1
|
Cherene MB, Taveira GB, Almeida-Silva F, da Silva MS, Cavaco MC, da Silva-Ferreira AT, Perales JEA, de Oliveira Carvalho A, Venâncio TM, da Motta OV, Rodrigues R, Castanho MARB, Gomes VM. Structural and Biochemical Characterization of Three Antimicrobial Peptides from Capsicum annuum L. var. annuum Leaves for Anti-Candida Use. Probiotics Antimicrob Proteins 2024; 16:1270-1287. [PMID: 37365421 DOI: 10.1007/s12602-023-10112-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
The emergence of resistant microorganisms has reduced the effectiveness of currently available antimicrobials, necessitating the development of new strategies. Plant antimicrobial peptides (AMPs) are promising candidates for novel drug development. In this study, we aimed to isolate, characterize, and evaluate the antimicrobial activities of AMPs isolated from Capsicum annuum. The antifungal potential was tested against Candida species. Three AMPs from C. annuum leaves were isolated and characterized: a protease inhibitor, a defensin-like protein, and a lipid transporter protein, respectively named CaCPin-II, CaCDef-like, and CaCLTP2. All three peptides had a molecular mass between 3.5 and 6.5 kDa and caused morphological and physiological changes in four different species of the genus Candida, such as pseudohyphae formation, cell swelling and agglutination, growth inhibition, reduced cell viability, oxidative stress, membrane permeabilization, and metacaspase activation. Except for CaCPin-II, the peptides showed low or no hemolytic activity at the concentrations used in the yeast assays. CaCPin-II inhibited α-amylase activity. Together, these results suggest that these peptides have the potential as antimicrobial agents against species of the genus Candida and can serve as scaffolds for the development of synthetic peptides for this purpose.
Collapse
Affiliation(s)
- Milena Bellei Cherene
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marco Calvinho Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Thiago Motta Venâncio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Olney Vieira da Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | | | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| |
Collapse
|
2
|
Yadav NK, Saikhedkar NS, Giri AP. PINIR: a comprehensive information resource for Pin-II type protease inhibitors. BMC PLANT BIOLOGY 2021; 21:267. [PMID: 34107869 PMCID: PMC8188708 DOI: 10.1186/s12870-021-03027-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Serine protease inhibitors belonging to the Potato type-II Inhibitor family Protease Inhibitors (Pin-II type PIs) are essential plant defense molecules. They are characterized by multiple inhibitory repeat domains, conserved disulfide bond pattern, and a tripeptide reactive center loop. These features of Pin-II type PIs make them potential molecules for protein engineering and designing inhibitors for agricultural and therapeutic applications. However, the diversity in these PIs remains unexplored due to the lack of annotated protein sequences and their functional attributes in the available databases. RESULTS We have developed a database, PINIR (Pin-II type PIs Information Resource), by systematic collection and manual annotation of 415 Pin-II type PI protein sequences. For each PI, the number and position for signature sequences are specified: 695 domains, 75 linkers, 63 reactive center loops, and 10 disulfide bond patterns are identified and mapped. Database analysis revealed novel subcategories of PIs, species-correlated occurrence of inhibitory domains, reactive center loops, and disulfide bond patterns. By analyzing linker regions, we predict that alternative processing at linker regions could generate PI variants in the Solanaceae family. CONCLUSION PINIR ( https://pinir.ncl.res.in ) provides a web interface for browsing and analyzing the protein sequences of Pin-II type PIs. Information about signature sequences, spatio-temporal expression, biochemical properties, gene sequences, and literature references are provided. Analysis of PINIR depicts conserved species-specific features of Pin-II type PI protein sequences. Diversity in the sequence of inhibitory domains and reactive loops directs potential applications to engineer Pin-II type PIs. The PINIR database will serve as a comprehensive information resource for further research into Pin-II type PIs.
Collapse
Affiliation(s)
- Nikhilesh K Yadav
- Publication and Science Communication Unit, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Information Systems Area, Indian Institute of Management Indore, Indore, 453556, India
| | - Nidhi S Saikhedkar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashok P Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
A methylated lysine is a switch point for conformational communication in the chaperone Hsp90. Nat Commun 2020; 11:1219. [PMID: 32139682 PMCID: PMC7057950 DOI: 10.1038/s41467-020-15048-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Methylation of a conserved lysine in C-terminal domain of the molecular chaperone Hsp90 was shown previously to affect its in vivo function. However, the underlying mechanism remained elusive. Through a combined experimental and computational approach, this study shows that this site is very sensitive to sidechain modifications and crucial for Hsp90 activity in vitro and in vivo. Our results demonstrate that this particular lysine serves as a switch point for the regulation of Hsp90 functions by influencing its conformational cycle, ATPase activity, co-chaperone regulation, and client activation of yeast and human Hsp90. Incorporation of the methylated lysine via genetic code expansion specifically shows that upon modification, the conformational cycle of Hsp90 is altered. Molecular dynamics simulations including the methylated lysine suggest specific conformational changes that are propagated through Hsp90. Thus, methylation of the C-terminal lysine allows a precise allosteric tuning of Hsp90 activity via long distances. Methylation of a lysine residue in Hsp90 is a recently discovered post-translational modification but the mechanistic effects of this modification have remained unknown so far. Here the authors combine biochemical and biophysical approaches, molecular dynamics (MD) simulations and functional experiments with yeast and show that this lysine is a switch point, which specifically modulates conserved Hsp90 functions including co-chaperone regulation and client activation.
Collapse
|
4
|
Gartia J, Anangi R, Joshi RS, Giri AP, King GF, Barnwal RP, Chary KVR. NMR structure and dynamics of inhibitory repeat domain variant 12, a plant protease inhibitor from Capsicum annuum, and its structural relationship to other plant protease inhibitors. J Biomol Struct Dyn 2019; 38:1388-1397. [PMID: 31038412 DOI: 10.1080/07391102.2019.1607559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although several plant protease inhibitors have been structurally characterized using X-ray crystallography, very few have been studied using NMR techniques. Here, we report an NMR study of the solution structure and dynamics of an inhibitory repeat domain (IRD) variant 12 from the wound-inducible Pin-II type proteinase inhibitor from Capsicum annuum. IRD variant 12 (IRD12) showed strong anti-metabolic activity against the Lepidopteran insect pest, Helicoverpa armigera. The NMR-derived three-dimensional structure of IRD12 reveals a three-stranded anti-parallel β-sheet rigidly held together by four disulfide bridges and shows structural homology with known IRDs. It is interesting to note that the IRD12 structure containing ∼75% unstructured part still shows substantial amount of rigidity of N-H bond vectors with respect to its molecular motion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Janeka Gartia
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, India
| | - Raveendra Anangi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rakesh S Joshi
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Ashok P Giri
- CSIR - National Chemical Laboratory, Pune, India
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ravi P Barnwal
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Kandala V R Chary
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad, India.,Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India.,Indian Institute of Science Education and Research, Berhampur, Odisha, India
| |
Collapse
|
5
|
Saikhedkar NS, Joshi RS, Bhoite AS, Mohandasan R, Yadav AK, Fernandes M, Kulkarni KA, Giri AP. Tripeptides derived from reactive centre loop of potato type II protease inhibitors preferentially inhibit midgut proteases of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95:17-25. [PMID: 29486250 DOI: 10.1016/j.ibmb.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Potato type II protease inhibitors (Pin-II PIs) impede the growth of lepidopteran insects by inhibiting serine protease-like enzymes in the larval gut. The three amino acid reactive centre loop (RCL) of these proteinaceous inhibitors is crucial for protease binding and is conserved across the Pin-II family. However, the molecular mechanism and inhibitory potential of the RCL tripeptides in isolation of the native protein has remained elusive. In this study, six peptides corresponding to the RCLs of the predominant Pin-II PIs were identified, synthesized and evaluated for in vitro and in vivo inhibitory activity against serine proteases of the polyphagous insect, Helicoverpa armigera. RCL peptides with sequences PRN, PRY and TRE were found to be potent inhibitors that adversely affected the growth and development of H. armigera. The binding mechanism and differential affinity of the RCL peptides with serine proteases was delineated by crystal structures of complexes of the RCL peptides with trypsin. Residues P1 and P2 of the inhibitors play a crucial role in the interaction and specificity of these inhibitors. Important features of RCL peptides like higher inhibition of insect proteases, enhanced efficacy at alkaline gut pH, longer retention and high stability in insect gut make them suitable molecules for the development of sustainable pest management strategies for crop protection.
Collapse
Affiliation(s)
- Nidhi S Saikhedkar
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Rakesh S Joshi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Ashiwini S Bhoite
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Radhika Mohandasan
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Amit Kumar Yadav
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Moneesha Fernandes
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Kiran A Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| |
Collapse
|
6
|
Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition. Biochem J 2015; 469:243-53. [PMID: 25981970 DOI: 10.1042/bj20150412] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/18/2015] [Indexed: 11/17/2022]
Abstract
Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.
Collapse
|
7
|
Joshi RS, Gupta VS, Giri AP. Differential antibiosis against Helicoverpa armigera exerted by distinct inhibitory repeat domains of Capsicum annuum proteinase inhibitors. PHYTOCHEMISTRY 2014; 101:16-22. [PMID: 24559910 DOI: 10.1016/j.phytochem.2014.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 05/21/2023]
Abstract
Plant defensive serine proteinase inhibitors (PIs) are known to have negative impact on digestive physiology of herbivore insects and thus have a crucial role in plant protection. Here, we have assessed the efficacy and specificity of three previously characterized inhibitory repeat domain (IRD) variants from Capsicum annuum PIs viz., IRD-7, -9 and -12 against gut proteinases from Helicoverpa armigera. Comparative study of in silico binding energy revealed that IRD-9 possesses higher affinity towards H. armigera serine proteinases as compared to IRD-7 and -12. H. armigera fed on artificial diet containing 5 TIU/g of recombinant IRD proteins exhibited differential effects on larval growth, survival rate and other nutritional parameters. Major digestive gut trypsin and chymotrypsin genes were down regulated in the IRD fed larvae, while few of them were up-regulated, this indicate alterations in insect digestive physiology. The results corroborated with proteinase activity assays and zymography. These findings suggest that the sequence variations among PIs reflect in their efficacy against proteinases in vitro and in vivo, which also could be used for developing tailor-made multi-domain inhibitor gene(s).
Collapse
Affiliation(s)
- Rakesh S Joshi
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (MS), India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (MS), India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (MS), India.
| |
Collapse
|
8
|
Kövér KE, Batta G. NMR investigation of disulfide containing peptides and proteins. AMINO ACIDS, PEPTIDES AND PROTEINS 2013:37-59. [DOI: 10.1039/9781849737081-00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Peptides and proteins with disulfide bonds are abundant in all kingdoms and play essential role in many biological events. Because small disulfide-rich peptides (proteins) are usually difficult to crystallize, nuclear magnetic resonance (NMR) is by far one of the most powerful techniques for the determination of their solution structure. Besides the “static” three-dimensional structure, NMR has unique opportunities to acquire additional information about molecular dynamics and folding at atomic resolution. Nowadays it is becoming increasingly evident, that “excited”, “disordered” or “fuzzy” protein states may exhibit biological function and disulfide proteins are also promising targets for such studies. In this short two-three years overview those disulfide peptides and proteins were cited from the literature that were studied by NMR. Though we may have missed some, their structural diversity and complexity as well as their wide repertoire of biological functions is impressive. We emphasised especially antimicrobial peptides and peptide based toxins in addition to some biologically important other structures. Besides the general NMR methods we reviewed some contemporary techniques suitable for disclosing the peculiar properties of disulfide bonds. Interesting dynamics and folding studies of disulfide proteins were also mentioned. It is important to disclose the essential structure, dynamics, function aspects of disulfide proteins since this aids the design of new compounds with improved activity and reduced toxicity. Undoubtedly, NMR has the potential to accelerate the development of new disulfide peptides/proteins with pharmacological activity.
Collapse
|
9
|
He J, Xu L, Zou Z, Ueyama N, Li H, Kato A, Jones GW, Song Y. Molecular dynamics simulation to investigate the impact of disulfide bond formation on conformational stability of chicken cystatin I66Q mutant. J Biomol Struct Dyn 2013; 31:1101-10. [DOI: 10.1080/07391102.2012.721498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Complementation of intramolecular interactions for structural-functional stability of plant serine proteinase inhibitors. Biochim Biophys Acta Gen Subj 2013; 1830:5087-94. [PMID: 23891708 DOI: 10.1016/j.bbagen.2013.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions. SCOPE OF REVIEW The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs. MAJOR CONCLUSIONS The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop. GENERAL SIGNIFICANCE Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.
Collapse
|
11
|
Kumar V, Gowda LR. The contribution of two disulfide bonds in the trypsin binding domain of horsegram (Dolichos biflorus) Bowman-Birk inhibitor to thermal stability and functionality. Arch Biochem Biophys 2013; 537:49-61. [PMID: 23791628 DOI: 10.1016/j.abb.2013.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 12/20/2022]
Abstract
The major Bowman-Birk inhibitor (BBIs) of horsegram (Dolichos biflorus) HGI-III, contains seven interweaving disulfides and is extremely stable to high temperatures. The contributions of two disulfide bonds in the trypsin domain to thermal stability and functionality were evaluated using disulfide deletion variants of wild type protein. Thermal denaturation kinetics, differential scanning calorimetry and urea denaturation studies indicate that the absence of either of the two disulfides destabilizes the protein significantly. C20-C66 contributes substantially to both thermal stability and controls trypsin and chymotrypsin inhibitor activity. These two disulfides act in synergy as deletion of both disulfides leads to a complete loss of thermal stability. The data indicate that the two subdomains are not entirely independent of each other. Long range interactions, between the domains are facilitated by C20-C66. The deletion of the disulfide bonds also increased proteolytic susceptibility in a manner similar to the decreased thermal stability. From this study of rHGI a prototype of legume BBIs in can be concluded that among the array of seven evolutionarily conserved disulfide bonds, the disulfide C20-C66 that connects a residue in the trypsin domain with a residue at the border of the same domain plays a dominant role in maintaining functional and structural stability.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysore, India
| | | |
Collapse
|
12
|
Kaas Q, Craik DJ. NMR of plant proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 71:1-34. [PMID: 23611313 DOI: 10.1016/j.pnmrs.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
13
|
Joshi RS, Mishra M, Tamhane VA, Ghosh A, Sonavane U, Suresh CG, Joshi R, Gupta VS, Giri AP. The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop. J Biomol Struct Dyn 2012; 32:13-26. [PMID: 23256852 DOI: 10.1080/07391102.2012.745378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Capsicum annuum (L.) expresses diverse potato type II family proteinase inhibitors comprising of inhibitory repeat domain (IRD) as basic functional unit. Most IRDs contain eight conserved cysteines forming four disulfide bonds, which are indispensible for their stability and activity. We investigated the functional significance of evolutionary variations in IRDs and their role in mediating interaction between the inhibitor and cognate proteinase. Among the 18 IRDs encoded by C. annuum, IRD-7, -9, and -12 were selected for further characterization on the basis of variation in their reactive site loop, number of conserved cysteine residues, and higher theoretical ΔGbind for interaction with Helicoverpa armigera trypsin. Moreover, inhibition kinetics showed that IRD-9, despite loss of some of the disulfide bonds, was a more potent proteinase inhibitor among the three selected IRDs. Molecular dynamic simulations revealed that serine residues in the place of cysteines at seventh and eighth positions of IRD-9 resulted in an increase in the density of intramolecular hydrogen bonds and reactive site loop flexibility. Results of the serine residues chemical modification also supported this observation and provided a possible explanation for the remarkable inhibitory potential of IRD-9. Furthermore, this natural variant among IRDs showed special attributes like stability to proteolysis and synergistic inhibitory effect on other IRDs. It is likely that IRDs have coevolved selective specialization of their structure and function as a response towards specific insect proteases they encountered. Understanding the molecular mechanism of pest protease-plant proteinaceous inhibitor interaction will help in developing effective pest control strategies. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:39.
Collapse
Affiliation(s)
- Rakesh S Joshi
- a Plant Molecular Biology Unit, Biochemical Sciences Division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune , 411 008 , MS , India
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mishra M, Mahajan N, Tamhane VA, Kulkarni MJ, Baldwin IT, Gupta VS, Giri AP. Stress inducible proteinase inhibitor diversity in Capsicum annuum. BMC PLANT BIOLOGY 2012; 12:217. [PMID: 23153298 PMCID: PMC3511207 DOI: 10.1186/1471-2229-12-217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 11/07/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Wound-inducible Pin-II Proteinase inhibitors (PIs) are one of the important plant serine PIs which have been studied extensively for their structural and functional diversity and relevance in plant defense against insect pests. To explore the functional specialization of an array of Capsicum annuum (L.) proteinase inhibitor (CanPIs) genes, we studied their expression, processing and tissue-specific distribution under steady-state and induced conditions. Inductions were performed by subjecting C. annuum leaves to various treatments, namely aphid infestation or mechanical wounding followed by treatment with either oral secretion (OS) of Helicoverpa armigera or water. RESULTS The elicitation treatments regulated the accumulation of CanPIs corresponding to 4-, 3-, and 2-inhibitory repeat domains (IRDs). Fourty seven different CanPI genes composed of 28 unique IRDs were identified in total along with those reported earlier. The CanPI gene pool either from uninduced or induced leaves was dominated by 3-IRD PIs and trypsin inhibitory domains. Also a major contribution by 4-IRD CanPI genes possessing trypsin and chymotrypsin inhibitor domains was specifically revealed in wounded leaves treated with OS. Wounding displayed the highest number of unique CanPIs while wounding with OS treatment resulted in the high accumulation of specifically CanPI-4, -7 and -10. Characterization of the PI protein activity through two dimensional gel electrophoresis revealed tissue and induction specific patterns. Consistent with transcript abundance, wound plus OS or water treated C. annuum leaves exhibited significantly higher PI activity and isoform diversity contributed by 3- and 4-IRD CanPIs. CanPI accumulation and activity was weakly elicited by aphid infestation yet resulted in the higher expression of CanPI-26, -41 and -43. CONCLUSIONS Plants can differentially perceive various kinds of insect attacks and respond appropriately through activating plant defenses including regulation of PIs at transcriptional and post-translational levels. Based on the differentially elicited CanPI accumulation patterns, it is intriguing to speculate that generating sequence diversity in the form of multi-IRD PIs is a part of elaborative plant defense strategy to obtain a diverse pool of functional units to confine insect attack.
Collapse
Affiliation(s)
- Manasi Mishra
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411 008, India
| | - Neha Mahajan
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411 008, India
| | - Vaijayanti A Tamhane
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411 008, India
- Present address: Institute of Bioinformatics and Biotechnology, University of Pune, Pune, MS, 411 007, India
| | - Mahesh J Kulkarni
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411 008, India
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411 008, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411 008, India
| |
Collapse
|
15
|
Zhang L, Chou CP, Moo-Young M. Disulfide bond formation and its impact on the biological activity and stability of recombinant therapeutic proteins produced by Escherichia coli expression system. Biotechnol Adv 2011; 29:923-9. [DOI: 10.1016/j.biotechadv.2011.07.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/17/2011] [Accepted: 07/21/2011] [Indexed: 11/28/2022]
|
16
|
Li XQ, Zhang T, Donnelly D. Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family. PLoS One 2011; 6:e18615. [PMID: 21494600 PMCID: PMC3073943 DOI: 10.1371/journal.pone.0018615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 03/14/2011] [Indexed: 11/26/2022] Open
Abstract
Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution.
Collapse
Affiliation(s)
- Xiu-Qing Li
- Potato Research Centre, Agriculture and Agri-Food Canada, Fredericton, Canada.
| | | | | |
Collapse
|