1
|
Huang M, Li Y, Li Y, Liu S. C-Terminal Binding Protein: Regulator between Viral Infection and Tumorigenesis. Viruses 2024; 16:988. [PMID: 38932279 PMCID: PMC11209466 DOI: 10.3390/v16060988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
C-terminal binding protein (CtBP), a transcriptional co-repressor, significantly influences cellular signaling, impacting various biological processes including cell proliferation, differentiation, apoptosis, and immune responses. The CtBP family comprises two highly conserved proteins, CtBP1 and CtBP2, which have been shown to play critical roles in both tumorigenesis and the regulation of viral infections. Elevated CtBP expression is noted in various tumor tissues, promoting tumorigenesis, invasiveness, and metastasis through multiple pathways. Additionally, CtBP's role in viral infections varies, exhibiting differing or even opposing effects depending on the virus. This review synthesizes the advances in CtBP's function research in viral infections and virus-associated tumorigenesis, offering new insights into potential antiviral and anticancer strategies.
Collapse
Affiliation(s)
- Meihui Huang
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Yucong Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Yuxiao Li
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
| | - Shuiping Liu
- Xiangya School of Medicine, Central South University, Changsha 410013, China; (M.H.); (Y.L.); (Y.L.)
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| |
Collapse
|
2
|
Wu W, Zhou H, He F, Xiao Z, Jiang Y, Zhao M. Arsenate-mediated G2 cell cycle arrest in U-2OS cells involves phosphorylation of human polycomb protein 2 by p38 MAPK. FEBS Lett 2018; 592:4087-4097. [PMID: 30317550 DOI: 10.1002/1873-3468.13272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/15/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022]
Abstract
G2/M checkpoints ensure the proper timing of cell mitosis. We previously reported that p38 mitogen-activated protein kinase (MAPK) activation is essential for stress-induced G2 arrest in the U-2OS osteosarcoma cell line, but the molecular mechanism was obscure. Here, using the T7 phage display system, we find p38 directly binds to human polycomb protein 2 (HPC2), and arsenate-induced G2 arrest in U-2OS cell is p38- and phosphorylation of HPC2-dependent. Phosphorylation of HPC2 at threonine 495 is required for recruiting Ring1 and Rb family proteins to form the polycomb repressive complex (PRC), and PRC is required for arsenate-induced downregulation of CDC2 expression. Thus, p38 MAPK regulates cell cycle progression through phosphorylation of HPC2 to mediate transcriptional repression, providing a mechanistic link for arsenate-induced transcriptional silencing.
Collapse
Affiliation(s)
- Wei Wu
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Hui Zhou
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Fei He
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Zhi Xiao
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Yong Jiang
- Department of Pathophysiology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Key Lab for Shock and Microcirculation Research of Guangdong, Southern Medical University, Guangzhou, China.,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Dcona MM, Morris BL, Ellis KC, Grossman SR. CtBP- an emerging oncogene and novel small molecule drug target: Advances in the understanding of its oncogenic action and identification of therapeutic inhibitors. Cancer Biol Ther 2017; 18:379-391. [PMID: 28532298 PMCID: PMC5536941 DOI: 10.1080/15384047.2017.1323586] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-terminal Binding Proteins (CtBP) 1 and 2 are oncogenic transcriptional co-regulators overexpressed in many cancer types, with their expression level correlating to worse prognostic outcomes and aggressive tumor features. CtBP negatively regulates the expression of many tumor suppressor genes, while coactivating genes that promote proliferation, epithelial-mesenchymal transition, and cancer stem cell self-renewal activity. In light of this evidence, the development of novel inhibitors that mitigate CtBP function may provide clinically actionable therapeutic tools. This review article focuses on the progress made in understanding CtBP structure, role in tumor progression, and discovery and development of CtBP inhibitors that target CtBP's dehydrogenase activity and other functions, with a focus on the theory and rationale behind the designs of current inhibitors. We provide insight into the future development and use of rational combination therapy that may further augment the efficacy of CtBP inhibitors, specifically addressing metastasis and cancer stem cell populations within tumors.
Collapse
Affiliation(s)
- M Michael Dcona
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Benjamin L Morris
- b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA
| | - Keith C Ellis
- c Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| | - Steven R Grossman
- a Department of Internal Medicine , Virginia Commonwealth University , Richmond , VA , USA.,b Department of Human and Molecular Genetics , Virginia Commonwealth University , Richmond , VA , USA.,d Institute for Structural Biology , Drug Discovery and Development, Virginia Commonwealth University , Richmond , VA , USA.,e VCU Massey Cancer Center , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
4
|
Ma RG, Zhang Y, Sun TT, Cheng B. Epigenetic regulation by polycomb group complexes: focus on roles of CBX proteins. J Zhejiang Univ Sci B 2015; 15:412-28. [PMID: 24793759 DOI: 10.1631/jzus.b1400077] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polycomb group (PcG) complexes are epigenetic regulatory complexes that conduct transcriptional repression of target genes via modifying the chromatin. The two best characterized forms of PcG complexes, polycomb repressive complexes 1 and 2 (PRC1 and PRC2), are required for maintaining the stemness of embryonic stem cells and many types of adult stem cells. The spectra of target genes for PRCs are dynamically changing with cell differentiation, which is essential for proper decisions on cell fate during developmental processes. Chromobox (CBX) family proteins are canonical components in PRC1, responsible for targeting PRC1 to the chromatin. Recent studies highlight the function specifications among CBX family members in undifferentiated and differentiated stem cells, which reveal the interplay between compositional diversity and functional specificity of PRC1. In this review, we summarize the current knowledge about targeting and functional mechanisms of PRCs, emphasizing the recent breakthroughs related to CBX proteins under a number of physiological and pathological conditions.
Collapse
Affiliation(s)
- Rong-gang Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | |
Collapse
|
5
|
Qi Q, Liu X, Brat DJ, Ye K. Merlin sumoylation is required for its tumor suppressor activity. Oncogene 2013; 33:4893-903. [PMID: 24166499 DOI: 10.1038/onc.2013.438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022]
Abstract
Merlin, encoded by the Neurofibromatosis 2 (NF2) gene, is a multifunctional tumor suppressor that integrates and regulates extracellular cues and intracellular signaling pathways, both at the plasma membrane and in the nucleus, to control cell proliferation, migration and invasion. Molecular mechanisms regulating merlin's tumor-suppressive activity have not been clearly defined. Here we report that merlin can be sumoylated on Lysine residue (K76) in vitro and in vivo. Sumoylation mediates merlin's intramolecular and intermolecular binding activities and regulates its cytoplasm/nucleus trafficking. Interestingly, sumoylation of merlin is regulated by its phosphorylation via Akt and PAK2 kinases. Mutation of K76 into arginine (R) abolishes its sumoylation, disrupts merlin cortical cytoskeleton residency and attenuates its stability. Using a K76R mutant merlin in a subcutaneous U87MG xenograft model, we demonstrate that merlin sumoylation is required for tumor-suppressive activity. Taken together, our findings indicate that merlin is sumoylated and that this post-translational modification is essential for tumor suppression.
Collapse
Affiliation(s)
- Q Qi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - X Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - D J Brat
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - K Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Zhai Y, Zhang J, Sun Z, Dong X, He Y, Kang K, Liu Z, Zhang W. Proteomic and transcriptomic analyses of fecundity in the brown planthopper Nilaparvata lugens (Stål). J Proteome Res 2013; 12:5199-212. [PMID: 24083549 DOI: 10.1021/pr400561c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As an r-strategy insect species, the brown planthopper (BPH) Nilaparvata lugens (Stål) is a serious pest of rice crops in the temperate and tropical regions of Asia and Australia, which may be due to its robust fecundity. Here we combined 2-DE comparative proteomic and RNA-seq transcriptomic analyses to identify fecundity-related proteins and genes. Using high- and low-fecundity populations as sample groups, a total of 54 and 75 proteins were significantly altered in the third and sixth day brachypterous female stages, respectively, and 39 and 54 of these proteins were identified by MALDI-TOF/TOF MS. In addition, 71,966 unigenes were quantified by Illumina sequencing. On the basis of the transcriptomic analysis, 7408 and 1639 unigenes demonstrated higher expression levels in the high-fecundity population in the second day brachypterous female adults and the second day fifth instar nymphs, respectively, and 411 unigenes were up-regulated in both groups. Of these dozens of proteins and thousands of unigenes, five were differentially expressed at both the protein and mRNA levels at all four time points, suggesting that these genes may regulate fecundity. Glutamine synthetase (GS) was chosen for further functional studies. RNAi knockdown of the GS gene reduced the fecundity of N. lugens by 64.6%, disrupted ovary development, and inhibited vitellogenin (Vg) expression. Our results show that a combination of proteomic and transcriptomic analyses provided five candidate proteins and genes for further study. The knowledge gained from this study may lead to a more fundamental understanding of the fecundity of this important agricultural insect pest.
Collapse
Affiliation(s)
- Yifan Zhai
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-Sen University , No. 135 Xingang West Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Components of the CtBP1/BARS-dependent fission machinery. Histochem Cell Biol 2013; 140:407-21. [PMID: 23996193 DOI: 10.1007/s00418-013-1138-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 01/12/2023]
Abstract
The brefeldin A ADP-ribosylated substrate, a member of the C-terminal-binding protein family that is referred to as CtBP1/BARS, is a dual-function protein that acts as a transcriptional co-repressor in the nucleus and as an inducer of membrane fission in the cytoplasm. In this review, we first discuss the mechanisms that enable CtBP1/BARS to shift between the nuclear transcriptional co-repressor and the cytosolic fission-inducing activities. Then, we focus on the role of CtBP1/BARS in membrane fission. CtBP1/BARS controls several fission events including macropinocytosis, fluid-phase endocytosis, COPI-coated vesicle formation, basolaterally directed post-Golgi carrier formation, and Golgi partitioning in mitosis. We report on recent advances in our understanding of the CtBP1/BARS membrane fission machineries that operate at the trans-side and at the cis-side of the Golgi complex. Specifically, we discuss how these machineries are assembled and regulated, and how they operate in the formation of the basolaterally directed post-Golgi carriers.
Collapse
|
8
|
Stankiewicz TR, Schroeder EK, Kelsey NA, Bouchard RJ, Linseman DA. C-terminal binding proteins are essential pro-survival factors that undergo caspase-dependent downregulation during neuronal apoptosis. Mol Cell Neurosci 2013; 56:322-332. [PMID: 23859824 DOI: 10.1016/j.mcn.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022] Open
Abstract
C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficient to cause CGN apoptosis. Similarly, the CtBP inhibitor, 4-methylthio-2-oxobutyric acid, induces expression of the CtBP target Noxa and causes actinomycin-sensitive CGN apoptosis. Unexpectedly, we found that the mechanism of CtBP downregulation in CGNs undergoing apoptosis varies in a stimulus-specific manner involving either the proteasome or caspases. In the case of CGNs deprived of depolarizing potassium (5K apoptotic condition), caspases appear to play a dominant role in CtBP downregulation. However, incubation in 5K does not enhance the kinetics of CtBP1 degradation and recombinant CtBP1 is not cleaved in vitro by caspase-3. In addition, 5K has no significant effect on CtBP transcript expression. Finally, mouse embryonic stem cells display caspase-dependent downregulation of CtBP1 following exposure to staurosporine, an effect that is not observed in DGCR8 knockout cells which are deficient in miRNA processing. These data identify caspase-dependent downregulation of CtBPs as an alternative mechanism to the proteasome for regulation of these transcriptional co-repressors in neurons undergoing apoptosis. Moreover, caspases appear to regulate CtBP expression indirectly, at a post-transcriptional level, and via a mechanism that is dependent upon miRNA processing. We conclude that CtBPs are essential pro-survival proteins in neurons and their downregulation contributes significantly to neuronal apoptosis via the de-repression of pro-apoptotic genes.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA.,Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA
| | - Emily K Schroeder
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA
| | - Natalie A Kelsey
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA
| | - Ron J Bouchard
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA.,Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA.,Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
9
|
C-Terminal Binding Protein: A Molecular Link between Metabolic Imbalance and Epigenetic Regulation in Breast Cancer. Int J Cell Biol 2013; 2013:647975. [PMID: 23762064 PMCID: PMC3671672 DOI: 10.1155/2013/647975] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity has given rise to significant global concerns as numerous population-based studies demonstrate an incontrovertible association between obesity and breast cancer. Mechanisms proposed to account for this linkage include exaggerated levels of carbohydrate substrates, elevated levels of circulating mitogenic hormones, and inflammatory cytokines that impinge on epithelial programming in many tissues. Moreover, recently many scientists have rediscovered the observation, first described by Otto Warburg nearly a century ago, that most cancer cells undergo a dramatic metabolic shift in energy utilization and expenditure that fuels and supports the cellular expansion associated with malignant proliferation. This shift in substrate oxidation comes at the cost of sharp changes in the levels of the high energy intermediate, nicotinamide adenine dinucleotide (NADH). In this review, we discuss a novel example of how shifts in the concentration and flux of substrates metabolized and generated during carbohydrate metabolism represent components of a signaling network that can influence epigenetic regulatory events in the nucleus. We refer to this regulatory process as "metabolic transduction" and describe how the C-terminal binding protein (CtBP) family of NADH-dependent nuclear regulators represents a primary example of how cellular metabolic status can influence epigenetic control of cellular function and fate.
Collapse
|
10
|
Zerlanko BJ, Bartholin L, Melhuish TA, Wotton D. Premature senescence and increased TGFβ signaling in the absence of Tgif1. PLoS One 2012; 7:e35460. [PMID: 22514746 PMCID: PMC3325954 DOI: 10.1371/journal.pone.0035460] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 03/19/2012] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor β (TGFβ) signaling regulates cell cycle progression in several cell types, primarily by inducing a G1 cell cycle arrest. Tgif1 is a transcriptional corepressor that limits TGFβ responsive gene expression. Here we demonstrate that primary mouse embryo fibroblasts (MEFs) lacking Tgif1 proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. We also provide evidence that the effects of loss of Tgif1 on proliferation and senescence are not limited to primary cells. The increased DNA damage in Tgif1 null MEFs can be partially reversed by culturing cells at physiological oxygen levels, and growth in normoxic conditions also partially rescues the proliferation defect, suggesting that in the absence of Tgif1 primary MEFs are less able to cope with elevated levels of oxidative stress. Additionally, we show that Tgif1 null MEFs are more sensitive to TGFβ-mediated growth inhibition, and that treatment with a TGFβ receptor kinase inhibitor increases proliferation of Tgif1 null MEFs. Conversely, persistent treatment of wild type cells with low levels of TGFβ slows proliferation and induces senescence, suggesting that TGFβ signaling also contributes to cellular senescence. We suggest that in the absence of Tgif1, a persistent increase in TGFβ responsive transcription and a reduced ability to deal with hyperoxic stress result in premature senescence in primary MEFs.
Collapse
Affiliation(s)
| | | | | | - David Wotton
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J 2011; 30:783-95. [PMID: 21224849 PMCID: PMC3041949 DOI: 10.1038/emboj.2010.351] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/10/2010] [Indexed: 12/22/2022] Open
Abstract
Both TGF-β and FGF signalling regulate the epithelial–mesenchymal transition. Here, TGF-β is found to promote myofibroblast differentiation, while concomitant FGF pathway activation instead drives cells towards an invasive mesenchymal fate. The epithelial–mesenchymal transition (EMT) is a crucial event in wound healing, tissue repair, and cancer progression in adult tissues. Here, we demonstrate that transforming growth factor (TGF)-β induced EMT and that long-term exposure to TGF-β elicited the epithelial–myofibroblastic transition (EMyoT) by inactivating the MEK-Erk pathway. During the EMT process, TGF-β induced isoform switching of fibroblast growth factor (FGF) receptors, causing the cells to become sensitive to FGF-2. Addition of FGF-2 to TGF-β-treated cells perturbed EMyoT by reactivating the MEK-Erk pathway and subsequently enhanced EMT through the formation of MEK-Erk-dependent complexes of the transcription factor δEF1/ZEB1 with the transcriptional corepressor CtBP1. Consequently, normal epithelial cells that have undergone EMT as a result of combined TGF-β and FGF-2 stimulation promoted the invasion of cancer cells. Thus, TGF-β and FGF-2 may cooperate with each other and may regulate EMT of various kinds of cells in cancer microenvironment during cancer progression.
Collapse
|