1
|
Rus Bakarurraini NAA, Kamarudin AA, Jamal R, Abu N. Engineered T cells for Colorectal Cancer. Immunotherapy 2024; 16:987-998. [PMID: 39229803 PMCID: PMC11485792 DOI: 10.1080/1750743x.2024.2391733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is a major contributor to global cancer incidence and mortality. Conventional treatments have limitations; hence, innovative approaches are imperative. Recent advancements in cancer research have led to the development of personalized targeted therapies and immunotherapies. Immunotherapy, in particular, T cell-based therapies, exhibited to be promising in enhancing cancer treatment outcomes. This review focuses on the landscape of engineered T cells as a potential option for the treatment of CRC. It highlights the approaches, challenges and current advancements in this field. As the understanding of molecular mechanisms increases, engineered T cells hold great potential in revolutionizing cancer treatment. To fully explore their safety efficacy in improving patient outcomes, further research and clinical trials are necessary.
Collapse
Affiliation(s)
| | - Ammar Akram Kamarudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ibrahim JM, A S, Nair AS, Oommen OV, Sudhakaran PR. In silico screening and epitope mapping of leptospiral outer membrane protein-Lsa46. J Biomol Struct Dyn 2023; 41:26-44. [PMID: 34821205 DOI: 10.1080/07391102.2021.2003247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Leptospirosis is one of the neglected diseases caused by the spirochete, Leptospira interrogans. Leptospiral surface adhesion (Lsa) proteins are surface exposed outer membrane proteins present in the pathogen. It acts as laminin and plasminogen binding proteins which enable them to infect host cells. The major target for the development of vaccine in the current era focuses on surface exposed outer membrane proteins, as they can induce strong and fast immune response in hosts. Therefore, the present study mapped the potential epitopes of the Leptospiral outer membrane proteins, mainly the surface adhesion proteins. Protein sequence analysis of Lsa proteins was done by in silico methods. The primary protein sequence analysis revealed Lsa46 as a suitable target which can be a potent Leptospiral vaccine candidate. Its structure was modelled by threading based method in I-TASSER server and validated by Ramachandran plot. The predicted epitope's interactions with human IgG, IgM(Fab) and T-cell receptor TCR(αβ) were performed by molecular docking studies using Biovia Discovery studio 2018. One of the predicted B-cell epitopes and the IgG showed desirable binding interactions, while four of the predicted B-cell epitopes and T-cell epitopes showed desirable binding interactions with IgM and TCR respectively. The molecular dynamic simulation studies carried out with the molecular docked complexes gave minimized energies indicating stable interactions. The structural analysis of the entire simulated complex showed a stable nature except for one of the Epitope-IgM complex. Further the binding free energy calculation of eight receptor-ligand complex predicted them energetically stable. The results of the study help in elucidating the structural and functional characterization of Lsa46 for epitope-based vaccine design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junaida M Ibrahim
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Shanitha A
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Oommen V Oommen
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Perumana R Sudhakaran
- Department of Computational Biology & Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Wu D, Kolesnikov A, Yin R, Guest JD, Gowthaman R, Shmelev A, Serdyuk Y, Dianov DV, Efimov GA, Pierce BG, Mariuzza RA. Structural assessment of HLA-A2-restricted SARS-CoV-2 spike epitopes recognized by public and private T-cell receptors. Nat Commun 2022; 13:19. [PMID: 35013235 PMCID: PMC8748687 DOI: 10.1038/s41467-021-27669-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
T cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide-MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- COVID-19/immunology
- COVID-19/virology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-A2 Antigen/chemistry
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Jurkat Cells
- K562 Cells
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Surface Plasmon Resonance/methods
Collapse
Affiliation(s)
- Daichao Wu
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Alexander Kolesnikov
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Rui Yin
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Johnathan D Guest
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Ragul Gowthaman
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Anton Shmelev
- National Research Center for Hematology, Moscow, Russia
| | - Yana Serdyuk
- National Research Center for Hematology, Moscow, Russia
| | | | | | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
4
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Das M, Chen N, LiWang A, Wang LP. Identification and characterization of metamorphic proteins: Current and future perspectives. Biopolymers 2021; 112:e23473. [PMID: 34528703 DOI: 10.1002/bip.23473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
Proteins that can reversibly alternate between distinctly different folds under native conditions are described as being metamorphic. The "metamorphome" is the collection of all metamorphic proteins in the proteome, but it remains unknown the extent to which the proteome is populated by this class of proteins. We propose that uncovering the metamorphome will require a synergy of computational screening of protein sequences to identify potential metamorphic behavior and validation through experimental techniques. This perspective discusses computational and experimental approaches that are currently used to predict and characterize metamorphic proteins as well as the need for developing improved methodologies. Since metamorphic proteins act as molecular switches, understanding their properties and behavior could lead to novel applications of these proteins as sensors in biological or environmental contexts.
Collapse
Affiliation(s)
- Madhurima Das
- School of Natural Sciences, University of California, Merced, California, USA
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, California, USA
| | - Andy LiWang
- School of Natural Sciences, University of California, Merced, California, USA.,Department of Chemistry and Biochemistry, University of California, Merced, California, USA.,Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA.,Health Sciences Research Institute, University of California, Merced, California, USA.,Center for Circadian Biology, University of California, San Diego, California, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
6
|
Kulkarni P, Solomon TL, He Y, Chen Y, Bryan PN, Orban J. Structural metamorphism and polymorphism in proteins on the brink of thermodynamic stability. Protein Sci 2018; 27:1557-1567. [PMID: 30144197 PMCID: PMC6194243 DOI: 10.1002/pro.3458] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
The classical view of the structure-function paradigm advanced by Anfinsen in the 1960s is that a protein's function is inextricably linked to its three-dimensional structure and is encrypted in its amino acid sequence. However, it is now known that a significant fraction of the proteome consists of intrinsically disordered proteins (IDPs). These proteins populate a polymorphic ensemble of conformations rather than a unique structure but are still capable of performing biological functions. At the boundary, between well-ordered and inherently disordered states are proteins that are on the brink of stability, either weakly stable ordered systems or disordered but on the verge of being stable. In such marginal states, even relatively minor changes can significantly alter the energy landscape, leading to large-scale conformational remodeling. Some proteins on the edge of stability are metamorphic, with the capacity to switch from one fold topology to another in response to an environmental trigger (e.g., pH, temperature/salt, redox). Many IDPs, on the other hand, are marginally unstable such that small perturbations (e.g., phosphorylation, ligands) tip the balance over to a range of ordered, partially ordered, or even more disordered states. In general, the structural transitions described by metamorphic fold switches and polymorphic IDPs possess a number of common features including low or diminished stability, large-scale conformational changes, critical disordered regions, latent or attenuated binding sites, and expansion of function. We suggest that these transitions are, therefore, conceptually and mechanistically analogous, representing adjacent regions in the continuum of order/disorder transitions.
Collapse
Affiliation(s)
- Prakash Kulkarni
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - Tsega L. Solomon
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - Yanan He
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - Yihong Chen
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - Philip N. Bryan
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
| | - John Orban
- W. M. Keck Laboratory for Structural BiologyUniversity of Maryland Institute for Bioscience and Biotechnology ResearchRockvilleMaryland20850
- Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkMaryland20742
| |
Collapse
|
7
|
Kumar A, Nokhrin S, Woloschuk RM, Woolley GA. Duplication of a Single Strand in a β-Sheet Can Produce a New Switching Function in a Photosensory Protein. Biochemistry 2018; 57:4093-4104. [PMID: 29897240 DOI: 10.1021/acs.biochem.8b00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Duplication of a single β-strand that forms part of a β-sheet in photoactive yellow protein (PYP) was found to produce two approximately isoenergetic protein conformations, in which either the first or the second copy of the duplicated β-strand participates in the β-sheet. Whereas one conformation (big-loop) is more stable at equilibrium in the dark, the other conformation (long-tail) is populated after recovery from blue light irradiation. By appending a recognition motif (E-helix) to the C-terminus of the protein, we show that β-strand duplication, and the resulting possibility of β-strand slippage, can lead to a new switchable protein-protein interaction. We suggest that β-strand duplication may be a general means of introducing two-state switching activity into protein structures.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Sergiy Nokhrin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Ryan M Woloschuk
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - G Andrew Woolley
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| |
Collapse
|
8
|
Merkle PS, Irving M, Hongjian S, Ferber M, Jørgensen TJD, Scholten K, Luescher I, Coukos G, Zoete V, Cuendet MA, Michielin O, Rand KD. The T-Cell Receptor Can Bind to the Peptide-Bound Major Histocompatibility Complex and Uncomplexed β2-Microglobulin through Distinct Binding Sites. Biochemistry 2017; 56:3945-3961. [DOI: 10.1021/acs.biochem.7b00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Patrick S. Merkle
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Melita Irving
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
- Ludwig
Branch for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Song Hongjian
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mathias Ferber
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Kirsten Scholten
- Ludwig
Branch for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Immanuel Luescher
- Ludwig
Branch for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - George Coukos
- Ludwig
Branch for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Zoete
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Michel A. Cuendet
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
- Department
of Physiology and Biophysics, Weill Cornell Medical College, 1300
York Avenue, New York, New
York 10065, United States
| | - Olivier Michielin
- Swiss Institute of Bioinformatics, Bâtiment Génopode, UNIL Sorge, 1015 Lausanne, Switzerland
| | - Kasper D. Rand
- Department
of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Knapp B, Dunbar J, Alcala M, Deane CM. Variable Regions of Antibodies and T-Cell Receptors May Not Be Sufficient in Molecular Simulations Investigating Binding. J Chem Theory Comput 2017; 13:3097-3105. [PMID: 28617587 DOI: 10.1021/acs.jctc.7b00080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antibodies and T-cell receptors are important proteins of the immune system that share similar structures. Both contain variable and constant regions. Insight into the dynamics of their binding can be provided by computational simulations. For these simulations the constant regions are often removed to save runtime as binding occurs in the variable regions. Here we present the first study to investigate the effect of removing the constant regions from antibodies and T-cell receptors on such simulations. We performed simulations of an antibody/antigen and T-cell receptor/MHC system with and without constant regions using 10 replicas of 100 ns of each of the four setups. We found that simulations without constant regions show significantly different behavior compared to simulations with constant regions. If the constant regions are not included in the simulations alterations in the binding interface hydrogen bonds and even partial unbinding can occur. These results indicate that constant regions should be included in antibody and T-cell receptor simulations for reliable conclusions to be drawn.
Collapse
Affiliation(s)
- Bernhard Knapp
- Department of Statistics, Protein Informatics Group, University of Oxford , Oxford OX1 3BD, U.K.,Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia , 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - James Dunbar
- Department of Statistics, Protein Informatics Group, University of Oxford , Oxford OX1 3BD, U.K.,Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich 82377 Penzberg, Germany
| | - Marta Alcala
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia , 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Charlotte M Deane
- Department of Statistics, Protein Informatics Group, University of Oxford , Oxford OX1 3BD, U.K
| |
Collapse
|
10
|
Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling. Biochem Soc Trans 2017; 44:937-43. [PMID: 27284063 PMCID: PMC5011417 DOI: 10.1042/bst20160053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 12/04/2022]
Abstract
The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling.
Collapse
|
11
|
Natarajan K, McShan AC, Jiang J, Kumirov VK, Wang R, Zhao H, Schuck P, Tilahun ME, Boyd LF, Ying J, Bax A, Margulies DH, Sgourakis NG. An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nat Commun 2017; 8:15260. [PMID: 28508865 PMCID: PMC5440810 DOI: 10.1038/ncomms15260] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanism through which the interaction of a clonotypic αβ T-cell receptor (TCR) with a peptide-loaded major histocompatibility complex (p/MHC) leads to T-cell activation is not yet fully understood. Here we exploit a high-affinity TCR (B4.2.3) to examine the structural changes that accompany binding to its p/MHC ligand (P18-I10/H2-Dd). In addition to conformational changes in complementarity-determining regions (CDRs) of the TCR seen in comparison of unliganded and bound X-ray structures, NMR characterization of the TCR β-chain dynamics reveals significant chemical shift effects in sites removed from the MHC-binding site. Remodelling of electrostatic interactions near the Cβ H3 helix at the membrane-proximal face of the TCR, a region implicated in interactions with the CD3 co-receptor, suggests a possible role for an allosteric mechanism in TCR signalling. The contribution of these TCR residues to signal transduction is supported by mutagenesis and T-cell functional assays.
Collapse
MESH Headings
- Allosteric Site/immunology
- Animals
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- Major Histocompatibility Complex/immunology
- Mice
- Molecular Dynamics Simulation
- Mutagenesis
- Peptides/metabolism
- Protein Binding/immunology
- Protein Domains/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Kannan Natarajan
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrew C. McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Jiansheng Jiang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Rui Wang
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mulualem E. Tilahun
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisa F. Boyd
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David H. Margulies
- Molecular Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nikolaos G. Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
12
|
Abstract
αβ T-cell receptor (TCR) activation plays a crucial role for T-cell function. However, the TCR itself does not possess signaling domains. Instead, the TCR is noncovalently coupled to a conserved multisubunit signaling apparatus, the CD3 complex, that comprises the CD3εγ, CD3εδ, and CD3ζζ dimers. How antigen ligation by the TCR triggers CD3 activation and what structural role the CD3 extracellular domains (ECDs) play in the assembled TCR-CD3 complex remain unclear. Here, we use two complementary structural approaches to gain insight into the overall organization of the TCR-CD3 complex. Small-angle X-ray scattering of the soluble TCR-CD3εδ complex reveals the CD3εδ ECDs to sit underneath the TCR α-chain. The observed arrangement is consistent with EM images of the entire TCR-CD3 integral membrane complex, in which the CD3εδ and CD3εγ subunits were situated underneath the TCR α-chain and TCR β-chain, respectively. Interestingly, the TCR-CD3 transmembrane complex bound to peptide-MHC is a dimer in which two TCRs project outward from a central core composed of the CD3 ECDs and the TCR and CD3 transmembrane domains. This arrangement suggests a potential ligand-dependent dimerization mechanism for TCR signaling. Collectively, our data advance our understanding of the molecular organization of the TCR-CD3 complex, and provides a conceptual framework for the TCR activation mechanism.
Collapse
|
13
|
Zeraik AE, Pereira HM, Santos YV, Brandão-Neto J, Spoerner M, Santos MS, Colnago LA, Garratt RC, Araújo APU, DeMarco R. Crystal structure of a Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide. J Biol Chem 2014; 289:7799-811. [PMID: 24464615 DOI: 10.1074/jbc.m113.525352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.
Collapse
Affiliation(s)
- Ana E Zeraik
- From the Instituto de Física de São Carlos, Universidade de São Paulo, 13563-120 São Carlos, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|