechnol Prog 2016; 33:154-162. [PMID: 27802566 DOI: 10.1002/btpr.2400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Heterologous protein displayed on the surface of Lactococcus lactis using the binding domain of N-acetylmuramidase (AcmA) has a potential application in vaccine delivery. In this study, we developed a non-recombinant L. lactis surface displaying the influenza A (H1N1) 2009 hemagglutinin (HA1). Three recombinant proteins, HA1/L/AcmA, HA1/AcmA, and HA1 were overexpressed in Escherichia coli, and purified. In the binding study using flow cytometry, the HA1/L/AcmA, which contained the single-chain variable fragment (scFv) peptide linker showed significantly higher percentage of binding counts and mean fluorescence binding intensity (MFI) (51.7 ± 1.4% and 3,594.0 ± 675.9, respectively) in comparison to the HA1/AcmA without the scFv peptide linker (41.1 ± 1.5% and 1,652.0 ± 34.1, respectively). Higher amount of HA1/L/AcmA (∼2.9 × 104 molecules per cell) was displayed on L. lactis when compared to HA1/AcmA (∼1.1 × 104 molecules per cell) in the immunoblotting analysis. The HA1/L/AcmA completely agglutinated RBCs at comparable amount of protein to that of HA1/AcmA and HA1. Computational modeling of protein structures suggested that scFv peptide linker in HA1/L/AcmA kept the HA1 and the AcmA domain separated at a much longer distance in comparison to HA1/AcmA. These findings suggest that insertion of the scFv peptide linker between HA1 and AcmA improved binding of recombinant proteins to L. lactis. Hence, insertion of scFv peptide linker can be further investigated as a potential approach for improvement of heterologous proteins displayed on the surface of L. lactis using the AcmA binding domain. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:154-162, 2017.
Collapse
Affiliation(s)
- Pui-Fong Jee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fez-Shin Chen
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Peng L, Damschroder MM, Cook KE, Wu H, Dall'Acqua WF. Molecular basis for the antagonistic activity of an anti-CXCR4 antibody. MAbs 2016; 8:163-75. [PMID: 26514996 PMCID: PMC4966504 DOI: 10.1080/19420862.2015.1113359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antagonistic antibodies targeting the G-protein C-X-C chemokine receptor 4 (CXCR4) hold promising therapeutic potential in various diseases. We report for the first time the detailed mechanism of action at a molecular level of a potent anti-CXCR4 antagonistic antibody (MEDI3185). We characterized the MEDI3185 paratope using alanine scanning on all 6 complementary-determining regions (CDRs). We also mapped its epitope using CXCR4 mutagenesis to assess the relative importance of the CXCR4 N-terminal peptide, extracellular loops (ECL) and ligand-binding pocket. We show that the interaction between MEDI3185 and CXCR4 is mediated mostly by CDR3H in MEDI3185 and ECL2 in CXCR4. The MEDI3185 epitope comprises the entire ECL2 sequence, lacks any so-called ‘hot-spot’ and is remarkably resistant to mutations. The structure of MEDI3185 variable domains was modeled, and suggested a β-strand/β-strand interaction between MEDI3185 CDR3H and CXCR4 ECL2, resulting in direct steric hindrance with CXCR4 ligand SDF-1. These findings may have important implications for designing antibody therapies against CXCR4.
Collapse
Affiliation(s)
- Li Peng
- a Department of Antibody Discovery and Protein Engineering ; MedImmune LLC; One MedImmune Way ; Gaithersburg , MD 20878 , USA
| | - Melissa M Damschroder
- a Department of Antibody Discovery and Protein Engineering ; MedImmune LLC; One MedImmune Way ; Gaithersburg , MD 20878 , USA
| | - Kimberly E Cook
- a Department of Antibody Discovery and Protein Engineering ; MedImmune LLC; One MedImmune Way ; Gaithersburg , MD 20878 , USA
| | - Herren Wu
- a Department of Antibody Discovery and Protein Engineering ; MedImmune LLC; One MedImmune Way ; Gaithersburg , MD 20878 , USA
| | - William F Dall'Acqua
- a Department of Antibody Discovery and Protein Engineering ; MedImmune LLC; One MedImmune Way ; Gaithersburg , MD 20878 , USA
| |
Collapse
|
35
|
Rational design, biophysical and biological characterization of site-specific antibody-tubulysin conjugates with improved stability, efficacy and pharmacokinetics. J Control Release 2016; 236:100-16. [DOI: 10.1016/j.jconrel.2016.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/28/2016] [Accepted: 06/16/2016] [Indexed: 02/08/2023]
|
36
|
Gilbreth RN, Novarra S, Wetzel L, Florinas S, Cabral H, Kataoka K, Rios-Doria J, Christie RJ, Baca M. Lipid- and polyion complex-based micelles as agonist platforms for TNFR superfamily receptors. J Control Release 2016; 234:104-14. [DOI: 10.1016/j.jconrel.2016.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
|
37
|
Mazor Y, Yang C, Borrok MJ, Ayriss J, Aherne K, Wu H, Dall'Acqua WF. Enhancement of Immune Effector Functions by Modulating IgG's Intrinsic Affinity for Target Antigen. PLoS One 2016; 11:e0157788. [PMID: 27322177 PMCID: PMC4913924 DOI: 10.1371/journal.pone.0157788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics.
Collapse
Affiliation(s)
- Yariv Mazor
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - Chunning Yang
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - M Jack Borrok
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - Joanne Ayriss
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - Karen Aherne
- Department of Biopharmaceutical Development, MedImmune, Gaithersburg, Maryland, United States of America
| | - Herren Wu
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| | - William F Dall'Acqua
- Department of Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, Maryland, United States of America
| |
Collapse
|
38
|
Florinas S, Liu M, Fleming R, Van Vlerken-Ysla L, Ayriss J, Gilbreth R, Dimasi N, Gao C, Wu H, Xu ZQ, Chen S, Dirisala A, Kataoka K, Cabral H, Christie RJ. A Nanoparticle Platform To Evaluate Bioconjugation and Receptor-Mediated Cell Uptake Using Cross-Linked Polyion Complex Micelles Bearing Antibody Fragments. Biomacromolecules 2016; 17:1818-33. [PMID: 27007881 DOI: 10.1021/acs.biomac.6b00239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeted nanomedicines are a promising technology for treatment of disease; however, preparation and characterization of well-defined protein-nanoparticle systems remain challenging. Here, we describe a platform technology to prepare antibody binding fragment (Fab)-bearing nanoparticles and an accompanying real-time cell-based assay to determine their cellular uptake compared to monoclonal antibodies (mAbs) and Fabs. The nanoparticle platform was composed of core-cross-linked polyion complex (PIC) micelles prepared from azide-functionalized PEG-b-poly(amino acids), that is, azido-PEG-b-poly(l-lysine) [N3-PEG-b-PLL] and azido-PEG-b-poly(aspartic acid) [N3-PEG-b-PAsp]. These PIC micelles were 30 nm in size and contained approximately 10 polymers per construct. Fabs were derived from an antibody binding the EphA2 receptor expressed on cancer cells and further engineered to contain a reactive cysteine for site-specific attachment and a cleavable His tag for purification from cell culture expression systems. Azide-functionalized micelles and thiol-containing Fab were linked using a heterobifunctional cross-linker (FPM-PEG4-DBCO) that contained a fluorophenyl-maleimide for stable conjugation to Fabs thiols and a strained alkyne (DBCO) group for coupling to micelle azide groups. Analysis of Fab-PIC micelle conjugates by fluorescence correlation spectroscopy, size exclusion chromatography, and UV-vis absorbance determined that each nanoparticle contained 2-3 Fabs. Evaluation of cellular uptake in receptor positive cancer cells by real-time fluorescence microscopy revealed that targeted Fab-PIC micelles achieved higher cell uptake than mAbs and Fabs, demonstrating the utility of this approach to identify targeted nanoparticle constructs with unique cellular internalization properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ze-Qi Xu
- SynChem, Inc., Elk Grove Village, Illinois 60007, United States
| | | | | | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,The Innovation Center of Nanomedicine, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki 212-0013, Japan
| | | | | |
Collapse
|
39
|
Wu X, Sereno AJ, Huang F, Lewis SM, Lieu RL, Weldon C, Torres C, Fine C, Batt MA, Fitchett JR, Glasebrook AL, Kuhlman B, Demarest SJ. Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs 2016; 7:470-82. [PMID: 25774965 DOI: 10.1080/19420862.2015.1022694] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.
Collapse
Key Words
- BiTE, bispecific T cell engager
- BsAb, bispecific antibody
- CD, circular dichroism
- DSC, differential scanning calorimetry
- Fab interface design
- Fab, antigen binding antibody fragment
- Fv, variable domains antibody fragment
- HC, antibody heavy chain
- IgG-Fab
- LC, antibody light chain
- LCMS, liquid chromatography with in-line mass spectrometry
- SEC-LC, size exclusion chromatography with in-line static light scattering
- T cell
- Tm, temperature at the midpoint of thermal unfolding
- bispecific antibody
- mAb, monoclonal antibody
- scFv, single chain Fv
- tandem Fab
Collapse
Affiliation(s)
- Xiufeng Wu
- a Eli Lilly Biotechnology Center ; San Diego , CA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mazor Y, Hansen A, Yang C, Chowdhury PS, Wang J, Stephens G, Wu H, Dall'Acqua WF. Insights into the molecular basis of a bispecific antibody's target selectivity. MAbs 2016; 7:461-9. [PMID: 25730144 PMCID: PMC4622944 DOI: 10.1080/19420862.2015.1022695] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bispecific antibodies constitute a valuable class of therapeutics owing to their ability to bind 2 distinct targets. Dual targeting is thought to enhance biological efficacy, limit escape mechanisms, and increase target selectivity via a strong avidity effect mediated by concurrent binding to both antigens on the surface of the same cell. However, factors that regulate the extent of target selectivity are not well understood. We show that dual targeting alone is not sufficient to promote efficient target selectivity, and report the substantial roles played by the affinity of the individual arms, overall avidity and valence. More particularly, various monovalent bispecific IgGs composed of an anti-CD70 moiety paired with variants of the anti-CD4 mAb ibalizumab were tested for preferential binding and selective depletion of CD4+/CD70+ T cells over cells expressing only one of the target antigens that resulted from antibody dependent cell-mediated cytotoxicity. Variants exhibiting reduced CD4 affinity showed a greater degree of target selectivity, while the overall efficacy of the bispecific molecule was not affected.
Collapse
Affiliation(s)
- Yariv Mazor
- a Department of Antibody Discovery and Protein Engineering; MedImmune ; Gaithersburg , MD , USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Webster CI, Caram-Salas N, Haqqani AS, Thom G, Brown L, Rennie K, Yogi A, Costain W, Brunette E, Stanimirovic DB. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J 2016; 30:1927-40. [PMID: 26839377 DOI: 10.1096/fj.201500078] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Receptor mediated transcytosis harnessing the cellular uptake and transport of natural ligands across the blood-brain barrier (BBB) has been identified as a means for antibody delivery to the CNS. In this study, we characterized bispecific antibodies in which a BBB-crossing antibody fragment FC5 was used as a BBB carrier. Cargo antibodies were either a high-affinity, selective antibody antagonist of the metabotropic glutamate receptor-1 (BBB-mGluR1), a widely abundant CNS target, or an IgG that does not bind the CNS target (BBB-NiP). Both BBB-NiP and BBB-mGluR1 demonstrated a similar 20-fold enhanced rate of transcytosis across an in vitro BBB model compared with mGluR1 IgG fused to a control antibody fragment. All 3 bispecific antibodies exhibited identical pharmacokinetics in vivo Comparative assessment of BBB-NiP and BBB-mGluR1 revealed that, whereas their serum pharmacokinetics and BBB penetration were identical, their central disposition (brain levels) and elimination (cerebrospinal fluid levels) were widely different, due to central target-mediated removal of the mGluR1-engaging antibody. Central mGluR1 target engagement after systemic administration was demonstrated by a dose-dependent inhibition of mGluR-1-mediated thermal hyperalgesia and by colocalization of the antibody with thalamic neurons involved in mGluR1-mediated pain processing. We demonstrate the feasibility of targeting central G-protein-coupled receptors using a BBB-crossing bispecific antibody approach and emerging principles that govern brain distribution and disposition of these antibodies. These data will be important for designing safe and selective CNS antibody therapeutics.-Webster, C. I., Caram-Salas, N., Haqqani, A. S., Thom, G., Brown, L., Rennie, K., Yogi, A., Costain, W., Brunette, E., Stanimirovic, D. B. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1.
Collapse
Affiliation(s)
- Carl I Webster
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom;
| | - Nadia Caram-Salas
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - George Thom
- Antibody Discovery and Protein Engineering, MedImmune, Cambridge, United Kingdom
| | - Lee Brown
- Translational Sciences, MedImmune, Cambridge, United Kingdom; and
| | - Kerry Rennie
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Alvaro Yogi
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Willard Costain
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Eric Brunette
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
42
|
Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, Hinrichs MJM, Bezabeh BZ, Fleming RL, Dimasi N, Feng H, Toader D, Yuan AQ, Xu L, Lin J, Gao C, Wu H, Dixit R, Osbourn JK, Coats SR. A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Cancer Cell 2016; 29:117-29. [PMID: 26766593 DOI: 10.1016/j.ccell.2015.12.008] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/18/2015] [Accepted: 12/15/2015] [Indexed: 01/29/2023]
Abstract
Antibody-drug conjugate (ADC) which delivers cytotoxic drugs specifically into targeted cells through internalization and lysosomal trafficking has emerged as an effective cancer therapy. We show that a bivalent biparatopic antibody targeting two non-overlapping epitopes on HER2 can induce HER2 receptor clustering, which in turn promotes robust internalization, lysosomal trafficking, and degradation. When conjugated with a tubulysin-based microtubule inhibitor, the biparatopic ADC demonstrates superior anti-tumor activity over ado-trastuzumab emtansine (T-DM1) in tumor models representing various patient subpopulations, including T-DM1 eligible, T-DM1 ineligible, and T-DM1 relapsed/refractory. Our findings indicate that this biparatopic ADC has promising potential as an effective therapy for metastatic breast cancer and a broader patient population may benefit from this unique HER2-targeting ADC.
Collapse
Affiliation(s)
- John Y Li
- Biosuperiors, MedImmune LLC, Gaithersburg, MD 20878, USA.
| | - Samuel R Perry
- Biosuperiors, MedImmune LLC, Gaithersburg, MD 20878, USA
| | | | - Xinzhong Wang
- Biosuperiors, MedImmune LLC, Gaithersburg, MD 20878, USA
| | | | | | | | - Binyam Z Bezabeh
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Ryan L Fleming
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Nazzareno Dimasi
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Hui Feng
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Dorin Toader
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Andy Q Yuan
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Lan Xu
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jia Lin
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Changshou Gao
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Herren Wu
- Antibody Discovery & Protein Engineering, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Rakesh Dixit
- Biologics Safety Assessment, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jane K Osbourn
- Biosuperiors, MedImmune LLC, Gaithersburg, MD 20878, USA; MedImmune Ltd, Granta Park, Cambridge CB21 6GH, UK
| | - Steven R Coats
- Biosuperiors, MedImmune LLC, Gaithersburg, MD 20878, USA
| |
Collapse
|
43
|
Wu X, Sereno AJ, Huang F, Zhang K, Batt M, Fitchett JR, He D, Rick HL, Conner EM, Demarest SJ. Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies. MAbs 2015; 7:364-76. [PMID: 25611120 DOI: 10.1080/19420862.2015.1007826] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Immunoglobulins and T cell receptors (TCRs) share common sequences and structures. With the goal of creating novel bispecific antibodies (BsAbs), we generated chimeric molecules, denoted IgG_TCRs, where the Fv regions of several antibodies were fused to the constant domains of the α/β TCR. Replacing CH1 with Cα and CL with Cβ, respectively, was essential for achieving at least partial heavy chain/light chain assembly. Further optimization of the linker regions between the variable and constant domains, as well as replacement of the large FG loop of Cβ with a canonical β-turn, was necessary to consistently obtain full heavy chain/light chain assembly. The optimized IgG_TCR molecules were evaluated biophysically and shown to maintain the binding properties of their parental antibodies. A few BsAbs were generated by co-expressing native Fabs and IgG_TCR Fabs within the same molecular construct. We demonstrate that the IgG_TCR designs steered each of the light chains within the constructs to specifically pair with their cognate heavy chain counterparts. We did find that even with complete constant domain specificity between the CH1/CL and Cα/Cβ domains of the Fabs, strong variable domain interactions can dominate the pairing specificity and induce some mispairing. Overall, the IgG_TCR designs described here are a first step toward the generation of novel BsAbs that may be directed toward the treatment of multi-faceted and complex diseases.
Collapse
Key Words
- DSC, differential scanning calorimetry
- FG loop
- HC, heavy chain
- Ha, heavy chain containing Ca in place of CH1
- Hb, heavy chain containing Cb in place of CH1
- LC, light chain
- La, heavy chain containing Ca in place of CL
- Lb, heavy chain containing Cb in place of CL
- RU, resonance units
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- SEC, size exclusion chromatography
- SPR, surface plasmon resonance
- T cell receptor
- TCR, T cell receptor
- bispecific antibody
- protein chimera
- protein design
Collapse
Affiliation(s)
- Xiufeng Wu
- a Eli Lilly Biotechnology Center ; San Diego , CA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Oganesyan V, Mazor Y, Yang C, Cook KE, Woods RM, Ferguson A, Bowen MA, Martin T, Zhu J, Wu H, Dall’Acqua WF. Structural insights into the interaction of human IgG1 with FcγRI: no direct role of glycans in binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:2354-61. [PMID: 26527150 PMCID: PMC4631484 DOI: 10.1107/s1399004715018015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022]
Abstract
The three-dimensional structure of a human IgG1 Fc fragment bound to wild-type human FcγRI is reported. The structure of the corresponding complex was solved at a resolution of 2.4 Å using molecular replacement; this is the highest resolution achieved for an unmutated FcγRI molecule. This study highlights the critical structural and functional role played by the second extracellular subdomain of FcγRI. It also explains the long-known major energetic contribution of the Fc `LLGG' motif at positions 234-237, and particularly of Leu235, via a `lock-and-key' mechanism. Finally, a previously held belief is corrected and a differing view is offered on the recently proposed direct role of Fc carbohydrates in the corresponding interaction. Structural evidence is provided that such glycan-related effects are strictly indirect.
Collapse
Affiliation(s)
- Vaheh Oganesyan
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Yariv Mazor
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Chunning Yang
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Kimberly E. Cook
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Robert M. Woods
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Andrew Ferguson
- Discovery Sciences, Structure and Biophysics, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Mailstop E3, Waltham, MA 02451, USA
| | - Michael A. Bowen
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Tom Martin
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Jie Zhu
- Biopharmaceutical Development, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - Herren Wu
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| | - William F. Dall’Acqua
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA
| |
Collapse
|
45
|
Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015; 67:95-106. [DOI: 10.1016/j.molimm.2015.01.003] [Citation(s) in RCA: 417] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022]
|
46
|
Christie RJ, Fleming R, Bezabeh B, Woods R, Mao S, Harper J, Joseph A, Wang Q, Xu ZQ, Wu H, Gao C, Dimasi N. Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides. J Control Release 2015; 220:660-70. [PMID: 26387744 DOI: 10.1016/j.jconrel.2015.09.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/21/2023]
Abstract
Maleimides are often used to covalently attach drugs to cysteine thiols for production of antibody-drug conjugates (ADCs). However, ADCs formed with traditional N-alkyl maleimides have variable stability in the bloodstream leading to loss of drug. Here, we report that N-aryl maleimides form stable antibody conjugates under very mild conditions while also maintaining high conjugation efficiency. Thiol-maleimide coupling and ADC stabilization via thiosuccinimide hydrolysis were accelerated by addition of N-phenyl or N-fluorophenyl groups to the ring-head nitrogen. Cysteine-linked ADCs prepared with N-aryl maleimides exhibited less than 20% deconjugation in both thiol-containing buffer and serum when incubated at 37 °C over a period of 7 days, whereas the analogous ADCs prepared with N-alkyl maleimides showed 35-67% deconjugation under the same conditions. ADCs prepared with the anticancer drug N-phenyl maleimide monomethyl-auristatin-E (MMAE) maintained high cytotoxicity following long-term exposure to serum whereas the N-alkyl maleimide MMAE ADC lost potency over time. These data demonstrate that N-aryl maleimides are a convenient and flexible platform to improve the stability of ADCs through manipulation of functional groups attached to the maleimide ring-head nitrogen.
Collapse
Affiliation(s)
- R James Christie
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA.
| | - Ryan Fleming
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Binyam Bezabeh
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Rob Woods
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Shenlan Mao
- Oncology Research, MedImmune, Gaithersburg, MD 20878, USA
| | - Jay Harper
- Oncology Research, MedImmune, Gaithersburg, MD 20878, USA
| | | | - Qianli Wang
- SynChem, Inc., Elk Grove Village, IL 60007, USA
| | - Ze-Qi Xu
- SynChem, Inc., Elk Grove Village, IL 60007, USA
| | - Herren Wu
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA
| | - Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, MedImmune, Gaithersburg, MD 20878, USA.
| |
Collapse
|
47
|
Thompson P, Bezabeh B, Fleming R, Pruitt M, Mao S, Strout P, Chen C, Cho S, Zhong H, Wu H, Gao C, Dimasi N. Hydrolytically Stable Site-Specific Conjugation at the N-Terminus of an Engineered Antibody. Bioconjug Chem 2015; 26:2085-96. [PMID: 26340339 DOI: 10.1021/acs.bioconjchem.5b00355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antibody-drug conjugates (ADCs) have emerged as an important class of therapeutics for cancer treatment that combine the target specificity of antibodies with the killing activity of anticancer chemotherapeutics. Early conjugation technologies relied upon random conjugation to either lysine or cysteine residues, resulting in heterogeneous ADCs. Recent technology advancements have resulted in the preparation of homogeneous ADCs through the site-specific conjugation at engineered cysteines, glycosylated amino acids, and bioorthogonal unnatural amino acids. Here we describe for the first time the conjugation of an anti-mitotic drug to an antibody following the mild and selective oxidation of a serine residue engineered at the N-terminus of the light chain. Using an alkoxyamine-derivatized monomethyl auristatine E payload, we have prepared a hydrolytically stable ADC that retains binding to its antigen and displays potent in vitro cytotoxicity and in vivo tumor growth inhibition.
Collapse
Affiliation(s)
- Pamela Thompson
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Binyam Bezabeh
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Ryan Fleming
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Monica Pruitt
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Shenlan Mao
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Patrick Strout
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Cui Chen
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Song Cho
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Haihong Zhong
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
48
|
Stenderup K, Rosada C, Shanebeck K, Brady W, Van Brunt MP, King G, Marelli M, Slagle P, Xu H, Nairn NW, Johnson J, Wang AA, Li G, Thornton KC, Dam TN, Grabstein KH. AZ17: a new bispecific drug targeting IL-6 and IL-23 with potential clinical use—improves psoriasis in a human xenograft transplantation model. Protein Eng Des Sel 2015; 28:467-80. [DOI: 10.1093/protein/gzv034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
|
49
|
Dimasi N, Fleming R, Hay C, Woods R, Xu L, Wu H, Gao C. Development of a Trispecific Antibody Designed to Simultaneously and Efficiently Target Three Different Antigens on Tumor Cells. Mol Pharm 2015; 12:3490-501. [PMID: 26176328 DOI: 10.1021/acs.molpharmaceut.5b00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Targeting Eph (erythropoietin producing hepatoma) receptors with monoclonal antibodies is being explored as therapy for several types of cancer. To test whether simultaneous targeting of EphA2, EphA4, and EphB4 would be an effective approach to cancer therapy, we generated a recombinant trispecific antibody using the variable domain genes of anti-EphA2, anti-EphA4, and anti-EphB4 monoclonal antibodies. A multidisciplinary approach combining biochemical, biophysical, and cellular-based assays was used to characterize the trispecific antibody in vitro and in vivo. Here we demonstrate that the trispecific antibody is expressed at high levels by mammalian cells, monodispersed in solution, thermostable, capable of simultaneously binding the three receptors, and able to activate the three targets effectively as evidenced by receptor internalization and degradation both in vitro and in vivo. Furthermore, pharmacokinetic analysis using tumor-bearing nude mice showed that the trispecific antibody remains in the circulation similarly to its respective parental antibodies. These results indicate that simultaneous blockade of EphA2, EphA4, and EphB4 could be an attractive approach to cancer therapy.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Ryan Fleming
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Carl Hay
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Rob Woods
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Linda Xu
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering and ‡Oncology Research, MedImmune , Gaithersburg, Maryland 20878, United States
| |
Collapse
|
50
|
DiGiandomenico A, Keller AE, Gao C, Rainey GJ, Warrener P, Camara MM, Bonnell J, Fleming R, Bezabeh B, Dimasi N, Sellman BR, Hilliard J, Guenther CM, Datta V, Zhao W, Gao C, Yu XQ, Suzich JA, Stover CK. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med 2015; 6:262ra155. [PMID: 25391481 DOI: 10.1126/scitranslmed.3009655] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Widespread drug resistance due to empiric use of broad-spectrum antibiotics has stimulated development of bacteria-specific strategies for prophylaxis and therapy based on modern monoclonal antibody (mAb) technologies. However, single-mechanism mAb approaches have not provided adequate protective activity in the clinic. We constructed multifunctional bispecific antibodies, each conferring three mechanisms of action against the bacterial pathogen Pseudomonas aeruginosa by targeting the serotype-independent type III secretion system (injectisome) virulence factor PcrV and persistence factor Psl exopolysaccharide. A new bispecific antibody platform, BiS4, exhibited superior synergistic protection against P. aeruginosa-induced murine pneumonia compared to parent mAb combinations or other available bispecific antibody structures. BiS4αPa was protective in several mouse infection models against disparate P. aeruginosa strains and unexpectedly further synergized with multiple antibiotic classes even against drug-resistant clinical isolates. In addition to resulting in a multimechanistic clinical candidate (MEDI3902) for the prevention or treatment of P. aeruginosa infections, these antibody studies suggest that multifunctional antibody approaches may be a promising platform for targeting other antibiotic-resistant bacterial pathogens.
Collapse
Affiliation(s)
| | - Ashley E Keller
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Cuihua Gao
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | | | - Paul Warrener
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Mareia M Camara
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Jessica Bonnell
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Ryan Fleming
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Binyam Bezabeh
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | | | - Bret R Sellman
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Jamese Hilliard
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | | | | | - Wei Zhao
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Changshou Gao
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Xiang-Qing Yu
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - JoAnn A Suzich
- MedImmune, LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | | |
Collapse
|