1
|
Sun WS, Lassinantti L, Järvå M, Schmitt A, ter Beek J, Berntsson RPA. Structural foundation for the role of enterococcal PrgB in conjugation, biofilm formation, and virulence. eLife 2023; 12:RP84427. [PMID: 37860966 PMCID: PMC10588982 DOI: 10.7554/elife.84427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Type 4 Secretion Systems are a main driver for the spread of antibiotic resistance genes and virulence factors in bacteria. In Gram-positives, these secretion systems often rely on surface adhesins to enhance cellular aggregation and mating-pair formation. One of the best studied adhesins is PrgB from the conjugative plasmid pCF10 of Enterococcus faecalis, which has been shown to play major roles in conjugation, biofilm formation, and importantly also in bacterial virulence. Since prgB orthologs exist on a large number of conjugative plasmids in various different species, this makes PrgB a model protein for this widespread virulence factor. After characterizing the polymer adhesin domain of PrgB previously, we here report the structure for almost the entire remainder of PrgB, which reveals that PrgB contains four immunoglobulin (Ig)-like domains. Based on this new insight, we re-evaluate previously studied variants and present new in vivo data where specific domains or conserved residues have been removed. For the first time, we can show a decoupling of cellular aggregation from biofilm formation and conjugation in prgB mutant phenotypes. Based on the presented data, we propose a new functional model to explain how PrgB mediates its different functions. We hypothesize that the Ig-like domains act as a rigid stalk that presents the polymer adhesin domain at the right distance from the cell wall.
Collapse
Affiliation(s)
- Wei-Sheng Sun
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Lena Lassinantti
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Michael Järvå
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Andreas Schmitt
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
| | - Josy ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| |
Collapse
|
2
|
Yuvaraj I, Chaudhary SK, Jeyakanthan J, Sekar K. Structure of the hypothetical protein TTHA1873 from Thermus thermophilus. Acta Crystallogr F Struct Biol Commun 2022; 78:338-346. [PMID: 36048084 PMCID: PMC9435673 DOI: 10.1107/s2053230x22008457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
The crystal structure of an uncharacterized hypothetical protein, TTHA1873 from Thermus thermophilus, has been determined by X-ray crystallography to a resolution of 1.78 Å using the single-wavelength anomalous dispersion method. The protein crystallized as a dimer in two space groups: P43212 and P6122. Structural analysis of the hypothetical protein revealed that the overall fold of TTHA1873 has a β-sandwich jelly-roll topology with nine β-strands. TTHA1873 is a dimeric metal-binding protein that binds to two Ca2+ ions per chain, with one on the surface and the other stabilizing the dimeric interface of the two chains. A structural homology search indicates that the protein has moderate structural similarity to one domain of cell-surface proteins or agglutinin receptor proteins. Red blood cells showed visible agglutination at high concentrations of the hypothetical protein.
Collapse
Affiliation(s)
- I. Yuvaraj
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - Santosh Kumar Chaudhary
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| | - J. Jeyakanthan
- Structural Biology and Bio Computing Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi 630 004, India
| | - K. Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
3
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
4
|
Schormann N, Purushotham S, Mieher JL, Patel M, Wu H, Deivanayagam C. Structural and functional analysis of the C-terminal region of Streptococcus gordonii SspB. Acta Crystallogr D Struct Biol 2021; 77:1206-1215. [PMID: 34473090 PMCID: PMC8411976 DOI: 10.1107/s2059798321008135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/06/2021] [Indexed: 03/16/2023] Open
Abstract
Streptococcus gordonii is a member of the viridans streptococci and is an early colonizer of the tooth surface. Adherence to the tooth surface is enabled by proteins present on the S. gordonii cell surface, among which SspB belongs to one of the most well studied cell-wall-anchored adhesin families: the antigen I/II (AgI/II) family. The C-terminal region of SspB consists of three tandemly connected individual domains that display the DEv-IgG fold. These C-terminal domains contain a conserved Ca2+-binding site and isopeptide bonds, and they adhere to glycoprotein 340 (Gp340; also known as salivary agglutinin, SAG). Here, the structural and functional characterization of the C123SspB domain at 2.7 Å resolution is reported. Although the individual C-terminal domains of Streptococcus mutans AgI/II and S. gordonii SspB show a high degree of both sequence and structural homology, superposition of these structures highlights substantial differences in their electrostatic surface plots, and this can be attributed to the relative orientation of the individual domains (C1, C2 and C3) with respect to each other and could reflect their specificity in binding to extracellular matrix molecules. Studies further confirmed that affinity for Gp340 or its scavenger receptor cysteine-rich (SRCR) domains requires two of the three domains of C123SspB, namely C12 or C23, which is different from AgI/II. Using protein-protein docking studies, models for this observed functional difference between C123SspB and C123AgI/II in their binding to SRCR1 are presented.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sangeetha Purushotham
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joshua L. Mieher
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manisha Patel
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Wu
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR 97239, USA
| | - Champion Deivanayagam
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Nakata M, Kreikemeyer B. Genetics, Structure, and Function of Group A Streptococcal Pili. Front Microbiol 2021; 12:616508. [PMID: 33633705 PMCID: PMC7900414 DOI: 10.3389/fmicb.2021.616508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
6
|
Järvå MA, Hirt H, Dunny GM, Berntsson RPA. Polymer Adhesin Domains in Gram-Positive Cell Surface Proteins. Front Microbiol 2020; 11:599899. [PMID: 33324381 PMCID: PMC7726212 DOI: 10.3389/fmicb.2020.599899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023] Open
Abstract
Surface proteins in Gram-positive bacteria are often involved in biofilm formation, host-cell interactions, and surface attachment. Here we review a protein module found in surface proteins that are often encoded on various mobile genetic elements like conjugative plasmids. This module binds to different types of polymers like DNA, lipoteichoic acid and glucans, and is here termed polymer adhesin domain. We analyze all proteins that contain a polymer adhesin domain and classify the proteins into distinct classes based on phylogenetic and protein domain analysis. Protein function and ligand binding show class specificity, information that will be useful in determining the function of the large number of so far uncharacterized proteins containing a polymer adhesin domain.
Collapse
Affiliation(s)
- Michael A Järvå
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Helmut Hirt
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Manzer HS, Nobbs AH, Doran KS. The Multifaceted Nature of Streptococcal Antigen I/II Proteins in Colonization and Disease Pathogenesis. Front Microbiol 2020; 11:602305. [PMID: 33329493 PMCID: PMC7732690 DOI: 10.3389/fmicb.2020.602305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
Streptococci are Gram-positive bacteria that belong to the natural microbiota of humans and animals. Certain streptococcal species are known as opportunistic pathogens with the potential to cause severe invasive disease. Antigen I/II (AgI/II) family proteins are sortase anchored cell surface adhesins that are nearly ubiquitous across streptococci and contribute to many streptococcal diseases, including dental caries, respiratory tract infections, and meningitis. They appear to be multifunctional adhesins with affinities to various host substrata, acting to mediate attachment to host surfaces and stimulate immune responses from the colonized host. Here we will review the literature including recent work that has demonstrated the multifaceted nature of AgI/II family proteins, focusing on their overlapping and distinct functions and their important contribution to streptococcal colonization and disease.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Identification of Small-Molecule Inhibitors Targeting Porphyromonas gingivalis Interspecies Adherence and Determination of Their In Vitro and In Vivo Efficacies. Antimicrob Agents Chemother 2020; 64:AAC.00884-20. [PMID: 32816725 PMCID: PMC7577153 DOI: 10.1128/aac.00884-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/09/2020] [Indexed: 01/19/2023] Open
Abstract
Porphyromonas gingivalis is one of the primary causative agents of periodontal disease and initially colonizes the oral cavity by adhering to commensal streptococci. Adherence requires the interaction of a minor fimbrial protein (Mfa1) of P. gingivalis with streptococcal antigen I/II (AgI/II). Our previous work identified an AgI/II peptide that potently inhibited adherence and significantly reduced P. gingivalis virulence in vivo, suggesting that this interaction represents a potential target for drug discovery. Porphyromonas gingivalis is one of the primary causative agents of periodontal disease and initially colonizes the oral cavity by adhering to commensal streptococci. Adherence requires the interaction of a minor fimbrial protein (Mfa1) of P. gingivalis with streptococcal antigen I/II (AgI/II). Our previous work identified an AgI/II peptide that potently inhibited adherence and significantly reduced P. gingivalis virulence in vivo, suggesting that this interaction represents a potential target for drug discovery. To develop targeted small-molecule inhibitors of this protein-protein interaction, we performed a virtual screen of the ZINC databases to identify compounds that exhibit structural similarity with the two functional motifs (NITVK and VQDLL) of the AgI/II peptide. Thirty three compounds were tested for in vitro inhibition of P. gingivalis adherence and the three most potent compounds, namely, N7, N17, and V8, were selected for further analysis. The in vivo efficacy of these compounds was evaluated in a murine model of periodontitis. Treatment of mice with each of the compounds significantly reduced maxillary alveolar bone resorption in infected animals. Finally, a series of cytotoxicity tests were performed against human and murine cell lines. Compounds N17 and V8 exhibited no significant cytotoxic activity toward any of the cell lines, whereas compound N7 was cytotoxic at the highest concentrations that were tested (20 and 40 μM). These results identify compounds N17 and V8 as potential lead compounds that will facilitate the design of more potent therapeutic agents that may function to limit or prevent P. gingivalis colonization of the oral cavity.
Collapse
|
9
|
Back CR, Higman VA, Le Vay K, Patel VV, Parnell AE, Frankel D, Jenkinson HF, Burston SG, Crump MP, Nobbs AH, Race PR. The streptococcal multidomain fibrillar adhesin CshA has an elongated polymeric architecture. J Biol Chem 2020; 295:6689-6699. [PMID: 32229583 PMCID: PMC7212634 DOI: 10.1074/jbc.ra119.011719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/26/2020] [Indexed: 11/06/2022] Open
Abstract
The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1-17, domains 1-17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all β-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1-17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.
Collapse
Affiliation(s)
- Catherine R Back
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, United Kingdom
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Victoria A Higman
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kristian Le Vay
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
- Bristol Centre for Functional Nanomaterials, H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Viren V Patel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alice E Parnell
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Daniel Frankel
- School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, United Kingdom
| | - Howard F Jenkinson
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Matthew P Crump
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Paul R Race
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
10
|
Gao DY, Sun XB, Liu MQ, Liu YN, Zhang HE, Shi XL, Li YN, Wang JK, Yin SJ, Wang Q. Characterization of Thermostable and Chimeric Enzymes via Isopeptide Bond-Mediated Molecular Cyclization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6837-6846. [PMID: 31180217 DOI: 10.1021/acs.jafc.9b01459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mannooligosaccharides are released by mannan-degrading endo-β-1,4-mannanase and are known as functional additives in human and animal diets. To satisfy demands for biocatalysis and bioprocessing in crowed environments, in this study, we employed a recently developed enzyme-engineering system, isopeptide bond-mediated molecular cyclization, to modify a mesophilic mannanase from Bacillus subtilis. The results revealed that the cyclized enzymes showed enhanced thermostability and ion stability and resilience to aggregation and freeze-thaw treatment by maintaining their conformational structures. Additionally, by using the SpyTag/SpyCatcher system, we generated a mannanase-xylanase bifunctional enzyme that exhibited a synergistic activity in substrate deconstruction without compromising substrate affinity. Interestingly, the dual-enzyme ring conformation was observed to be more robust than the linear enzyme but inferior to the single-enzyme ring conformation. Taken together, these findings provided new insights into the mechanisms of molecular cyclization on stability improvement and will be useful in the production of new functional oligosaccharides and feed additives.
Collapse
Affiliation(s)
- De-Ying Gao
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Xiao-Bao Sun
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Ming-Qi Liu
- National and Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, College of Life Science , China Jiliang University , Hangzhou 310018 , Zhejiang , China
| | - Yan-Ni Liu
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Hui-En Zhang
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Xin-Lei Shi
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Yang-Nan Li
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Jia-Kun Wang
- College of Animal Science , Zhejiang University , Hangzhou 310058 , Zhejiang , China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Qian Wang
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| |
Collapse
|
11
|
Mitkowski P, Jagielska E, Nowak E, Bujnicki JM, Stefaniak F, Niedziałek D, Bochtler M, Sabała I. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep 2019; 9:5965. [PMID: 30979923 PMCID: PMC6461655 DOI: 10.1038/s41598-019-42435-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/29/2019] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus simulans lysostaphin cleaves pentaglycine cross-bridges between stem peptides in the peptidoglycan of susceptible staphylococci, including S. aureus. This enzyme consists of an N-terminal catalytic domain and a cell wall binding domain (SH3b), which anchors the protein to peptidoglycan. Although structures of SH3bs from lysostaphin are available, the binding modes of peptidoglycan to these domains are still unclear. We have solved the crystal structure of the lysostaphin SH3b domain in complex with a pentaglycine peptide representing the peptidoglycan cross-bridge. The structure identifies a groove between β1 and β2 strands as the pentaglycine binding site. The structure suggests that pentaglycine specificity of the SH3b arises partially directly by steric exclusion of Cβ atoms in the ligand and partially indirectly due to the selection of main chain conformations that are easily accessible for glycine, but not other amino acid residues. We have revealed further interactions of SH3b with the stem peptides with the support of bioinformatics tools. Based on the structural data we have attempted engineering of the domain specificity and have investigated the relevance of the introduced substitutions on the domain binding and specificity, also in the contexts of the mature lysostaphin and of its bacteriolytic activity.
Collapse
Affiliation(s)
- Paweł Mitkowski
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Filip Stefaniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dorota Niedziałek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
12
|
Aggregatibacter actinomycetemcomitans mediates protection of Porphyromonas gingivalis from Streptococcus sanguinis hydrogen peroxide production in multi-species biofilms. Sci Rep 2019; 9:4944. [PMID: 30894650 PMCID: PMC6426879 DOI: 10.1038/s41598-019-41467-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/06/2019] [Indexed: 01/10/2023] Open
Abstract
Mixed species biofilms are shaped and influenced by interactions between species. In the oral cavity, dysbiosis of the microbiome leads to diseases such as periodontitis. Porphyromonas gingivalis is a keystone pathogen of periodontitis. In this study, we showed that polymicrobial biofilm formation promoted the tolerance of Porphyromonas gingivalis to oxidative stress under micro-aerobic conditions. The presence of Streptococcus sanguinis, an oral commensal bacterium, inhibited the survival of P. gingivalis in dual-species biofilms via the secretion of hydrogen peroxide (H2O2). Interestingly, this repression could be attenuated by the presence of Aggregatibacter actinomycetemcomitans in tri-species biofilms. It was also shown that the katA gene, encoding a cytoplasmic catalase in A. actinomycetemcomitans, was responsible for the reduction of H2O2 produced by S. sanguinis, which consequently increased the biomass of P. gingivalis in tri-species biofilms. Collectively, these findings reveal that polymicrobial interactions play important roles in shaping bacterial community in biofilm. The existence of catalase producers may support the colonization of pathogens vulnerable to H2O2, in the oral cavity. The catalase may be a potential drug target to aid in the prevention of periodontitis.
Collapse
|
13
|
Gene Acquisition by a Distinct Phyletic Group within Streptococcus pneumoniae Promotes Adhesion to the Ocular Epithelium. mSphere 2017; 2:mSphere00213-17. [PMID: 29085912 PMCID: PMC5656748 DOI: 10.1128/msphere.00213-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/14/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) displays broad tissue tropism and infects multiple body sites in the human host. However, infections of the conjunctiva are limited to strains within a distinct phyletic group with multilocus sequence types ST448, ST344, ST1186, ST1270, and ST2315. In this study, we sequenced the genomes of six pneumococcal strains isolated from eye infections. The conjunctivitis isolates are grouped in a distinct phyletic group together with a subset of nasopharyngeal isolates. The keratitis (infection of the cornea) and endophthalmitis (infection of the vitreous body) isolates are grouped with the remainder of pneumococcal strains. Phenotypic characterization is consistent with morphological differences associated with the distinct phyletic group. Specifically, isolates from the distinct phyletic group form aggregates in planktonic cultures and chain-like structures in biofilms grown on abiotic surfaces. To begin to investigate the association between genotype and epidemiology, we focused on a predicted surface-exposed adhesin (SspB) encoded exclusively by this distinct phyletic group. Phylogenetic analysis of the gene encoding SspB in the context of a streptococcal species tree suggests that sspB was acquired by lateral gene transfer from Streptococcus suis. Furthermore, an sspB deletion mutant displays decreased adherence to cultured cells from the ocular epithelium compared to the isogenic wild-type and complemented strains. Together these findings suggest that acquisition of genes from outside the species has contributed to pneumococcal tissue tropism by enhancing the ability of a subset of strains to infect the ocular epithelium causing conjunctivitis. IMPORTANCE Changes in the gene content of pathogens can modify their ability to colonize and/or survive in different body sites in the human host. In this study, we investigate a gene acquisition event and its role in the pathogenesis of Streptococccus pneumoniae (pneumococcus). Our findings suggest that the gene encoding the predicted surface protein SspB has been transferred from Streptococcus suis (a distantly related streptococcal species) into a distinct set of pneumococcal strains. This group of strains distinguishes itself from the remainder of pneumococcal strains by extensive differences in genomic composition and by the ability to cause conjunctivitis. We find that the presence of sspB increases adherence of pneumococcus to the ocular epithelium. Thus, our data support the hypothesis that a subset of pneumococcal strains has gained genes from neighboring species that enhance their ability to colonize the epithelium of the eye, thus expanding into a new niche.
Collapse
|
14
|
Kwon H, Young PG, Squire CJ, Baker EN. Engineering a Lys-Asn isopeptide bond into an immunoglobulin-like protein domain enhances its stability. Sci Rep 2017; 7:42753. [PMID: 28202898 PMCID: PMC5311914 DOI: 10.1038/srep42753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/11/2017] [Indexed: 11/15/2022] Open
Abstract
The overall stability of globular protein structures is marginal, a balance between large numbers of stabilizing non-covalent interactions and a destabilizing entropic term. Higher stability can be engineered by introduction of disulfide bonds, provided the redox environment is controlled. The discovery of stabilizing isopeptide bond crosslinks, formed spontaneously between lysine and asparagine (or aspartic acid) side chains in certain bacterial cell-surface proteins suggests that such bonds could be introduced by protein engineering as an alternative protein stabilization strategy. We report the first example of an isopeptide bond engineered de novo into an immunoglobulin-like protein, the minor pilin FctB from Streptococcus pyogenes. Four mutations were sufficient; lysine, asparagine and glutamic acid residues were introduced for the bond-forming reaction, with a fourth Val/Phe mutation to help steer the lysine side chain into position. The spontaneously-formed isopeptide bond was confirmed by mass spectrometry and X-ray crystallography, and was shown to increase the thermal stability by 10 °C compared with the wild type protein. This novel method for increasing the stability of IgG-like proteins has potential to be adopted by the field of antibody engineering, which share similar β-clasp Ig-type domains.
Collapse
Affiliation(s)
- Hanna Kwon
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Paul G Young
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Christopher J Squire
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Edward N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
15
|
Rego S, Heal TJ, Pidwill GR, Till M, Robson A, Lamont RJ, Sessions RB, Jenkinson HF, Race PR, Nobbs AH. Structural and Functional Analysis of Cell Wall-anchored Polypeptide Adhesin BspA in Streptococcus agalactiae. J Biol Chem 2016; 291:15985-6000. [PMID: 27311712 DOI: 10.1074/jbc.m116.726562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections.
Collapse
Affiliation(s)
- Sara Rego
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom, the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Timothy J Heal
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Grace R Pidwill
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Marisa Till
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Alice Robson
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Richard J Lamont
- the Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky 40202
| | - Richard B Sessions
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Howard F Jenkinson
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Paul R Race
- the School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom, the BrisSynBio Synthetic Biology Research Centre, University of Bristol, Bristol BS8 1TQ, United Kingdom, and
| | - Angela H Nobbs
- From the School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom,
| |
Collapse
|
16
|
Isopeptide bond in collagen- and fibrinogen-binding MSCRAMMs. Biophys Rev 2016; 8:75-83. [PMID: 28510145 DOI: 10.1007/s12551-015-0191-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
Abstract
The internal isopeptide bonds are amide bonds formed autocatalytically between the side chains of Lys and Asn/Asp residues and have been discovered recently. These bonds are well conserved in Gram-positive bacterial pilin proteins and are also observed over a wide range of Gram-positive bacterial surface proteins. The presence of these bonds confers the pilus subunits with remarkable properties in terms of thermal stability and resistance to proteases. Like pili, microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are also surface proteins found only in Gram-positive bacteria. They specifically interact with the extracellular matrix (ECM) molecules like collagen, fibrinogen, fibronectin, laminin, etc. Many biophysical and biochemical studies have been carried out to characterize the isopeptide bonds in pili proteins from Gram-positive bacteria, but no attempts have been made to study the isopeptide bonds in MSCRAMMs. This short review aims to study the significance of the isopeptide bonds in relation to their function, by analyzing the crystal structures of collagen- and fibrinogen-binding MSCRAMMs. In this analysis, interestingly, we observed that the putative isopeptide bonds are restricted to the collagen-binding MSCRAMMs. Based on analogy with bacterial pilus subunits, we hypothesize that the collagen-binding MSCRAMMs possessing putative isopeptide bonds exhibit similar structural properties, which could help the bacteria in colonizing the host and provide resistance against host-defense mechanisms.
Collapse
|
17
|
Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria. Biochem Soc Trans 2015; 43:787-94. [DOI: 10.1042/bst20150066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength.
Collapse
|
18
|
Cota E, Hoyer LL. The Candida albicans agglutinin-like sequence family of adhesins: functional insights gained from structural analysis. Future Microbiol 2015; 10:1635-548. [PMID: 26438189 DOI: 10.2217/fmb.15.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Candida albicans colonizes many host sites suggesting its interaction with diverse ligands. Candida albicans adhesion is mediated by a number of proteins including those in the Als (agglutinin-like sequence) family, which have been studied intensively. The recent solution of the Als binding domain structure ended years of speculation regarding the molecular mechanism for Als adhesive function. Als adhesins bind flexible C termini from a broad collection of proteins, providing the basis for adhesion to various cell types and perhaps for C. albicans broad tissue tropism. Understanding adhesive functions at the molecular level will reveal the sequence of events in C. albicans pathogenesis, from host recognition to complex interactions such as development of polymicrobial biofilms or disseminated disease.
Collapse
Affiliation(s)
- Ernesto Cota
- Department of Life Sciences, Imperial College London, SW7 2AZ, London, UK
| | - Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
19
|
Back C, Douglas S, Emerson J, Nobbs A, Jenkinson H. Streptococcus gordoniiDL1 adhesin SspB V-region mediates coaggregation via receptor polysaccharide ofActinomyces orisT14V. Mol Oral Microbiol 2015; 30:411-24. [DOI: 10.1111/omi.12106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2015] [Indexed: 01/22/2023]
Affiliation(s)
- C.R. Back
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - S.K. Douglas
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - J.E. Emerson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - A.H. Nobbs
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| | - H.F. Jenkinson
- School of Oral and Dental Sciences; University of Bristol; Bristol UK
| |
Collapse
|
20
|
Hoyer LL, Oh SH, Jones R, Cota E. A proposed mechanism for the interaction between the Candida albicans Als3 adhesin and streptococcal cell wall proteins. Front Microbiol 2014; 5:564. [PMID: 25408685 PMCID: PMC4219490 DOI: 10.3389/fmicb.2014.00564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/07/2014] [Indexed: 01/09/2023] Open
Abstract
C. albicans binds various bacteria, including the oral commensal Streptococcus gordonii. Published reports documented the role of C. albicans Als3 and S. gordonii SspB in this interaction, and the importance of the Als N-terminal domain (NT-Als) in C. albicans adhesion. Here, we demonstrate that Als1 also binds S. gordonii. We also describe use of the NT-Als crystal structure to design mutations that precisely disrupt peptide-binding cavity (PBC) or amyloid-forming region (AFR) function in Als3. C. albicans displaying Als3 PBC mutant proteins showed significantly reduced binding to S. gordonii; mutation of the AFR did not affect the interaction. These observations present an enigma: the Als PBC binds free C termini of ligands, but the SspB C terminus is covalently linked to peptidoglycan and thus unavailable as a ligand. These observations and the predicted SspB elongated structure suggest that partial proteolysis of streptococcal cell wall proteins is necessary for recognition by Als adhesins.
Collapse
Affiliation(s)
- Lois L Hoyer
- Department of Pathobiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Soon-Hwan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Rhian Jones
- Department of Life Sciences, Imperial College London London, UK
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London London, UK
| |
Collapse
|
21
|
Abstract
Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.
Collapse
|
22
|
Kang HJ, Paterson NG, Kim CU, Middleditch M, Chang C, Ton-That H, Baker EN. A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1190-201. [PMID: 24816089 PMCID: PMC4014117 DOI: 10.1107/s1399004714001400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/20/2014] [Indexed: 12/04/2022]
Abstract
The Gram-positive organism Corynebacterium diphtheriae, the cause of diphtheria in humans, expresses pili on its surface which it uses for adhesion and colonization of its host. These pili are covalent protein polymers composed of three types of pilin subunit that are assembled by specific sortase enzymes. A structural analysis of the major pilin SpaD, which forms the polymeric backbone of one of the three types of pilus expressed by C. diphtheriae, is reported. Mass-spectral and crystallographic analysis shows that SpaD contains three internal Lys-Asn isopeptide bonds. One of these, shown by mass spectrometry to be located in the N-terminal D1 domain of the protein, only forms slowly, implying an energy barrier to bond formation. Two crystal structures, of the full-length three-domain protein at 2.5 Å resolution and of a two-domain (D2-D3) construct at 1.87 Å resolution, show that each of the three Ig-like domains contains a single Lys-Asn isopeptide-bond cross-link, assumed to give mechanical stability as in other such pili. Additional stabilizing features include a disulfide bond in the D3 domain and a calcium-binding loop in D2. The N-terminal D1 domain is more flexible than the others and, by analogy with other major pilins of this type, the slow formation of its isopeptide bond can be attributed to its location adjacent to the lysine used in sortase-mediated polymerization during pilus assembly.
Collapse
Affiliation(s)
- Hae Joo Kang
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Neil G. Paterson
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Chae Un Kim
- Cornell High Energy Synchrotron Source and Macromolecular Diffraction Facility at CHESS (MacCHESS), Cornell University, Ithaca, NY 14853, USA
| | - Martin Middleditch
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Chungyu Chang
- Department of Microbiology and Molecular Genetics, University of Texas–Houston Medical School, Houston, TX 77030, USA
| | - Hung Ton-That
- Department of Microbiology and Molecular Genetics, University of Texas–Houston Medical School, Houston, TX 77030, USA
| | - Edward N. Baker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
23
|
Hall M, Nylander S, Jenkinson HF, Persson K. Structure of the C-terminal domain of AspA (antigen I/II-family) protein from Streptococcus pyogenes. FEBS Open Bio 2014; 4:283-9. [PMID: 24918040 PMCID: PMC4048849 DOI: 10.1016/j.fob.2014.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 01/01/2023] Open
Abstract
The structure of the C2–3-domain of AspA from S. pyogenes was determined. The C2 and C3 domains both adopt DEv-IgG folds. Conserved isopeptide bonds and calcium binding sites are observed. Distinct structural features are observed in the SspB Adherence Region (BAR).
The pathogenic bacteria Streptococcus pyogenes can cause an array of diseases in humans, including moderate infections such as pharyngitis (strep throat) as well as life threatening conditions such as necrotizing fasciitis and puerperal fever. The antigen I/II family proteins are cell wall anchored adhesin proteins found on the surfaces of most oral streptococci and are involved in host colonization and biofilm formation. In the present study we have determined the crystal structure of the C2–3-domain of the antigen I/II type protein AspA from S. pyogenes M type 28. The structure was solved to 1.8 Å resolution and shows that the C2–3-domain is comprised of two structurally similar DEv-IgG motifs, designated C2 and C3, both containing a stabilizing covalent isopeptide bond. Furthermore a metal binding site is identified, containing a bound calcium ion. Despite relatively low sequence identity, interestingly, the overall structure shares high similarity to the C2–3-domains of antigen I/II proteins from Streptococcus gordonii and Streptococcus mutans, although certain parts of the structure exhibit distinct features. In summary this work constitutes the first step in the full structure determination of the AspA protein from S. pyogenes.
Collapse
Affiliation(s)
- Michael Hall
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sa Nylander
- Department of Odontology, Division of Oral Microbiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol BS1 2LY, UK
| | - Karina Persson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
24
|
Autocatalytically generated Thr-Gln ester bond cross-links stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin. Proc Natl Acad Sci U S A 2013; 111:1367-72. [PMID: 24344302 DOI: 10.1073/pnas.1316855111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-positive bacteria are decorated by a variety of proteins that are anchored to the cell wall and project from it to mediate colonization, attachment to host cells, and pathogenesis. These proteins, and protein assemblies, such as pili, are typically long and thin yet must withstand high levels of mechanical stress and proteolytic attack. The recent discovery of intramolecular isopeptide bond cross-links, formed autocatalytically, in the pili from Streptococcus pyogenes has highlighted the role that such cross-links can play in stabilizing such structures. We have investigated a putative cell-surface adhesin from Clostridium perfringens comprising an N-terminal adhesin domain followed by 11 repeat domains. The crystal structure of a two-domain fragment shows that each domain has an IgG-like fold and contains an unprecedented ester bond joining Thr and Gln side chains. MS confirms the presence of these bonds. We show that the bonds form through an autocatalytic intramolecular reaction catalyzed by an adjacent His residue in a serine protease-like mechanism. Two buried acidic residues assist in the reaction. By mutagenesis, we show that loss of the ester bond reduces the thermal stability drastically and increases susceptibility to proteolysis. As in pilin domains, the bonds are placed at a strategic position joining the first and last strands, even though the Ig fold type differs. Bioinformatic analysis suggests that similar domains and ester bond cross-links are widespread in Gram-positive bacterial adhesins.
Collapse
|
25
|
Garnett JA, Matthews S. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 2013; 13:739-55. [PMID: 23305361 PMCID: PMC3601411 DOI: 10.2174/138920312804871166] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 11/24/2022]
Abstract
A community-based life style is the normal mode of growth and survival for many bacterial species. These cellular accretions or biofilms are initiated upon recognition of solid phases by cell surface exposed adhesive moieties. Further cell-cell interactions, cell signalling and bacterial replication leads to the establishment of dense populations encapsulated in a mainly self-produced extracellular matrix; this comprises a complex mixture of macromolecules. These fascinating architectures protect the inhabitants from radiation damage, dehydration, pH fluctuations and antimicrobial compounds. As such they can cause bacterial persistence in disease and problems in industrial applications. In this review we discuss the current understandings of these initial biofilm-forming processes based on structural data. We also briefly describe latter biofilm maturation and dispersal events, which although lack high-resolution insights, are the present focus for many structural biologists working in this field. Finally we give an overview of modern techniques aimed at preventing and disrupting problem biofilms.
Collapse
Affiliation(s)
- James A Garnett
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | |
Collapse
|
26
|
Wang B, Xiao S, Edwards S, Gräter F. Isopeptide bonds mechanically stabilize spy0128 in bacterial pili. Biophys J 2013; 104:2051-7. [PMID: 23663848 PMCID: PMC3647160 DOI: 10.1016/j.bpj.2013.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 01/20/2023] Open
Abstract
Pili on the surface of Streptococcus pyogenes play a crucial role in adhesion to and colonization in human cells. The major pilin subunit, Spy0128, features intramolecular covalent isopeptide bonds that autocatalytically form between the side chains of lysine and asparagine residues and are regarded as important factors in conveying structural stability. In support of this notion, single-molecule force spectroscopy experiments with Spy0128 recently demonstrated the inextensibility of these bonds under mechanical load. However, the molecular determinants of their apparent absolute durability remain unknown. Here, we studied the impact of the isopeptide bond in the Spy0128 C-terminal domain on the mechanical properties of this subunit using force-probe molecular dynamics simulations and force distribution analysis. Even in the presence of the covalent cross-link, the pili β-sandwich domain undergoes partial unfolding, albeit at ∼50% higher rupture forces and with the ability to rapidly refold on the nanosecond timescale. We find that the isopeptide bond is located right at the point of stress concentration in the protein, leading to relative, yet not absolute, mechanical stabilization by the additional cross-link. Our findings indicate how the isopeptide bond enhances the mechanical stability and refolding capability at the molecular level, ensuring that the domain remains predominantly in a potentially adhesive conformation.
Collapse
Affiliation(s)
- Bo Wang
- CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai, China
| | - Shijun Xiao
- CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai, China
| | - Scott A. Edwards
- CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai, China
- College of Physics and Technology, Shenzhen University, Guangdong, China
| | - Frauke Gräter
- CAS-MPG Partner Institute and Key Laboratory for Computational Biology, Shanghai, China
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| |
Collapse
|
27
|
Davey L, Ng CKW, Halperin SA, Lee SF. Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii. J Biol Chem 2013; 288:16416-16429. [PMID: 23615907 DOI: 10.1074/jbc.m113.464578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Crystal K W Ng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
28
|
Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, Nobbs AH, Lamont RJ, Jenkinson HF. Microbial interactions in building of communities. Mol Oral Microbiol 2013; 28:83-101. [PMID: 23253299 PMCID: PMC3600090 DOI: 10.1111/omi.12012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 12/31/2022]
Abstract
Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development.
Collapse
Affiliation(s)
- Christopher J. Wright
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Logan H. Burns
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Alison A. Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Catherine R. Back
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Lindsay C. Dutton
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Angela H. Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| | - Richard J. Lamont
- Department of Oral Health and Systemic Disease, University of Louisville, 570 South Preston Street, Louisville, Kentucky, 40202, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK
| |
Collapse
|
29
|
Heim KP, Crowley PJ, Brady LJ. An intramolecular interaction involving the N terminus of a streptococcal adhesin affects its conformation and adhesive function. J Biol Chem 2013; 288:13762-74. [PMID: 23539625 DOI: 10.1074/jbc.m113.459974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND P1 is an adhesin on the surface of Streptococcus mutans. RESULTS Destroying the high affinity interaction between the N and C termini of S. mutans P1 creates a non-adherent phenotype. CONCLUSION The N terminus facilitates proper folding, function, and stability within recombinant P1. SIGNIFICANCE The relationship between folding, maturation, and cell surface assembly is critical to understanding the P1 mechanism of action. The adhesin P1 is localized on the surface of the oral pathogen Streptococcus mutans and facilitates an interaction with the glycoprotein complex salivary agglutinin that is comprised primarily of the scavenger receptor gp340. Recent crystal structures of P1 display an unusual structure in which the protein folds back upon itself to form an elongated hybrid helical stalk with a globular head at the apex and a globular C-terminal region at the base. The N terminus of P1 has not yet been characterized. In this report we describe the contribution of an interaction between the N-terminal and C-terminal portions of the protein that is required for proper function of P1 on the surface of S. mutans. Utilizing recombinant N-terminal and C-terminal fragments, we employed isothermal titration calorimetry and native gel electrophoresis to demonstrate that these fragments form a high affinity and stable complex in solution. Furthermore, circular dichroism and surface plasmon resonance measurements indicated that the N-terminal fragment contributes to the folding and increases the functionality of the C-terminal fragment in trans. Finally, we utilized circular dichroism, surface plasmon resonance, and differential scanning calorimetry to show that an N-terminal 106-amino acid segment within P1 contributes to the proper folding and function of the full-length recombinant molecule and increases the stability of its elongated hybrid helical stalk.
Collapse
Affiliation(s)
- Kyle P Heim
- Department of Oral Biology, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
30
|
Persson K, Esberg A, Claesson R, Strömberg N. The pilin protein FimP from Actinomyces oris: crystal structure and sequence analyses. PLoS One 2012; 7:e48364. [PMID: 23118994 PMCID: PMC3485203 DOI: 10.1371/journal.pone.0048364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022] Open
Abstract
The Actinomyces oris type-1 pili are important for the initial formation of dental plaque by binding to salivary proteins that adhere to the tooth surface. Here we present the X-ray structure of FimP, the protein that is polymerized into the type-1 pilus stalk, assisted by a pili-specific sortase. FimP consists of three tandem IgG-like domains. The middle and C-terminal domains contain one autocatalyzed intramolecular isopeptide bond each, a feature used by Gram-positive bacteria for stabilization of surface proteins. While the N-terminal domain harbours all the residues necessary for forming an isopeptide bond, no such bond is observed in the crystal structure of this unpolymerized form of FimP. The monomer is further stabilized by one disulfide bond each in the N- and C-terminal domains as well as by a metal-coordinated loop protruding from the C-terminal domain. A lysine, predicted to be crucial for FimP polymerization by covalent attachment to a threonine from another subunit, is located at the rim of a groove lined with conserved residues. The groove may function as a docking site for the sortase-FimP complex. We also present sequence analyses performed on the genes encoding FimP as well as the related FimA, obtained from clinical isolates.
Collapse
|
31
|
Kang HJ, Baker EN. Structure and assembly of Gram-positive bacterial pili: unique covalent polymers. Curr Opin Struct Biol 2012; 22:200-7. [DOI: 10.1016/j.sbi.2012.01.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 01/24/2012] [Indexed: 11/28/2022]
|
32
|
Maddocks SE, Wright CJ, Nobbs AH, Brittan JL, Franklin L, Strömberg N, Kadioglu A, Jepson MA, Jenkinson HF. Streptococcus pyogenes antigen I/II-family polypeptide AspA shows differential ligand-binding properties and mediates biofilm formation. Mol Microbiol 2011; 81:1034-49. [PMID: 21736640 PMCID: PMC3178794 DOI: 10.1111/j.1365-2958.2011.07749.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 12/19/2022]
Abstract
The streptococcal antigen I/II (AgI/II)-family polypeptides are cell wall-anchored adhesins expressed by most indigenous oral streptococci. Proteins sharing 30-40% overall amino acid sequence similarities with AgI/II-family proteins are also expressed by Streptococcus pyogenes. The S. pyogenes M28_Spy1325 polypeptide (designated AspA) displays an AgI/II primary structure, with alanine-rich (A) and proline-rich (P) repeats flanking a V region that is projected distal from the cell. In this study it is shown that AspA from serotype M28 S. pyogenes, when expressed on surrogate host Lactococcus lactis, confers binding to immobilized salivary agglutinin gp-340. This binding was blocked by antibodies to the AspA-VP region. In contrast, the N-terminal region of AspA was deficient in binding fluid-phase gp-340, and L. lactis cells expressing AspA were not agglutinated by gp-340. Deletion of the aspA gene from two different M28 strains of S. pyogenes abrogated their abilities to form biofilms on saliva-coated surfaces. In each mutant strain, biofilm formation was restored by trans complementation of the aspA deletion. In addition, expression of AspA protein on the surface of L. lactis conferred biofilm-forming ability. Taken collectively, the results provide evidence that AspA is a biofilm-associated adhesin that may function in host colonization by S. pyogenes.
Collapse
Affiliation(s)
- Sarah E Maddocks
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | | | - Angela H Nobbs
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | - Jane L Brittan
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | - Linda Franklin
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| | | | - Aras Kadioglu
- Department of Infection, Immunity and Inflammation, University of LeicesterLeicester LE1 9HN, UK.
| | - Mark A Jepson
- Wolfson Bioimaging Facility, and School of Biochemistry, University of BristolBristol BS8 1TD, UK.
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of BristolBristol BS1 2LY, UK.
| |
Collapse
|
33
|
Abstract
The mitis group streptococci (MGS) are widespread in the oral cavity and are traditionally associated with oral health. However, these organisms have many attributes that contribute to the development of pathogenic oral communities. MGS adhere rapidly to saliva-coated tooth surfaces, thereby providing an attachment substratum for more overtly pathogenic organisms such as Porphyromonas gingivalis, and the two species assemble into heterotypic communities. Close physical association facilitates physiologic support, and pathogens such as Aggregatibacter actinomycetemcomitans display resource partitioning to favour carbon sources generated by streptococcal metabolism. MGS exchange information with community members through a number of interspecies signalling systems including AI-2 and contact dependent mechanisms. Signal transduction systems induced in P. gingivalis are based on protein dephosphorylation mediated by the tyrosine phosphatase Ltp1, and converge on a LuxR-family transcriptional regulator, CdhR. Phenotypic responses in P. gingivalis include regulation of hemin uptake systems and gingipain activity, processes that are intimately linked to the virulence of the organism. Furthermore, communities of S. gordonii with P. gingivalis or with A. actinomycetemcomitans are more pathogenic in animal models than the constituent species alone. We propose that MGS should be considered accessory pathogens, organisms whose pathogenic potential only becomes evident in the context of a heterotypic microbial community.
Collapse
Affiliation(s)
- Sarah E Whitmore
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
34
|
Zähner D, Gandhi AR, Stuchlik O, Reed M, Pohl J, Stephens DS. Pilus backbone protein PitB of Streptococcus pneumoniae contains stabilizing intramolecular isopeptide bonds. Biochem Biophys Res Commun 2011; 409:526-31. [PMID: 21600877 DOI: 10.1016/j.bbrc.2011.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae type 2 pili are recently identified fimbrial structures extending from the bacterial surface and formed by polymers of the structural protein PitB. Intramolecular isopeptide bonds are a characteristic of the related pilus backbone protein Spy0128 of group A streptococci. Based on the identification of conserved residues in PitB, we predicted two intramolecular isopeptide bonds in PitB. Using a combination of tandem mass spectrometry and Edman sequencing, we show that these bonds were formed between Lys(63)-Asn(214) and Lys(243)-Asn(372) in PitB. Mutant proteins lacking the intramolecular isopeptide bonds retained the proteolytic stability observed with the wild type protein. However, absence of these bonds substantially decreased the melting temperature of the PitB-derivatives, indicating a stabilizing function of these bonds in PitB of the pneumococcal type 2 pilus.
Collapse
Affiliation(s)
- Dorothea Zähner
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 1639 Pierce Dr., Suite 2101, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Larson MR, Rajashankar KR, Crowley PJ, Kelly C, Mitchell TJ, Brady LJ, Deivanayagam C. Crystal structure of the C-terminal region of Streptococcus mutans antigen I/II and characterization of salivary agglutinin adherence domains. J Biol Chem 2011; 286:21657-66. [PMID: 21505225 DOI: 10.1074/jbc.m111.231100] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 Å resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C(1), C(2), and C(3). Each domain adopts a DE-variant IgG fold, with two β-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C(1) and C(2)) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C(1) and C(2) domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C(1) and C(2) domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.
Collapse
Affiliation(s)
- Matthew R Larson
- Department of Physiology and Biophysics, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Intramolecular isopeptide bonds: protein crosslinks built for stress? Trends Biochem Sci 2011; 36:229-37. [DOI: 10.1016/j.tibs.2010.09.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 01/19/2023]
|
37
|
Nobbs AH, Jenkinson HF, Jakubovics NS. Stick to your gums: mechanisms of oral microbial adherence. J Dent Res 2011; 90:1271-8. [PMID: 21335541 DOI: 10.1177/0022034511399096] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies on the adherence properties of oral bacteria have been a major focus in microbiology research for several decades. The ability of bacteria to adhere to the variety of surfaces present in the oral cavity, and to become integrated within the resident microbial communities, confers growth and survival properties. Molecular analyses have revealed several families of Gram-positive bacterial surface proteins, including serine-rich repeat, antigen I/II, and pilus families, that mediate adherence to a variety of salivary and oral bacterial receptors. In Gram-negative bacteria, pili, auto-transporters, and extracellular matrix-binding proteins provide components for host tissue recognition and building of complex microbial communities. Future studies will reveal in greater detail the binding pockets for these adhesin families and their receptors. This information will be crucial for the development of new inhibitors or vaccines that target the functional regions of bacterial proteins that are involved in colonization and pathogenesis.
Collapse
Affiliation(s)
- A H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | | | | |
Collapse
|
38
|
Vengadesan K, Ma X, Dwivedi P, Ton-That H, Narayana SVL. A model for group B Streptococcus pilus type 1: the structure of a 35-kDa C-terminal fragment of the major pilin GBS80. J Mol Biol 2011; 407:731-43. [PMID: 21333654 DOI: 10.1016/j.jmb.2011.02.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The Gram-positive pathogen Streptococcus agalactiae, known as group B Streptococcus (GBS), is the leading cause of bacterial septicemia, pneumonia, and meningitis among neonates. GBS assembles two types of pili-pilus islands (PIs) 1 and 2-on its surface to adhere to host cells and to initiate colonization for pathogenesis. The GBS PI-1 pilus is made of one major pilin, GBS80, which forms the pilus shaft, and two secondary pilins, GBS104 and GBS52, which are incorporated into the pilus at various places. We report here the crystal structure of the 35-kDa C-terminal fragment from GBS80, which is composed of two IgG-like domains (N2-N3). The structure was solved by single-wavelength anomalous dispersion using sodium-iodide-soaked crystals and diffraction data collected at the home source. The N2 domain exhibits a cnaA/DEv-IgG fold with two calcium-binding sites, while the N3 domain displays a cnaB/IgG-rev fold. We have built a model for full-length GBS80 (N1, N2, and N3) with the help of available homologous major pilin structures, and we propose a model for the GBS PI-1 pilus shaft. The N2 and N3 domains are arranged in tandem along the pilus shaft, whereas the respective N1 domain is tilted by approximately 20° away from the pilus axis. We have also identified a pilin-like motif in the minor pilin GBS52, which might aid its incorporation at the pilus base.
Collapse
Affiliation(s)
- Krishnan Vengadesan
- Center for Biophysical Sciences and Engineering, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
39
|
Nylander Å, Forsgren N, Persson K. Structure of the C-terminal domain of the surface antigen SpaP from the caries pathogen Streptococcus mutans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:23-6. [PMID: 21206016 PMCID: PMC3079964 DOI: 10.1107/s174430911004443x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/30/2010] [Indexed: 11/16/2022]
Abstract
SpaP is a 1500-residue adhesin expressed on the surface of the caries-implicated bacterium Streptococcus mutans. SpaP is a member of the antigen I/II (AgI/II) family of proteins expressed by oral streptococci. These surface proteins are crucial for the incorporation of streptococci into dental plaque. The structure of the C-terminal domain of SpaP (residues 1136-1489) was solved and refined to 2.2 Å resolution with six molecules in the asymmetric unit. Similar to a related AgI/II structure, SpaP is stabilized by isopeptide bonds between lysine and asparagine side chains.
Collapse
Affiliation(s)
- Åsa Nylander
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Nina Forsgren
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
40
|
Hagan RM, Björnsson R, McMahon SA, Schomburg B, Braithwaite V, Bühl M, Naismith JH, Schwarz-Linek U. NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond. Angew Chem Int Ed Engl 2010; 49:8421-5. [PMID: 20878961 PMCID: PMC3315829 DOI: 10.1002/anie.201004340] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Robert M. Hagan
- Biomedical Sciences Research Complex University of St Andrews North Haugh, St Andrews KY16 9ST (UK)
| | - Ragnar Björnsson
- School of Chemistry University of St Andrews North Haugh, St Andrews KY16 9ST (UK)
| | - Stephen A. McMahon
- Biomedical Sciences Research Complex University of St Andrews North Haugh, St Andrews KY16 9ST (UK)
| | - Benjamin Schomburg
- Biomedical Sciences Research Complex University of St Andrews North Haugh, St Andrews KY16 9ST (UK)
| | - Vickie Braithwaite
- Biomedical Sciences Research Complex University of St Andrews North Haugh, St Andrews KY16 9ST (UK)
| | - Michael Bühl
- School of Chemistry University of St Andrews North Haugh, St Andrews KY16 9ST (UK)
| | - James H. Naismith
- Biomedical Sciences Research Complex University of St Andrews North Haugh, St Andrews KY16 9ST (UK)
| | - Ulrich Schwarz-Linek
- Biomedical Sciences Research Complex University of St Andrews North Haugh, St Andrews KY16 9ST (UK)
| |
Collapse
|
41
|
Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect Immun 2010; 79:67-74. [PMID: 21041492 DOI: 10.1128/iai.00361-10] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of the minor fimbrial antigen (Mfa) with streptococcal antigen I/II (e.g., SspB) facilitates colonization of the dental biofilm by Porphyromonas gingivalis. We previously showed that a 27-mer peptide derived from SspB (designated BAR) resembles the nuclear receptor (NR) box protein-protein interacting domain and potently inhibits this interaction in vitro. Here, we show that the EXXP motif upstream of the NR core α-helix contributes to the Mfa-SspB interaction and that BAR reduces P. gingivalis colonization and alveolar bone loss in vivo in a murine model of periodontitis. Substitution of Gln for Pro(1171) or Glu(1168) increased the α-helicity of BAR and reduced its inhibitory activity in vitro by 10-fold and 2-fold, respectively. To determine if BAR prevents P. gingivalis infection in vivo, mice were first infected with Streptococcus gordonii and then challenged with P. gingivalis in the absence and presence of BAR. Animals that were infected with either 10(9) CFU of S. gordonii DL-1 or 10(7) CFU of P. gingivalis 33277 did not show a statistically significant increase in alveolar bone resorption over sham-infected controls. However, infection with 10(9) CFU of S. gordonii followed by 10(7) CFU of P. gingivalis induced significantly greater bone loss (P < 0.01) than sham infection or infection of mice with either organism alone. S. gordonii-infected mice that were subsequently challenged with 10(7) CFU of P. gingivalis in the presence of BAR exhibited levels of bone resorption similar to those of sham-infected animals. Together, these results indicate that both EXXP and the NR box are important for the Mfa-SspB interaction and that BAR peptide represents a potential therapeutic that may limit colonization of the oral cavity by P. gingivalis.
Collapse
|
42
|
Chawla A, Hirano T, Bainbridge BW, Demuth DR, Xie H, Lamont RJ. Community signalling between Streptococcus gordonii and Porphyromonas gingivalis is controlled by the transcriptional regulator CdhR. Mol Microbiol 2010; 78:1510-22. [PMID: 21143321 DOI: 10.1111/j.1365-2958.2010.07420.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interspecies signalling between Porphyromonas gingivalis and Streptococcus gordonii serves to constrain development of dual species communities. Contact with S. gordonii propagates a tyrosine phosphorylation-dependent signal within P. gingivalis that culminates in reduced transcription of adhesin and signalling genes. Here we demonstrate the involvement of the P. gingivalis orphan LuxR family transcription factor PGN_1373, which we designate CdhR, in this control pathway. Expression of cdhR is elevated following contact with S. gordonii; however, regulation of cdhR did not occur in a mutant lacking the tyrosine phosphatase Ltp1, indicating that CdhR and Ltp1 are components of the same regulon. Contact between S. gordonii and a CdhR mutant resulted in increased transcription of mfa, encoding the subunit of the short fimbriae, along with higher levels of Mfa protein. Expression of luxS, encoding AI-2 synthase, was also increased in the cdhR mutant after contact with S. gordonii. The Mfa adhesive function and AI-2-dependent signalling participate in the formation and development of dual species communities, and consistent with this the cdhR mutant displayed elevated accumulation on a substratum of S. gordonii. Recombinant CdhR protein bound to upstream regulatory regions of both mfa and luxS, indicating that CdhR has a direct effect on gene expression. LuxS was also found to participate in a positive feedback loop that suppresses CdhR expression. Interaction of Mfa fimbriae with S. gordonii is necessary to initiate signalling through CdhR. These results reveal CdhR to be an effector molecule in a negative regulatory network that controls P. gingivalis-S. gordonii heterotypic communities.
Collapse
Affiliation(s)
- Aarti Chawla
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
43
|
Hagan RM, Björnsson R, McMahon SA, Schomburg B, Braithwaite V, Bühl M, Naismith JH, Schwarz-Linek U. NMR Spectroscopic and Theoretical Analysis of a Spontaneously Formed Lys-Asp Isopeptide Bond. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 2010; 77:276-86. [PMID: 20497507 PMCID: PMC2909373 DOI: 10.1111/j.1365-2958.2010.07212.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall-anchored adhesins identified in Gram-positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C-terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate-binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N-terminal alpha-helix and a C-terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram-positive surface proteins that have adhesin domains flanked by alpha-helical and proline-rich regions.
Collapse
Affiliation(s)
- L. Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville FL 32610, USA
| | - Sarah E. Maddocks
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| | - Matthew R. Larson
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nina Forsgren
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Karina Persson
- Department of Odontology, Umeå University, SE-901 87 Umeå, Sweden
| | - Champion C. Deivanayagam
- Center for Biophysical Sciences and Engineering, and Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Howard F. Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Bristol BS9 2RD, UK
| |
Collapse
|