1
|
Rudolph MJ, Dutta A, Tsymbal AM, McLaughlin JE, Chen Y, Davis SA, Theodorous SA, Pierce M, Algava B, Zhang X, Szekely Z, Roberge JY, Li XP, Tumer NE. Structure-based design and optimization of a new class of small molecule inhibitors targeting the P-stalk binding pocket of ricin. Bioorg Med Chem 2024; 100:117614. [PMID: 38340640 PMCID: PMC11418912 DOI: 10.1016/j.bmc.2024.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Ricin, a category-B agent for bioterrorism, and Shiga toxins (Stxs), which cause food poisoning bind to the ribosomal P-stalk to depurinate the sarcin/ricin loop. No effective therapy exists for ricin or Stx intoxication. Ribosome binding sites of the toxins have not been targeted by small molecules. We previously identified CC10501, which inhibits toxin activity by binding the P-stalk pocket of ricin toxin A subunit (RTA) remote from the catalytic site. Here, we developed a fluorescence polarization assay and identified a new class of compounds, which bind P-stalk pocket of RTA with higher affinity and inhibit catalytic activity with submicromolar potency. A lead compound, RU-NT-206, bound P-stalk pocket of RTA with similar affinity as a five-fold larger P-stalk peptide and protected cells against ricin and Stx2 holotoxins for the first time. These results validate the P-stalk binding site of RTA as a critical target for allosteric inhibition of the active site.
Collapse
Affiliation(s)
- Michael J Rudolph
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, United States
| | - Arkajyoti Dutta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Anastasiia M Tsymbal
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ 08854, United States
| | - John E McLaughlin
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Yang Chen
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, United States
| | - Simon A Davis
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, United States
| | - Sophia A Theodorous
- New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, United States
| | - Michael Pierce
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Benjamin Algava
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Xiaoyu Zhang
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States
| | - Zoltan Szekely
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ 08854, United States
| | - Jacques Y Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ 08854, United States
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, United States.
| |
Collapse
|
2
|
Li XP, Harijan RK, Cao B, Kahn JN, Pierce M, Tsymbal AM, Roberge JY, Augeri D, Tumer NE. Synthesis and Structural Characterization of Ricin Inhibitors Targeting Ribosome Binding Using Fragment-Based Methods and Structure-Based Design. J Med Chem 2021; 64:15334-15348. [PMID: 34648707 PMCID: PMC10704857 DOI: 10.1021/acs.jmedchem.1c01370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ricin toxin A subunit (RTA) is the catalytic subunit of ricin, which depurinates an adenine from the sarcin/ricin loop in eukaryotic ribosomes. There are no approved inhibitors against ricin. We used a new strategy to disrupt RTA-ribosome interactions by fragment screening using surface plasmon resonance. Here, using a structure-guided approach, we improved the affinity and inhibitory activity of small-molecular-weight lead compounds and obtained improved compounds with over an order of magnitude higher efficiency. Four advanced compounds were characterized by X-ray crystallography. They bind at the RTA-ribosome binding site as the original compound but in a distinctive manner. These inhibitors bind remotely from the catalytic site and cause local conformational changes with no alteration of the catalytic site geometry. Yet they inhibit depurination by ricin holotoxin and inhibit the cytotoxicity of ricin in mammalian cells. They are the first agents that protect against ricin holotoxin by acting directly on RTA.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Bin Cao
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Jennifer N Kahn
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Michael Pierce
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Anastasiia M Tsymbal
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Jacques Y Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - David Augeri
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Nilgun E Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
3
|
Rudolph MJ, Davis SA, Tumer NE, Li XP. Structural basis for the interaction of Shiga toxin 2a with a C-terminal peptide of ribosomal P stalk proteins. J Biol Chem 2020; 295:15588-15596. [PMID: 32878986 PMCID: PMC7667979 DOI: 10.1074/jbc.ac120.015070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
The principal virulence factor of human pathogenic enterohemorrhagic Escherichia coli is Shiga toxin (Stx). Shiga toxin 2a (Stx2a) is the subtype most commonly associated with severe disease outcomes such as hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A1 subunit (Stx2A1) binds to the conserved elongation factor binding C-terminal domain (CTD) of ribosomal P stalk proteins to inhibit translation. Stx2a holotoxin also binds to the CTD of P stalk proteins because the ribosome-binding site is exposed. We show here that Stx2a binds to an 11-mer peptide (P11) mimicking the CTD of P stalk proteins with low micromolar affinity. We cocrystallized Stx2a with P11 and defined their interactions by X-ray crystallography. We found that the last six residues of P11 inserted into a shallow pocket on Stx2A1 and interacted with Arg-172, Arg-176, and Arg-179, which were previously shown to be critical for binding of Stx2A1 to the ribosome. Stx2a formed a distinct P11-binding mode within a different surface pocket relative to ricin toxin A subunit and trichosanthin, suggesting different ribosome recognition mechanisms for each ribosome inactivating protein (RIP). The binding mode of Stx2a to P11 is also conserved among the different Stx subtypes. Furthermore, the P stalk protein CTD is flexible and adopts distinct orientations and interaction modes depending on the structural differences between the RIPs. Structural characterization of the Stx2a-ribosome complex is important for understanding the role of the stalk in toxin recruitment to the sarcin/ricin loop and may provide a new target for inhibitor discovery.
Collapse
Affiliation(s)
| | - Simon A. Davis
- New York Structural Biology Center, New York, New York, USA
| | - Nilgun E. Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA,For correspondence: Xiao-Ping Li, ; Nilgun E. Tumer,
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA,For correspondence: Xiao-Ping Li, ; Nilgun E. Tumer,
| |
Collapse
|
4
|
Leucine 232 and hydrophobic residues at the ribosomal P stalk binding site are critical for biological activity of ricin. Biosci Rep 2020; 39:BSR20192022. [PMID: 31548364 PMCID: PMC6822507 DOI: 10.1042/bsr20192022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 01/16/2023] Open
Abstract
Ricin interacts with the ribosomal P stalk to cleave a conserved adenine from the α-sarcin/ricin loop (SRL) of the rRNA. Ricin toxin A chain (RTA) uses Arg235 as the most critical arginine for binding to the P stalk through electrostatic interactions to facilitate depurination. Structural analysis showed that a P2 peptide binds to a hydrophobic pocket on RTA and the last two residues form hydrogen bonds with Arg235. The importance of hydrophobic residues relative to Arg235 in the interaction with the P stalk in vivo and on the toxicity of RTA is not known. Here, we mutated residues in the hydrophobic pocket to analyze their contribution to toxicity and depurination activity in yeast and in mammalian cells. We found that Leu232, Tyr183 and Phe240 contribute cumulatively to toxicity, with Leu232 being the most significant. A quadruple mutant, Y183A/L232A/R235A/F240A, which combined mutations in critical hydrophobic residues with R235A completely abolished the activity of RTA, indicating that Arg235 and hydrophobic residues are required for full biological activity. Y183A and F240A mutants had reduced activity on RNA, but higher activity on ribosomes compared with R235A in vitro, suggesting that they could partially regain activity upon interaction with ribosomes. These results expand the region of interaction between RTA and the P stalk critical for cellular activity to include the hydrophobic pocket and provide the first evidence that interaction of P stalk with the hydrophobic pocket promotes a conformational rearrangement of RTA to correctly position the active site residues for catalytic attack on the SRL.
Collapse
|
5
|
Li XP, Harijan RK, Kahn JN, Schramm VL, Tumer NE. Small Molecule Inhibitors Targeting the Interaction of Ricin Toxin A Subunit with Ribosomes. ACS Infect Dis 2020; 6:1894-1905. [PMID: 32428396 DOI: 10.1021/acsinfecdis.0c00127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ricin toxin A subunit (RTA) removes an adenine from the universally conserved sarcin/ricin loop (SRL) on eukaryotic ribosomes, thereby inhibiting protein synthesis. No high affinity and selective small molecule therapeutic antidotes have been reported against ricin toxicity. RTA binds to the ribosomal P stalk to access the SRL. The interaction anchors RTA to the P protein C-termini at a well-defined hydrophobic pocket, which is on the opposite face relative to the active site. The RTA ribosome binding site has not been previously targeted by small molecule inhibitors. We used fragment screening with surface plasmon resonance to identify small molecular weight lead compounds that bind RTA and defined their interactions by crystallography. We identified five fragments, which bound RTA with mid-micromolar affinity. Three chemically distinct binding fragments were cocrystallized with RTA, and crystal structures were solved. Two fragments bound at the P stalk binding site, and the third bound to helix D, a motif distinct from the P stalk binding site. All fragments bound RTA remote from the catalytic site and caused little change in catalytic site geometry. Two fragments uniquely bound at the hydrophobic pocket with affinity sufficient to inhibit the catalytic activity on eukaryotic ribosomes in the low micromolar range. The binding mode of these inhibitors mimicked the interaction of the P stalk peptide, establishing that small molecule inhibitors can inhibit RTA binding to the ribosome with the potential for therapeutic intervention.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Rajesh K. Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus,1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Jennifer N. Kahn
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus,1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Nilgun E. Tumer
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
6
|
Britikov VV, Britikova EV, Urban AS, Lesovoy DM, Le TBT, Van Phan C, Usanov SA, Arseniev AS, Bocharov EV. Backbone and side-chain chemical shift assignments for the ribosome-inactivating protein trichobakin (TBK). BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:55-61. [PMID: 31734904 DOI: 10.1007/s12104-019-09920-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Trichobakin (TBK) is a type-I ribosome-inactivating protein (RIP-I), acting as an extremely potent inhibitor of protein synthesis in the cell-free translation system of rabbit reticulocyte lysate (IC50: 3.5 pM). In this respect, TBK surpasses the well-studied highly homologous RIP-I trichosanthin (IC50: 20-27 pM), therefore creation of recombinant toxins based on it is of great interest. TBK needs to penetrate into cytosol through the cell membrane and specifically bind to α-sarcin/ricin loop of 28S ribosome RNA to perform the function of specific RNA depurination. At the moment, there is no detailed structural-dynamic information in solution about diverse states RIP-I can adopt at different stages on the way to protein synthesis inhibition. In this work, we report a near-complete assignment of 1H, 13C, and 15N TBK (27.3 kDa) resonances and analysis of the secondary structure based on the experimental chemical shifts data. This work will serve as a basis for further investigations of the structure, dynamics and interactions of the TBK with its molecular partners using NMR techniques.
Collapse
Affiliation(s)
- Vladimir V Britikov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Elena V Britikova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anatoly S Urban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Dmitry M Lesovoy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Thi Bich Thao Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Chi Van Phan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Russia
| |
Collapse
|
7
|
Wong JH, Bao H, Ng TB, Chan HHL, Ng CCW, Man GCW, Wang H, Guan S, Zhao S, Fang EF, Rolka K, Liu Q, Li C, Sha O, Xia L. New ribosome-inactivating proteins and other proteins with protein synthesis-inhibiting activities. Appl Microbiol Biotechnol 2020; 104:4211-4226. [PMID: 32193575 DOI: 10.1007/s00253-020-10457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Ribosome-inactivating proteins (RIPs) consist of three varieties. Type 1 RIPs are single-chained and approximately 30-kDa in molecular weight. Type 2 RIPs are double-chained and composed of a type 1 RIP chain and a lectin chain. Type III RIPs, such as maize b-32 barley and JIP60 which are produced as single-domain proenzymes, possess an N-terminal domain corresponding to the A domain of RIPs and fused to a C-terminal domain. In addition to the aforementioned three types of RIPs originating from flowering plants, there are recently discovered proteins and peptides with ribosome-inactivating and protein synthesis inhibitory activities but which are endowed with characteristics such as molecular weights distinctive from those of the regular RIPs. These new/unusual RIPs discussed in the present review encompass metazoan RIPs from Anopheles and Culex mosquitos, antimicrobial peptides derived from RIP of the pokeweed Phytolacca dioica, maize RIP (a type III RIP derived from a precursor form), RIPs from the garden pea and the kelp. In addition, RIPs with a molecular weight smaller than those of regular type 1 RIPs are produced by plants in the Cucurbitaceae family including the bitter gourd, bottle gourd, sponge gourd, ridge gourd, wax gourd, hairy gourd, pumpkin, and Chinese cucumber. A small type II RIP from camphor tree (Cinnamomum camphora) seeds and a snake gourd type II RIP with its catalytic chain cleaved into two have been reported. RIPs produced from mushrooms including the golden needle mushroom, king tuber mushroom, straw mushroom, and puffball mushroom are also discussed in addition to a type II RIP from the mushroom Polyporus umbellatus. Bacterial (Spiroplasma) RIPs associated with the fruitfly, Shiga toxin, and Streptomyces coelicolor RIP are also dealt with. The aforementioned proteins display a diversity of molecular weights, amino acid sequences, and mechanisms of action. Some of them are endowed with exploitable antipathogenic activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| | - Hui Bao
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | - Gene Chi Wai Man
- Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- Department of Microbiology, China Agricultural University, Beijing, China
| | - Suzhen Guan
- Department of Social Medicine, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, and Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing, China
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, Poland
| | - Qin Liu
- Institute of Plant Nutrition, Agricultural Resources and Environmental Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chunman Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy, School of Medicine, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Shi WW, Wong KB, Shaw PC. Structural and Functional Investigation and Pharmacological Mechanism of Trichosanthin, a Type 1 Ribosome-Inactivating Protein. Toxins (Basel) 2018; 10:toxins10080335. [PMID: 30127254 PMCID: PMC6115768 DOI: 10.3390/toxins10080335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/11/2023] Open
Abstract
Trichosanthin (TCS) is an RNA N-glycosidase that depurinates adenine-4324 in the conserved α-sarcin/ricin loop (α-SRL) of rat 28 S ribosomal RNA (rRNA). TCS has only one chain, and is classified as type 1 ribosome-inactivating protein (RIP). Our structural studies revealed that TCS consists of two domains, with five conserved catalytic residues Tyr70, Tyr111, Glu160, Arg163 and Phe192 at the active cleft formed between them. We also found that the structural requirements of TCS to interact with the ribosomal stalk protein P2 C-terminal tail. The structural analyses suggest TCS attacks ribosomes by first binding to the C-terminal domain of ribosomal P protein. TCS exhibits a broad spectrum of biological and pharmacological activities including anti-tumor, anti-virus, and immune regulatory activities. This review summarizes an updated knowledge in the structural and functional studies and the mechanism of its multiple pharmacological effects.
Collapse
Affiliation(s)
- Wei-Wei Shi
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| |
Collapse
|
9
|
Wytynck P, Rougé P, Van Damme EJM. Genome-wide screening of Oryza sativa ssp. japonica and indica reveals a complex family of proteins with ribosome-inactivating protein domains. PHYTOCHEMISTRY 2017; 143:87-97. [PMID: 28797946 DOI: 10.1016/j.phytochem.2017.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/08/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are cytotoxic enzymes capable of halting protein synthesis by irreversible modification of ribosomes. Although RIPs are widespread they are not ubiquitous in the plant kingdom. The physiological importance of RIPs is not fully elucidated, but evidence suggests a role in the protection of the plant against biotic and abiotic stresses. Searches in the rice genome revealed a large and highly complex family of proteins with a RIP domain. A comparative analysis retrieved 38 RIP sequences from the genome sequence of Oryza sativa subspecies japonica and 34 sequences from the subspecies indica. The RIP sequences are scattered over different chromosomes but are mostly found on the third chromosome. The phylogenetic tree revealed the pairwise clustering of RIPs from japonica and indica. Molecular modeling and sequence analysis yielded information on the catalytic site of the enzyme, and suggested that a large part of RIP domains probably possess N-glycosidase activity. Several RIPs are differentially expressed in plant tissues and in response to specific abiotic stresses. This study provides an overview of RIP motifs in rice and will help to understand their biological role(s) and evolutionary relationships.
Collapse
Affiliation(s)
- Pieter Wytynck
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Pierre Rougé
- UMR152 PHARMA-DEV, Université de Toulouse, IRD, UPS, Chemin des Maraîchers 35, 31400, Toulouse, France
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
10
|
Human ribosomal P1-P2 heterodimer represents an optimal docking site for ricin A chain with a prominent role for P1 C-terminus. Sci Rep 2017; 7:5608. [PMID: 28717148 PMCID: PMC5514047 DOI: 10.1038/s41598-017-05675-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/15/2017] [Indexed: 12/26/2022] Open
Abstract
The eukaryotic P-stalk contains two P1-P2 protein dimers with a conserved C- terminal domain (CTD) critical for the interaction with external factors. To understand the role of the individual CTD of human P1/P2 proteins, we examined the interaction of reconstituted human P-protein complexes and C-terminally truncated forms with ricin A chain (RTA), which binds to the stalk to depurinate the sarcin/ricin loop (SRL). The interaction between P-protein complexes and RTA was examined by surface plasmon resonance, isothermal titration calorimetry, microscale thermophoresis and bio-layer interferometry. The P1-P2 heterodimer missing a CTD on P2 was able to bind RTA. In contrast, the P1-P2 heterodimer missing the CTD of P1 protein displayed almost no binding toward RTA. Very low interaction was detected between RTA and the non-truncated P2-P2 homodimer, suggesting that the structural architecture of the P1-P2 heterodimer is critical for binding RTA. The reconstituted pentameric human stalk complex had higher affinity for RTA than the P1-P2 dimer. Deletion of P1 CTD, but not P2 CTD reduced the affinity of the pentamer for RTA. These results highlight the importance of the heterodimeric organization of P1-P2 in the human stalk pentamer and functional non-equivalence of the individual P-protein CTDs in the interaction with RTA.
Collapse
|
11
|
Lapadula WJ, Ayub MJ. Ribosome Inactivating Proteins from an evolutionary perspective. Toxicon 2017; 136:6-14. [PMID: 28651991 DOI: 10.1016/j.toxicon.2017.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023]
Abstract
Ribosome Inactivating Proteins (RIPs) are rRNA N-glycosidases that inhibit protein synthesis through the elimination of a single adenine residue from 28S rRNA. Many of these toxins have been characterized in depth from a biochemical and molecular point of view. In addition, their potential use in medicine as highly selective toxins is being explored. In contrast, the evolutionary history of RIP encoding genes has remained traditionally underexplored. In recent years, accumulation of large genomic data has fueled research on this issue and revealed unexpected information about the origin and evolution of RIP toxins. In this review we summarize the current evidence available on the occurrence of different evolutionary mechanisms (gene duplication and losses, horizontal gene transfer, synthesis de novo and domain combination) involved in the evolution of the RIP gene family. Finally, we propose a revised nomenclature for RIP genes based on their evolutionary history.
Collapse
Affiliation(s)
- Walter Jesús Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
12
|
De Zaeytijd J, Van Damme EJM. Extensive Evolution of Cereal Ribosome-Inactivating Proteins Translates into Unique Structural Features, Activation Mechanisms, and Physiological Roles. Toxins (Basel) 2017; 9:E123. [PMID: 28353660 PMCID: PMC5408197 DOI: 10.3390/toxins9040123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can depurinate rRNAs thereby inhibiting protein translation. Although these proteins have also been detected in bacteria, fungi, and even some insects, they are especially prevalent in the plant kingdom. This review focuses on the RIPs from cereals. Studies on the taxonomical distribution and evolution of plant RIPs suggest that cereal RIPs have evolved at an enhanced rate giving rise to a large and heterogeneous RIP gene family. Furthermore, several cereal RIP genes are characterized by a unique domain architecture and the lack of a signal peptide. This advanced evolution of cereal RIPs translates into distinct structures, activation mechanisms, and physiological roles. Several cereal RIPs are characterized by activation mechanisms that include the proteolytic removal of internal peptides from the N-glycosidase domain, a feature not documented for non-cereal RIPs. Besides their role in defense against pathogenic fungi or herbivorous insects, cereal RIPs are also involved in endogenous functions such as adaptation to abiotic stress, storage, induction of senescence, and reprogramming of the translational machinery. The unique properties of cereal RIPs are discussed in this review paper.
Collapse
Affiliation(s)
- Jeroen De Zaeytijd
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
13
|
Zhou Y, Li XP, Chen BY, Tumer NE. Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk. Sci Rep 2017; 7:42912. [PMID: 28230053 PMCID: PMC5322317 DOI: 10.1038/srep42912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/17/2017] [Indexed: 01/24/2023] Open
Abstract
Ricin toxin A chain (RTA) binds to stalk P-proteins to reach the α-sarcin/ricin loop (SRL) where it cleaves a conserved adenine. Arginine residues at the RTA/RTB interface are involved in this interaction. To investigate the individual contribution of each arginine, we generated single, double and triple arginine mutations in RTA. The R235A mutation reduced toxicity and depurination activity more than any other single arginine mutation in yeast. Further reduction in toxicity, depurination activity and ribosome binding was observed when R235A was combined with a mutation in a nearby arginine. RTA interacts with the ribosome via a two-step process, which involves slow and fast interactions. Single arginine mutations eliminated the fast interactions with the ribosome, indicating that they increase the binding rate of RTA. Arginine residues form a positively charged patch to bind to negatively charged residues at the C-termini of P-proteins. When electrostatic interactions conferred by the arginines are lost, hydrophobic interactions are also abolished, suggesting that the hydrophobic interactions alone are insufficient to allow binding. We propose that Arg235 serves as an anchor residue and cooperates with nearby arginines and the hydrophobic interactions to provide the binding specificity and strength in ribosome targeting of RTA.
Collapse
Affiliation(s)
- Yijun Zhou
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Xiao-Ping Li
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | - Brian Y Chen
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015-3084, USA
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| |
Collapse
|
14
|
Structures and Ribosomal Interaction of Ribosome-Inactivating Proteins. Molecules 2016; 21:molecules21111588. [PMID: 27879643 PMCID: PMC6273143 DOI: 10.3390/molecules21111588] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 11/27/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) including ricin, Shiga toxin, and trichosanthin, are RNA N-glycosidases that depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. RIPs are grouped into three types according to the number of subunits and the organization of the precursor sequences. RIPs are two-domain proteins, with the active site located in the cleft between the N- and C-terminal domains. It has been found that the basic surface residues of the RIPs promote rapid and specific targeting to the ribosome and a number of RIPs have been shown to interact with the C-terminal regions of the P proteins of the ribosome. At present, the structural basis for the interaction of trichosanthin and ricin-A chain toward P2 peptide is known. This review surveys the structural features of the representative RIPs and discusses how they approach and interact with the ribosome.
Collapse
|
15
|
Au KY, Shi WW, Qian S, Zuo Z, Shaw PC. Improvement of the Pharmacological Properties of Maize RIP by Cysteine-Specific PEGylation. Toxins (Basel) 2016; 8:toxins8100298. [PMID: 27763506 PMCID: PMC5086658 DOI: 10.3390/toxins8100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022] Open
Abstract
To improve the pharmacological properties of maize ribosome-inactivating protein (maize RIP) for targeting HIV-infected cells, the previously engineered TAT-fused active form of maize RIP (MOD) was further engineered for cysteine-directed PEGylation. In this work, two potential antigenic sites, namely Lys-78 and Lys-264, were identified. They were mutated to cysteine residue and conjugated with PEG5k or PEG20k. The resultant PEG derivatives of MOD variants were examined for ribosome-inactivating activity, circulating half-life and immunogenicity. Our results showed that MOD-PEG conjugates had two- to five-fold lower biological activity compared to the wild-type. Mutation of the two sites respectively did not decrease the anti-MOD IgG and IgE level in mice, but the conjugation of PEG did dramatically reduce the antigenicity. Furthermore, pharmacokinetics studies demonstrated that attachment of PEG20k prolonged the plasma half-life by five-fold for MOD-K78C and 17-fold for MOD-K264C, respectively. The site-specific mutation together with PEGylation therefore generated MOD derivatives with improved pharmacological properties.
Collapse
Affiliation(s)
- Ka-Yee Au
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Wei-Wei Shi
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Shuai Qian
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
16
|
Shi WW, Tang YS, Sze SY, Zhu ZN, Wong KB, Shaw PC. Crystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2. Toxins (Basel) 2016; 8:toxins8100296. [PMID: 27754366 PMCID: PMC5086656 DOI: 10.3390/toxins8100296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022] Open
Abstract
Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (RTA) complexed to the C-terminal peptide of the ribosomal stalk protein P2, which plays a crucial role in specific recognition of elongation factors and recruitment of eukaryote-specific RIPs to the ribosomes. Our structure reveals that the C-terminal GFGLFD motif of P2 peptide is inserted into a hydrophobic pocket of RTA, while the interaction assays demonstrate the structurally untraced SDDDM motif of P2 peptide contributes to the interaction with RTA. This interaction mode of RTA and P protein is in contrast to that with trichosanthin (TCS), Shiga-toxin (Stx) and the active form of maize RIP (MOD), implying the flexibility of the P2 peptide-RIP interaction, for the latter to gain access to ribosome.
Collapse
Affiliation(s)
- Wei-Wei Shi
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - See-Yuen Sze
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zhen-Ning Zhu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
17
|
Di R, Tumer NE. Pokeweed antiviral protein: its cytotoxicity mechanism and applications in plant disease resistance. Toxins (Basel) 2015; 7:755-72. [PMID: 25756953 PMCID: PMC4379523 DOI: 10.3390/toxins7030755] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a 29 kDa type I ribosome inactivating protein (RIP) found in pokeweed plants. Pokeweed produces different forms of PAP. This review focuses on the spring form of PAP isolated from Phytolacca americana leaves. PAP exerts its cytotoxicity by removing a specific adenine from the α-sarcin/ricin loop of the large ribosomal RNA. Besides depurination of the rRNA, PAP has additional activities that contribute to its cytotoxicity. The mechanism of PAP cytotoxicity is summarized based on evidence from the analysis of transgenic plants and the yeast model system. PAP was initially found to be anti-viral when it was co-inoculated with plant viruses onto plants. Transgenic plants expressing PAP and non-toxic PAP mutants have displayed broad-spectrum resistance to both viral and fungal infection. The mechanism of PAP-induced disease resistance in transgenic plants is summarized.
Collapse
Affiliation(s)
- Rong Di
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Nilgun E Tumer
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
18
|
Functional divergence between the two P1-P2 stalk dimers on the ribosome in their interaction with ricin A chain. Biochem J 2014; 460:59-67. [PMID: 24576056 DOI: 10.1042/bj20140014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The eukaryotic stalk, which is responsible for the recruitment of translation factors, is a pentamer containing two P1-P2 dimers with unclear modes of action. In Saccharomyces cerevisiae, P1/P2 proteins (individual P1 and P2 proteins) are organized into two distinct dimers, P1A-P2B and P1B-P2A. To investigate the functional contribution of each dimer on the ribosome, RTA (ricin A chain), which binds to the stalk to depurinate the SRL (sarcin/ricin loop), was used as a molecular probe in yeast mutants in which the binding site for one or the other dimer on P0 was deleted. Ribosome depurination and toxicity of RTA were greatly reduced in mutants containing only P1A-P2B on the ribosome, whereas those with only P1B-P2A were reduced less in depurination and were unaffected in toxicity. Ribosomes bearing P1B-P2A were depurinated by RTA at a similar level as wild-type, but ribosomes bearing P1A-P2B were depurinated at a much lower level in vitro. The latter ribosomes showed the lowest association and almost no dissociation with RTA by surface plasmon resonance. These results indicate that the P1B-P2A dimer is more critical for facilitating the access of RTA to the SRL, providing the first in vivo evidence for functional divergence between the two stalk dimers on the ribosome.
Collapse
|
19
|
Hu M, Li L, Chao J, Zhao Y, Zhang Z, Liang A. The acidic ribosomal protein P2 from Euplotes octocarinatus is phosphorylated at its N-terminal domain. Biochem Cell Biol 2014; 92:23-32. [PMID: 24471915 DOI: 10.1139/bcb-2013-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The eukaryotic acid ribosomal P0, P1, and P2 proteins share a conserved flexible C-terminal tail that is rich in acidic residues, which are involved in the interaction with elongation factor 2 during protein synthesis. Our previous work suggested that the acidic ribosomal P proteins from Euplotes octocarinatus have a special C-terminal domain. To further understand this characteristic feature, both P2 and elongation factor 2 from E. octocarinatus were overexpressed, for the first time, in Escherichia coli in this study. GST pull-down assay indicated that P2 protein from E. octocarinatus (EoP2) interacted specifically with the N-terminal domain of elongation factor 2 from E. octocarinatus (EoEF-2) in vitro. The interacting part of EoP2 is in the C-terminal domains, consistent with the observation in other organisms. Phosphorylation of the recombinant EoP2 was performed in vitro using multiple methods such as (31)P-NMR spectroscopy, native PAGE, and Phos-tag(TM) SDS-PAGE. Results showed that ribosomal protein EoP2 was phosphorylated by casein kinase II at serine 21 located at the N terminus. This phosphorylation site identified in EoP2 is quite different from that of P2 from other organisms, in which the phosphorylation site is located in the conserved C-terminal region.
Collapse
Affiliation(s)
- Miaoqing Hu
- a Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | |
Collapse
|
20
|
Li XP, Kahn PC, Kahn JN, Grela P, Tumer NE. Arginine residues on the opposite side of the active site stimulate the catalysis of ribosome depurination by ricin A chain by interacting with the P-protein stalk. J Biol Chem 2013; 288:30270-30284. [PMID: 24003229 DOI: 10.1074/jbc.m113.510966] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ricin inhibits protein synthesis by depurinating the α-sarcin/ricin loop (SRL). Ricin holotoxin does not inhibit translation unless the disulfide bond between the A (RTA) and B (RTB) subunits is reduced. Ricin holotoxin did not bind ribosomes or depurinate them but could depurinate free RNA. When RTA is separated from RTB, arginine residues located at the interface are exposed to the solvent. Because this positively charged region, but not the active site, is blocked by RTB, we mutated arginine residues at or near the interface of RTB to determine if they are critical for ribosome binding. These variants were structurally similar to wild type RTA but could not bind ribosomes. Their K(m) values and catalytic rates (k(cat)) for an SRL mimic RNA were similar to those of wild type, indicating that their activity was not altered. However, they showed an up to 5-fold increase in K(m) and up to 38-fold decrease in kcat toward ribosomes. These results suggest that the stalk binding stimulates the catalysis of ribosome depurination by RTA. The mutated arginines have side chains behind the active site cleft, indicating that the ribosome binding surface of RTA is on the opposite side of the surface that interacts with the SRL. We propose that stalk binding stimulates the catalysis of ribosome depurination by orienting the active site of RTA toward the SRL and thereby allows docking of the target adenine into the active site. This model may apply to the translation factors that interact with the stalk.
Collapse
Affiliation(s)
- Xiao-Ping Li
- From the Departments of Plant Biology and Pathology and
| | - Peter C Kahn
- Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520
| | | | | | - Nilgun E Tumer
- From the Departments of Plant Biology and Pathology and.
| |
Collapse
|
21
|
Kaas Q, Craik DJ. NMR of plant proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:1-34. [PMID: 23611313 DOI: 10.1016/j.pnmrs.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
22
|
Wong YT, Ng YM, Mak ANS, Sze KH, Wong KB, Shaw PC. Maize ribosome-inactivating protein uses Lys158-lys161 to interact with ribosomal protein P2 and the strength of interaction is correlated to the biological activities. PLoS One 2012; 7:e49608. [PMID: 23251345 PMCID: PMC3520970 DOI: 10.1371/journal.pone.0049608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) inactivate prokaryotic or eukaryotic ribosomes by removing a single adenine in the large ribosomal RNA. Here we show maize RIP (MOD), an atypical RIP with an internal inactivation loop, interacts with the ribosomal stalk protein P2 via Lys158–Lys161, which is located in the N-terminal domain and at the base of its internal loop. Due to subtle differences in the structure of maize RIP, hydrophobic interaction with the ‘FGLFD’ motif of P2 is not as evidenced in MOD-P2 interaction. As a result, interaction of P2 with MOD was weaker than those with trichosanthin and shiga toxin A as reflected by the dissociation constants (KD) of their interaction, which are 1037.50±65.75 µM, 611.70±28.13 µM and 194.84±9.47 µM respectively. Despite MOD and TCS target at the same ribosomal protein P2, MOD was found 48 and 10 folds less potent than trichosanthin in ribosome depurination and cytotoxicity to 293T cells respectively, implicating the strength of interaction between RIPs and ribosomal proteins is important for the biological activity of RIPs. Our work illustrates the flexibility on the docking of RIPs on ribosomal proteins for targeting the sarcin-ricin loop and the importance of protein-protein interaction for ribosome-inactivating activity.
Collapse
Affiliation(s)
- Yuen-Ting Wong
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yiu-Ming Ng
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Amanda Nga-Sze Mak
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kong-Hung Sze
- Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kam-Bo Wong
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Pang-Chui Shaw
- Biochemistry Programme and Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail:
| |
Collapse
|
23
|
Lee BG, Kim MK, Kim BW, Suh SW, Song HK. Structures of the ribosome-inactivating protein from barley seeds reveal a unique activation mechanism. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1488-500. [PMID: 23090398 DOI: 10.1107/s0907444912037110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/28/2012] [Indexed: 05/26/2023]
Abstract
Ribosome-inactivating protein (RIP), a defence protein found in various plants, possesses different chain architectures and activation mechanisms. The RIP from barley (bRIP) is a type I RIP and has sequence features that are divergent from those of type I and type II RIPs from dicotyledonous plants and even the type III RIP from maize. This study presents the first crystal structure of an RIP from a cereal crop, barley, in free, AMP-bound and adenine-bound states. For phasing, a codon-optimized synthetic brip1 gene was used and a vector was constructed to overexpress soluble bRIP fusion proteins; such expression has been verified in a number of cases. The overall structure of bRIP shows folding similar to that observed in other RIPs but also shows significant differences in specific regions, particularly in a switch region that undergoes a structural transition between a 3(10)-helix and a loop depending on the liganded state. The switch region is in a position equivalent to that of a proteolytically susceptible and putative ribosome-binding site in type III RIPs. Thus, the bRIP structure confirms the detailed enzymatic mechanism of this N-glycosidase and reveals a novel activation mechanism for type I RIPs from cereal crops.
Collapse
Affiliation(s)
- Byung-Gil Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Lapadula WJ, Sanchez-Puerta MV, Juri Ayub M. Convergent evolution led ribosome inactivating proteins to interact with ribosomal stalk. Toxicon 2012; 59:427-32. [DOI: 10.1016/j.toxicon.2011.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
25
|
McCluskey AJ, Bolewska-Pedyczak E, Jarvik N, Chen G, Sidhu SS, Gariépy J. Charged and hydrophobic surfaces on the a chain of shiga-like toxin 1 recognize the C-terminal domain of ribosomal stalk proteins. PLoS One 2012; 7:e31191. [PMID: 22355345 PMCID: PMC3280276 DOI: 10.1371/journal.pone.0031191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Shiga-like toxins are ribosome-inactivating proteins (RIP) produced by pathogenic E. coli strains that are responsible for hemorrhagic colitis and hemolytic uremic syndrome. The catalytic A(1) chain of Shiga-like toxin 1 (SLT-1), a representative RIP, first docks onto a conserved peptide SD[D/E]DMGFGLFD located at the C-terminus of all three eukaryotic ribosomal stalk proteins and halts protein synthesis through the depurination of an adenine base in the sarcin-ricin loop of 28S rRNA. Here, we report that the A(1) chain of SLT-1 rapidly binds to and dissociates from the C-terminal peptide with a monomeric dissociation constant of 13 µM. An alanine scan performed on the conserved peptide revealed that the SLT-1 A(1) chain interacts with the anionic tripeptide DDD and the hydrophobic tetrapeptide motif FGLF within its sequence. Based on these 2 peptide motifs, SLT-1 A(1) variants were generated that displayed decreased affinities for the stalk protein C-terminus and also correlated with reduced ribosome-inactivating activities in relation to the wild-type A(1) chain. The toxin-peptide interaction and subsequent toxicity were shown to be mediated by cationic and hydrophobic docking surfaces on the SLT-1 catalytic domain. These docking surfaces are located on the opposite face of the catalytic cleft and suggest that the docking of the A(1) chain to SDDDMGFGLFD may reorient its catalytic domain to face its RNA substrate. More importantly, both the delineated A(1) chain ribosomal docking surfaces and the ribosomal peptide itself represent a target and a scaffold, respectively, for the design of generic inhibitors to block the action of RIPs.
Collapse
Affiliation(s)
- Andrew J. McCluskey
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Nick Jarvik
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Gang Chen
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jean Gariépy
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Abstract
Ricin and Shiga toxins designated as ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine (A₄₃₂₄ in rat 28S rRNA) in the conserved α-sarcin/ricin loop of the large rRNA, inhibiting protein synthesis. Evidence obtained from a number of studies suggests that interaction with ribosomal proteins plays an important role in the catalytic activity and ribosome specificity of RIPs. This review summarizes the recent developments in identification of the ribosomal proteins that interact with ricin and Shiga toxins and the principles governing these interactions.
Collapse
Affiliation(s)
- Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA.
| | | |
Collapse
|
27
|
Chiou JC, Li XP, Remacha M, Ballesta JPG, Tumer NE. Shiga toxin 1 is more dependent on the P proteins of the ribosomal stalk for depurination activity than Shiga toxin 2. Int J Biochem Cell Biol 2011; 43:1792-801. [PMID: 21907821 DOI: 10.1016/j.biocel.2011.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/27/2011] [Accepted: 08/26/2011] [Indexed: 01/01/2023]
Abstract
Shiga toxins produced by Escherichia coli O157:H7 are responsible for food poisoning and hemolytic uremic syndrome (HUS). The A subunits of Shiga toxins (Stx1A and Stx2A) inhibit translation by depurinating a specific adenine in the large rRNA. To determine if Stx1A and Stx2A require the ribosomal stalk for depurination, their activity and cytotoxicity were examined in the yeast P protein deletion mutants. Stx1A and Stx2A were less toxic and depurinated ribosomes less in a strain lacking P1/P2 on the ribosome and in the cytosol (ΔP2) than in a strain lacking P1/P2 on the ribosome, but containing free P2 in the cytosol (ΔP1). To determine if cytoplasmic P proteins facilitated depurination, Stx1A and Stx2A were expressed in the P0ΔAB mutant, in which the binding sites for P1/P2 were deleted on the ribosome, and P1/P2 accumulated in the cytosol. Stx1A was less toxic and depurinated ribosomes less in P0ΔAB, suggesting that intact binding sites for P1/P2 were critical. In contrast, Stx2A was toxic and depurinated ribosomes in P0ΔAB as in wild type, suggesting that it did not require the P1/P2 binding sites. Depurination of ΔP1, but not P0ΔAB ribosomes increased upon addition of purified P1α/P2βin vitro, and the increase was greater for Stx1 than for Stx2. We conclude that cytoplasmic P proteins stimulate depurination by Stx1 by facilitating the access of the toxin to the ribosome. Although ribosomal stalk is important for Stx1 and Stx2 to depurinate the ribosome, Stx2 is less dependent on the stalk proteins for activity than Stx1 and can depurinate ribosomes with an incomplete stalk better than Stx1.
Collapse
Affiliation(s)
- Jia-Chi Chiou
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
| | | | | | | | | |
Collapse
|
28
|
Ng YM, Yang Y, Sze KH, Zhang X, Zheng YT, Shaw PC. Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica). J Struct Biol 2011; 174:164-72. [DOI: 10.1016/j.jsb.2010.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 01/29/2023]
|
29
|
Li XP, Grela P, Krokowski D, Tchórzewski M, Tumer NE. Pentameric organization of the ribosomal stalk accelerates recruitment of ricin a chain to the ribosome for depurination. J Biol Chem 2010; 285:41463-71. [PMID: 20974854 DOI: 10.1074/jbc.m110.171793] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Ribosome inactivating proteins (RIPs) depurinate a universally conserved adenine in the α-sarcin/ricin loop (SRL) and inhibit protein synthesis at the translation elongation step. We previously showed that ribosomal stalk is required for depurination of the SRL by ricin toxin A chain (RTA). The interaction between RTA and ribosomes was characterized by a two-step binding model, where the stalk structure could be considered as an important interacting element. Here, using purified yeast ribosomal stalk complexes assembled in vivo, we show a direct interaction between RTA and the isolated stalk complex. Detailed kinetic analysis of these interactions in real time using surface plasmon resonance (SPR) indicated that there is only one type of interaction between RTA and the ribosomal stalk, which represents one of the two binding steps of the interaction with ribosomes. Interactions of RTA with the isolated stalk were relatively insensitive to salt, indicating that nonelectrostatic interactions were dominant. We compared the interaction of RTA with the full pentameric stalk complex containing two pairs of P1/P2 proteins with its interaction with the trimeric stalk complexes containing only one pair of P1/P2 and found that the rate of association of RTA with the pentamer was higher than with either trimer. These results demonstrate that the stalk is the main landing platform for RTA on the ribosome and that pentameric organization of the stalk accelerates recruitment of RTA to the ribosome for depurination. Our results suggest that multiple copies of the stalk proteins might also increase the scavenging ability of the ribosome for the translational GTPases.
Collapse
Affiliation(s)
- Xiao-Ping Li
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | | | | | | | |
Collapse
|
30
|
Law SKY, Wang RR, Mak ANS, Wong KB, Zheng YT, Shaw PC. A switch-on mechanism to activate maize ribosome-inactivating protein for targeting HIV-infected cells. Nucleic Acids Res 2010; 38:6803-12. [PMID: 20558598 PMCID: PMC2965250 DOI: 10.1093/nar/gkq551] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the α-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active heterodimeric maize RIP with full N-glycosidase activity. This naturally occurring switch-on mechanism provides an opportunity for targeting the cytotoxin to pathogen-infected cells. Here, we report the addition of HIV-1 protease recognition sequences to the internal inactivation region and the activation of the maize RIP variants by HIV-1 protease in vitro and in HIV-infected cells. Among the variants generated, two were cleaved efficiently by HIV-1 protease. The HIV-1 protease-activated variants showed enhanced N-glycosidase activity in vivo as compared to their un-activated counterparts. They also possessed potent inhibitory effect on p24 antigen production in human T cells infected by two HIV-1 strains. This switch-on strategy for activating the enzymatic activity of maize RIP in target cells provides a platform for combating pathogens with a specific protease.
Collapse
Affiliation(s)
- Sue Ka-Yee Law
- Department of Biochemistry and Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | |
Collapse
|