1
|
Potratz JP, Russell R. Tracking Native Tetrahymena Ribozyme Folding with Fluorescence. Biochemistry 2023; 62:3173-3180. [PMID: 37910627 PMCID: PMC10666665 DOI: 10.1021/acs.biochem.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Indexed: 11/03/2023]
Abstract
Folding of the Tetrahymena group I intron ribozyme and other structured RNAs has been measured using a catalytic activity assay to monitor the native state formation by cleavage of a radiolabeled oligonucleotide substrate. While highly effective, the assay has inherent limitations present in any radioactivity- and gel-based assay. Administrative and safety considerations arise from the radioisotope, and data collection is laborious due to the use of polyacrylamide gels. Here we describe a fluorescence-based, solution assay that allows for more efficient data acquisition. The substrate is labeled with 6-carboxyfluorescein (6FAM) fluorophore and black hole quencher (BHQ1) at the 5' and 3' ends, respectively. Substrate cleavage results in release of the quencher, increasing the fluorescence signal by an average of 30-fold. A side-by-side comparison with the radioactivity-based assay shows good agreement in monitoring Tetrahymena ribozyme folding from a misfolded conformation to the native state, albeit with increased uncertainty. The lower precision of the fluorescence assay is compensated for by the relative ease and efficiency of the workflow. In addition, this assay will allow institutions that do not use radioactive materials to monitor native folding of the Tetrahymena ribozyme, and the same strategy should be amenable to native folding of other ribozymes.
Collapse
Affiliation(s)
- Jeffrey P. Potratz
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
- Department
of Physical Sciences, Concordia University
Wisconsin, 12800 North
Lake Shore Drive, Mequon, Wisconsin 53097, United States
| | - Rick Russell
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Hori N, Thirumalai D. Watching ion-driven kinetics of ribozyme folding and misfolding caused by energetic and topological frustration one molecule at a time. Nucleic Acids Res 2023; 51:10737-10751. [PMID: 37758176 PMCID: PMC10602927 DOI: 10.1093/nar/gkad755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Folding of ribozymes into well-defined tertiary structures usually requires divalent cations. How Mg2+ ions direct the folding kinetics has been a long-standing unsolved problem because experiments cannot detect the positions and dynamics of ions. To address this problem, we used molecular simulations to dissect the folding kinetics of the Azoarcus ribozyme by monitoring the path each molecule takes to reach the folded state. We quantitatively establish that Mg2+ binding to specific sites, coupled with counter-ion release of monovalent cations, stimulate the formation of secondary and tertiary structures, leading to diverse pathways that include direct rapid folding and trapping in misfolded structures. In some molecules, key tertiary structural elements form when Mg2+ ions bind to specific RNA sites at the earliest stages of the folding, leading to specific collapse and rapid folding. In others, the formation of non-native base pairs, whose rearrangement is needed to reach the folded state, is the rate-limiting step. Escape from energetic traps, driven by thermal fluctuations, occurs readily. In contrast, the transition to the native state from long-lived topologically trapped native-like metastable states is extremely slow. Specific collapse and formation of energetically or topologically frustrated states occur early in the assembly process.
Collapse
Affiliation(s)
- Naoto Hori
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - D Thirumalai
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- Department of Physics, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
3
|
Hollar A, Bursey H, Jabbari H. Pseudoknots in RNA Structure Prediction. Curr Protoc 2023; 3:e661. [PMID: 36779804 DOI: 10.1002/cpz1.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
RNA molecules play active roles in the cell and are important for numerous applications in biotechnology and medicine. The function of an RNA molecule stems from its structure. RNA structure determination is time consuming, challenging, and expensive using experimental methods. Thus, much research has been directed at RNA structure prediction through computational means. Many of these methods focus primarily on the secondary structure of the molecule, ignoring the possibility of pseudoknotted structures. However, pseudoknots are known to play functional roles in many RNA molecules or in their method of interaction with other molecules. Improving the accuracy and efficiency of computational methods that predict pseudoknots is an ongoing challenge for single RNA molecules, RNA-RNA interactions, and RNA-protein interactions. To improve the accuracy of prediction, many methods focus on specific applications while restricting the length and the class of the pseudoknotted structures they can identify. In recent years, computational methods for structure prediction have begun to catch up with the impressive developments seen in biotechnology. Here, we provide a non-comprehensive overview of available pseudoknot prediction methods and their best-use cases. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Andrew Hollar
- Department of Computer Science, University of Victoria, Victoria, Canada
| | - Hunter Bursey
- Department of Computer Science, University of Victoria, Victoria, Canada
| | - Hosna Jabbari
- Department of Computer Science, University of Victoria, Victoria, Canada
| |
Collapse
|
4
|
Moderate activity of RNA chaperone maximizes the yield of self-spliced pre-RNA in vivo. Proc Natl Acad Sci U S A 2022; 119:e2209422119. [PMID: 36442111 PMCID: PMC9894238 DOI: 10.1073/pnas.2209422119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
CYT-19 is a DEAD-box protein whose adenosine-triphosphate (ATP)-dependent helicase activity facilitates the folding of group I introns in precursor RNA (pre-RNA) of Neurospora crassa (N. crassa). In the process, they consume a substantial amount of ATP. While much of the mechanistic insight into CYT-19 activity has been gained through the studies on the folding of Tetrahymena group I intron ribozyme, the more biologically relevant issue, namely the effect of CYT-19 on the self-splicing of pre-RNA, remains largely unexplored. Here, we employ a kinetic network model, based on the generalized iterative annealing mechanism (IAM), to investigate the relation between CYT-19 activity, rate of ribozyme folding, and the kinetics of the self-splicing reaction. The network rate parameters are extracted by analyzing the recent biochemical data for CYT-19-facilitated folding of Tetrahymena ribozyme. We then build extended models to explore the metabolism of pre-RNA. We show that the timescales of chaperone-mediated folding of group I ribozyme and self-splicing reaction compete with each other. As a consequence, in order to maximize the self-splicing yield of group I introns in pre-RNA, the chaperone activity must be sufficiently large to unfold the misfolded structures, but not too large to unfold the native structures prior to the self-splicing event. We discover that despite the promiscuous action on structured RNAs, the helicase activity of CYT-19 on group I ribozyme gives rise to self-splicing yields that are close to the maximum.
Collapse
|
5
|
Abstract
Taking advantage of single-particle cryogenic electron microscopy (cryo-EM) to analyze highly heterogeneous or flexible samples, we obtained long-awaited three-dimensional (3D) structures of the misfolded Tetrahymena ribozyme. These structures provide clear evidence for a previously proposed topological isomer model, in which the stereochemically impossible crossing of two core RNA strands prevents rapid rearrangement of the misfolded state to the native state. Topological isomers may be widespread in misfolding of complex RNA, and these cryo-EM structures set a foundation for dissecting their detailed kinetic mechanisms and functional consequences in a paradigmatic model system. The Tetrahymena group I intron has been a key system in the understanding of RNA folding and misfolding. The molecule folds into a long-lived misfolded intermediate (M) in vitro, which has been known to form extensive native-like secondary and tertiary structures but is separated by an unknown kinetic barrier from the native state (N). Here, we used cryogenic electron microscopy (cryo-EM) to resolve misfolded structures of the Tetrahymena L-21 ScaI ribozyme. Maps of three M substates (M1, M2, M3) and one N state were achieved from a single specimen with overall resolutions of 3.5 Å, 3.8 Å, 4.0 Å, and 3.0 Å, respectively. Comparisons of the structures reveal that all the M substates are highly similar to N, except for rotation of a core helix P7 that harbors the ribozyme’s guanosine binding site and the crossing of the strands J7/3 and J8/7 that connect P7 to the other elements in the ribozyme core. This topological difference between the M substates and N state explains the failure of 5′-splice site substrate docking in M, supports a topological isomer model for the slow refolding of M to N due to a trapped strand crossing, and suggests pathways for M-to-N refolding.
Collapse
|
6
|
Abstract
RNA-based machines are ubiquitous in Nature and increasingly important for medicines. They fold into complex, dynamic structures that process information and catalyze reactions, including reactions that generate new RNAs and proteins across biology. What are the experimental strategies and steps that are necessary to understand how these complex machines work? Two 1990 papers from Herschlag and Cech on "Catalysis of RNA Cleavage by the Tetrahymena thermophila Ribozyme" provide a master class in dissecting an RNA machine through kinetics approaches. By showing how to propose a kinetic framework, fill in the numbers, do cross-checks, and make comparisons across mutants and different RNA systems, the papers illustrate how to take a mechanistic approach and distill the results into general insights that are difficult to attain through other means.
Collapse
Affiliation(s)
- Rhiju Das
- Department
of Biochemistry, Stanford University School
of Medicine, Stanford, California 94305, United States
- Department
of Physics, Stanford University, Stanford, California 94305, United States
| | - Rick Russell
- Department
of Molecular Biosciences, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Jarmoskaite I, Tijerina P, Russell R. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. J Biol Chem 2020; 296:100132. [PMID: 33262215 PMCID: PMC7948464 DOI: 10.1074/jbc.ra120.015029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
DEAD-box helicase proteins perform ATP-dependent rearrangements of structured RNAs throughout RNA biology. Short RNA helices are unwound in a single ATPase cycle, but the ATP requirement for more complex RNA structural rearrangements is unknown. Here we measure the amount of ATP used for native refolding of a misfolded group I intron ribozyme by CYT-19, a Neurospora crassa DEAD-box protein that functions as a general chaperone for mitochondrial group I introns. By comparing the rates of ATP hydrolysis and ribozyme refolding, we find that several hundred ATP molecules are hydrolyzed during refolding of each ribozyme molecule. After subtracting nonproductive ATP hydrolysis that occurs in the absence of ribozyme refolding, we find that approximately 100 ATPs are hydrolyzed per refolded RNA as a consequence of interactions specific to the misfolded ribozyme. This value is insensitive to changes in ATP and CYT-19 concentration and decreases with decreasing ribozyme stability. Because of earlier findings that ∼90% of global ribozyme unfolding cycles lead back to the kinetically preferred misfolded conformation and are not observed, we estimate that each global unfolding cycle consumes ∼10 ATPs. Our results indicate that CYT-19 functions as a general RNA chaperone by using a stochastic, energy-intensive mechanism to promote RNA unfolding and refolding, suggesting an evolutionary convergence with protein chaperones.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Pilar Tijerina
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
8
|
Welty R, Pabit SA, Katz AM, Calvey GD, Pollack L, Hall KB. Divalent ions tune the kinetics of a bacterial GTPase center rRNA folding transition from secondary to tertiary structure. RNA (NEW YORK, N.Y.) 2018; 24:1828-1838. [PMID: 30254137 PMCID: PMC6239185 DOI: 10.1261/rna.068361.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 05/22/2023]
Abstract
Folding of an RNA from secondary to tertiary structure often depends on divalent ions for efficient electrostatic charge screening (nonspecific association) or binding (specific association). To measure how different divalent cations modify folding kinetics of the 60 nucleotide Ecoli rRNA GTPase center, we combined stopped-flow fluorescence in the presence of Mg2+, Ca2+, or Sr2+ together with time-resolved small angle X-ray scattering (SAXS) in the presence of Mg2+ to observe the folding process. Immediately upon addition of each divalent ion, the RNA undergoes a transition from an extended state with secondary structure to a more compact structure. Subsequently, specific divalent ions modulate populations of intermediates in conformational ensembles along the folding pathway with transition times longer than 10 msec. Rate constants for the five folding transitions act on timescales from submillisecond to tens of seconds. The sensitivity of RNA tertiary structure to divalent cation identity affects all but the fastest events in RNA folding, and allowed us to identify those states that prefer Mg2+ The GTPase center RNA appears to have optimized its folding trajectory to specifically utilize this most abundant intracellular divalent ion.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - George D Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
9
|
Abstract
The past decades have witnessed tremendous developments in our understanding of RNA biology. At the core of these advances have been studies aimed at discerning RNA structure and at understanding the forces that influence the RNA folding process. It is easy to take the present state of understanding for granted, but there is much to be learned by considering the path to our current understanding, which has been tortuous, with the birth and death of models, the adaptation of experimental tools originally developed for characterization of protein structure and catalysis, and the development of novel tools for probing RNA. In this review we tour the stages of RNA folding studies, considering them as "epochs" that can be generalized across scientific disciplines. These epochs span from the discovery of catalytic RNA, through biophysical insights into the putative primordial RNA World, to characterization of structured RNAs, the building and testing of models, and, finally, to the development of models with the potential to yield generalizable predictive and quantitative models for RNA conformational, thermodynamic, and kinetic behavior. We hope that this accounting will aid others as they navigate the many fascinating questions about RNA and its roles in biology, in the past, present, and future.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford ChEM-H (Chemistry, Engineering, and Medicine for Human Health), Stanford, California 94305
| | - Steve Bonilla
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Namita Bisaria
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142
| |
Collapse
|
10
|
Vazquez-Anderson J, Mihailovic MK, Baldridge KC, Reyes KG, Haning K, Cho SH, Amador P, Powell WB, Contreras LM. Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions. Nucleic Acids Res 2017; 45:5523-5538. [PMID: 28334800 PMCID: PMC5435917 DOI: 10.1093/nar/gkx115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/14/2017] [Indexed: 11/17/2022] Open
Abstract
Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA–RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA–mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs.
Collapse
Affiliation(s)
- Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Mia K Mihailovic
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kristofer G Reyes
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ 08544, USA
| | - Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Seung Hee Cho
- Institute for Cellular & Molecular Biology, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Paul Amador
- Institute for Cellular & Molecular Biology, The University of Texas at Austin, 2500 Speedway, Stop A4800, Austin, TX 78712, USA
| | - Warren B Powell
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ 08544, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
11
|
Q Nguyen KK, Gomez YK, Bakhom M, Radcliffe A, La P, Rochelle D, Lee JW, Sorin EJ. Ensemble simulations: folding, unfolding and misfolding of a high-efficiency frameshifting RNA pseudoknot. Nucleic Acids Res 2017; 45:4893-4904. [PMID: 28115636 PMCID: PMC5416846 DOI: 10.1093/nar/gkx012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Massive all-atom molecular dynamics simulations were conducted across a distributed computing network to study the folding, unfolding, misfolding and conformational plasticity of the high-efficiency frameshifting double mutant of the 26 nt potato leaf roll virus RNA pseudoknot. Our robust sampling, which included over 40 starting structures spanning the spectrum from the extended unfolded state to the native fold, yielded nearly 120 μs of cumulative sampling time. Conformational microstate transitions on the 1.0 ns to 10.0 μs timescales were observed, with post-equilibration sampling providing detailed representations of the conformational free energy landscape and the complex folding mechanism inherent to the pseudoknot motif. Herein, we identify and characterize two alternative native structures, three intermediate states, and numerous misfolded states, the latter of which have not previously been characterized via atomistic simulation techniques. While in line with previous thermodynamics-based models of a general RNA folding mechanism, our observations indicate that stem-strand-sequence-separation may serve as an alternative predictor of the order of stem formation during pseudoknot folding. Our results contradict a model of frameshifting based on structural rigidity and resistance to mechanical unfolding, and instead strongly support more recent studies in which conformational plasticity is identified as a determining factor in frameshifting efficiency.
Collapse
Affiliation(s)
- Khai K Q Nguyen
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA.,Department of Computer Engineering & Computer Science, California State University Long Beach, Long Beach, CA 90840, USA
| | - Yessica K Gomez
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA.,Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA 90840, USA
| | - Mona Bakhom
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Amethyst Radcliffe
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA 90840, USA
| | - Phuc La
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Dakota Rochelle
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Ji Won Lee
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Eric J Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
12
|
Welty R, Hall KB. Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding. J Mol Biol 2016; 428:4490-4502. [PMID: 27693721 DOI: 10.1016/j.jmb.2016.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
The tertiary structure of the GTPase center (GAC) of 23S ribosomal RNA (rRNA) as seen in cocrystals is extremely compact. It is stabilized by long-range hydrogen bonds and nucleobase stacking and by a triloop that forms within its three-way junction. Its folding pathway from secondary structure to tertiary structure has not been previously observed, but it was shown to require Mg2+ ions in equilibrium experiments. The fluorescent nucleotide 2-aminopurine was substituted at selected sites within the 60-nt GAC. Fluorescence intensity changes upon addition of MgCl2 were monitored over a time-course from 1ms to 100s as the RNA folds. The folding pathway is revealed here to be hierarchical through several intermediates. Observation of the nucleobases during folding provides a new perspective on the process and the pathway, revealing the dynamics of nucleobase conformational exchange during the folding transitions.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Abstract
Deciphering the folding pathways and predicting the structures of complex three-dimensional biomolecules is central to elucidating biological function. RNA is single-stranded, which gives it the freedom to fold into complex secondary and tertiary structures. These structures endow RNA with the ability to perform complex chemistries and functions ranging from enzymatic activity to gene regulation. Given that RNA is involved in many essential cellular processes, it is critical to understand how it folds and functions in vivo. Within the last few years, methods have been developed to probe RNA structures in vivo and genome-wide. These studies reveal that RNA often adopts very different structures in vivo and in vitro, and provide profound insights into RNA biology. Nonetheless, both in vitro and in vivo approaches have limitations: studies in the complex and uncontrolled cellular environment make it difficult to obtain insight into RNA folding pathways and thermodynamics, and studies in vitro often lack direct cellular relevance, leaving a gap in our knowledge of RNA folding in vivo. This gap is being bridged by biophysical and mechanistic studies of RNA structure and function under conditions that mimic the cellular environment. To date, most artificial cytoplasms have used various polymers as molecular crowding agents and a series of small molecules as cosolutes. Studies under such in vivo-like conditions are yielding fresh insights, such as cooperative folding of functional RNAs and increased activity of ribozymes. These observations are accounted for in part by molecular crowding effects and interactions with other molecules. In this review, we report milestones in RNA folding in vitro and in vivo and discuss ongoing experimental and computational efforts to bridge the gap between these two conditions in order to understand how RNA folds in the cell.
Collapse
|
14
|
Xue Y, Gracia B, Herschlag D, Russell R, Al-Hashimi HM. Visualizing the formation of an RNA folding intermediate through a fast highly modular secondary structure switch. Nat Commun 2016; 7:ncomms11768. [PMID: 27292179 PMCID: PMC4909931 DOI: 10.1038/ncomms11768] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/26/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediates play important roles in RNA folding but can be difficult to characterize when short-lived or not significantly populated. By combining (15)N relaxation dispersion NMR with chemical probing, we visualized a fast (kex=k1+k-1≈423 s(-1)) secondary structural switch directed towards a low-populated (∼3%) partially folded intermediate in tertiary folding of the P5abc subdomain of the 'Tetrahymena' group I intron ribozyme. The secondary structure switch changes the base-pairing register across the P5c hairpin, creating a native-like structure, and occurs at rates of more than two orders of magnitude faster than tertiary folding. The switch occurs robustly in the absence of tertiary interactions, Mg(2+) or even when the hairpin is excised from the three-way junction. Fast, highly modular secondary structural switches may be quite common during RNA tertiary folding where they may help smoothen the folding landscape by allowing folding to proceed efficiently via additional pathways.
Collapse
Affiliation(s)
- Yi Xue
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Brant Gracia
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel Herschlag
- Department of Biochemistry, Beckman Center, Stanford University, Stanford, California 94305, USA.,Department of Chemistry, Stanford University, Stanford, California 94305, USA.,Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.,Chemistry, Engineering, and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, California 94305, USA
| | - Rick Russell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Chemistry, Duke University, Durham, Stanford, North Carolina 27710, USA
| |
Collapse
|
15
|
Sowa SW, Vazquez-Anderson J, Clark CA, De La Peña R, Dunn K, Fung EK, Khoury MJ, Contreras LM. Exploiting post-transcriptional regulation to probe RNA structures in vivo via fluorescence. Nucleic Acids Res 2014; 43:e13. [PMID: 25416800 PMCID: PMC4333371 DOI: 10.1093/nar/gku1191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While RNA structures have been extensively characterized in vitro, very few techniques exist to probe RNA structures inside cells. Here, we have exploited mechanisms of post-transcriptional regulation to synthesize fluorescence-based probes that assay RNA structures in vivo. Our probing system involves the co-expression of two constructs: (i) a target RNA and (ii) a reporter containing a probe complementary to a region in the target RNA attached to an RBS-sequestering hairpin and fused to a sequence encoding the green fluorescent protein (GFP). When a region of the target RNA is accessible, the area can interact with its complementary probe, resulting in fluorescence. By using this system, we observed varied patterns of structural accessibility along the length of the Tetrahymena group I intron. We performed in vivo DMS footprinting which, along with previous footprinting studies, helped to explain our probing results. Additionally, this novel approach represents a valuable tool to differentiate between RNA variants and to detect structural changes caused by subtle mutations. Our results capture some differences from traditional footprinting assays that could suggest that probing in vivo via oligonucleotide hybridization facilitates the detection of folding intermediates. Importantly, our data indicate that intracellular oligonucleotide probing can be a powerful complement to existing RNA structural probing methods.
Collapse
Affiliation(s)
- Steven W Sowa
- Microbiology Graduate Program, University of Texas at Austin, 100 E. 24th Street, A6500, Austin, TX 78712, USA
| | - Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Chelsea A Clark
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Ricardo De La Peña
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Kaitlin Dunn
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Emily K Fung
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Mark J Khoury
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
16
|
Rijal K, Maraia RJ, Arimbasseri AG. A methods review on use of nonsense suppression to study 3' end formation and other aspects of tRNA biogenesis. Gene 2014; 556:35-50. [PMID: 25447915 DOI: 10.1016/j.gene.2014.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022]
Abstract
Suppressor tRNAs bear anticodon mutations that allow them to decode premature stop codons in metabolic marker gene mRNAs, that can be used as in vivo reporters of functional tRNA biogenesis. Here, we review key components of a suppressor tRNA system specific to Schizosaccharomyces pombe and its adaptations for use to study specific steps in tRNA biogenesis. Eukaryotic tRNA biogenesis begins with transcription initiation by RNA polymerase (pol) III. The nascent pre-tRNAs must undergo folding, 5' and 3' processing to remove the leader and trailer, nuclear export, and splicing if applicable, while multiple complex chemical modifications occur throughout the process. We review evidence that precursor-tRNA processing begins with transcription termination at the oligo(T) terminator element, which forms a 3' oligo(U) tract on the nascent RNA, a sequence-specific binding site for the RNA chaperone, La protein. The processing pathway bifurcates depending on a poorly understood property of pol III termination that determines the 3' oligo(U) length and therefore the affinity for La. We thus review the pol III termination process and the factors involved including advances using gene-specific random mutagenesis by dNTP analogs that identify key residues important for transcription termination in certain pol III subunits. The review ends with a 'technical approaches' section that includes a parts lists of suppressor-tRNA alleles, strains and plasmids, and graphic examples of its diverse uses.
Collapse
Affiliation(s)
- Keshab Rijal
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Richard J Maraia
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Aneeshkumar G Arimbasseri
- Intramural Research Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Proc Natl Acad Sci U S A 2014; 111:E2928-36. [PMID: 25002474 DOI: 10.1073/pnas.1404307111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DEAD-box proteins are nonprocessive RNA helicases and can function as RNA chaperones, but the mechanisms of their chaperone activity remain incompletely understood. The Neurospora crassa DEAD-box protein CYT-19 is a mitochondrial RNA chaperone that promotes group I intron splicing and has been shown to resolve misfolded group I intron structures, allowing them to refold. Building on previous results, here we use a series of tertiary contact mutants of the Tetrahymena group I intron ribozyme to demonstrate that the efficiency of CYT-19-mediated unfolding of the ribozyme is tightly linked to global RNA tertiary stability. Efficient unfolding of destabilized ribozyme variants is accompanied by increased ATPase activity of CYT-19, suggesting that destabilized ribozymes provide more productive interaction opportunities. The strongest ATPase stimulation occurs with a ribozyme that lacks all five tertiary contacts and does not form a compact structure, and small-angle X-ray scattering indicates that ATPase activity tracks with ribozyme compactness. Further, deletion of three helices that are prominently exposed in the folded structure decreases the ATPase stimulation by the folded ribozyme. Together, these results lead to a model in which CYT-19, and likely related DEAD-box proteins, rearranges complex RNA structures by preferentially interacting with and unwinding exposed RNA secondary structure. Importantly, this mechanism could bias DEAD-box proteins to act on misfolded RNAs and ribonucleoproteins, which are likely to be less compact and more dynamic than their native counterparts.
Collapse
|
18
|
Mitchell D, Russell R. Folding pathways of the Tetrahymena ribozyme. J Mol Biol 2014; 426:2300-12. [PMID: 24747051 DOI: 10.1016/j.jmb.2014.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/01/2023]
Abstract
Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min(-1), while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min(-1)). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the "choice" is enforced by energy barriers that grow larger as folding progresses.
Collapse
Affiliation(s)
- David Mitchell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Mitchell D, Jarmoskaite I, Seval N, Seifert S, Russell R. The long-range P3 helix of the Tetrahymena ribozyme is disrupted during folding between the native and misfolded conformations. J Mol Biol 2013; 425:2670-86. [PMID: 23702292 DOI: 10.1016/j.jmb.2013.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
RNAs are prone to misfolding, but how misfolded structures are formed and resolved remains incompletely understood. The Tetrahymena group I intron ribozyme folds in vitro to a long-lived misfolded conformation (M) that includes extensive native structure but is proposed to differ in topology from the native state (N). A leading model predicts that exchange of the topologies requires unwinding of the long-range, core helix P3, despite the presence of P3 in both conformations. To test this model, we constructed 16 mutations to strengthen or weaken P3. Catalytic activity and in-line probing showed that nearly all of the mutants form the M state before folding to N. The P3-weakening mutations accelerated refolding from M (3- to 30-fold) and the P3-strengthening mutations slowed refolding (6- to 1400-fold), suggesting that P3 indeed unwinds transiently. Upon depletion of Mg(2+), the mutations had analogous effects on unfolding from N to intermediates that subsequently fold to M. The magnitudes for the P3-weakening mutations were larger than in refolding from M, and small-angle X-ray scattering showed that the ribozyme expands rapidly to intermediates from which P3 is disrupted subsequently. These results are consistent with previous results indicating unfolding of native peripheral structure during refolding from M, which probably permits rearrangement of the core. Together, our results demonstrate that exchange of the native and misfolded conformations requires loss of a core helix in addition to peripheral structure. Further, the results strongly suggest that misfolding arises from a topological error within the ribozyme core, and a specific topology is proposed.
Collapse
Affiliation(s)
- David Mitchell
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
20
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
21
|
Quarta G, Sin K, Schlick T. Dynamic energy landscapes of riboswitches help interpret conformational rearrangements and function. PLoS Comput Biol 2012; 8:e1002368. [PMID: 22359488 PMCID: PMC3280964 DOI: 10.1371/journal.pcbi.1002368] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 12/19/2011] [Indexed: 11/23/2022] Open
Abstract
Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way in which sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we compute energy landscapes, which describe the accessible secondary structures for a range of sequence lengths, to analyze the transcriptional process as a given sequence elongates to full length. In line with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: low-barrier landscape with an ensemble of different conformations in equilibrium before encountering a substrate; barrier-free landscape in which a direct, dominant “downhill” pathway to the minimum free energy structure is apparent; and a barrier-dominated landscape with two isolated conformational states, each associated with a different biological function. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved in various riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design. Riboswitches are RNAs that modulate gene expression by ligand-induced conformational changes. However, the way that sequence dictates alternative folding pathways of gene regulation remains unclear. In this study, we mimic transcription by computing energy landscapes which describe accessible secondary structures for a range of sequence lengths. Consistent with experimental evidence, we find that most riboswitch landscapes can be characterized by three broad classes as a function of sequence length in terms of the distribution and barrier type of the conformational clusters: Low-barrier landscape with an ensemble of conformations in equilibrium before encountering a substrate; barrier-free landscape with a dominant “downhill” pathway to the minimum free energy structure; and barrier-dominated landscape with two isolated conformational states with different functions. Sharing concepts with the “new view” of protein folding energy landscapes, we term the three sequence ranges above as the sensing, downhill folding, and functional windows, respectively. We find that these energy landscape patterns are conserved between riboswitch classes, though the order of the windows may vary. In fact, the order of the three windows suggests either kinetic or thermodynamic control of ligand binding. These findings help understand riboswitch structure/function relationships and open new avenues to riboswitch design.
Collapse
Affiliation(s)
- Giulio Quarta
- Department of Chemistry, New York University, New York, New York, United States of America
- Howard Hughes Medical Institute - Medical Research Fellows Program, Chevy Chase, Maryland, United States of America
| | - Ken Sin
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York, United States of America
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
DEAD-box proteins are vitally important to cellular processes and make up the largest class of helicases. Many DEAD-box proteins function as RNA chaperones by accelerating structural transitions of RNA, which can result in the resolution of misfolded conformers or conversion between functional structures. While the biological importance of chaperone proteins is clear, their mechanisms are incompletely understood. Here, we illustrate how the catalytic activity of certain RNAs can be used to measure RNA chaperone activity. By measuring the amount of substrate converted to product, the fraction of catalytically active molecules is measured over time, providing a quantitative measure of the formation or loss of native RNA. The assays are described with references to group I and group II introns and their ribozyme derivatives, and examples are included that illustrate potential complications and indicate how catalytic activity measurements can be combined with physical approaches to gain insights into the mechanisms of DEAD-box proteins as RNA chaperones.
Collapse
|
23
|
Sinan S, Yuan X, Russell R. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins. J Biol Chem 2011; 286:37304-12. [PMID: 21878649 DOI: 10.1074/jbc.m111.287706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Structured RNAs traverse complex energy landscapes that include valleys representing misfolded intermediates. In Neurospora crassa and Saccharomyces cerevisiae, efficient splicing of mitochondrial group I and II introns requires the DEAD box proteins CYT-19 and Mss116p, respectively, which promote folding transitions and function as general RNA chaperones. To test the generality of RNA misfolding and the activities of DEAD box proteins in vitro, here we measure native folding of a small group I intron ribozyme from the bacterium Azoarcus by monitoring its catalytic activity. To develop this assay, we first measure cleavage of an oligonucleotide substrate by the prefolded ribozyme. Substrate cleavage is rate-limited by binding and is readily reversible, with an internal equilibrium near unity, such that the amount of product observed is less than the amount of native ribozyme. We use this assay to show that approximately half of the ribozyme folds readily to the native state, whereas the other half forms an intermediate that transitions slowly to the native state. This folding transition is accelerated by urea and increased temperature and slowed by increased Mg(2+) concentration, suggesting that the intermediate is misfolded and must undergo transient unfolding during refolding to the native state. CYT-19 and Mss116p accelerate refolding in an ATP-dependent manner, presumably by disrupting structure in the intermediate. These results highlight the tendency of RNAs to misfold, underscore the roles of CYT-19 and Mss116p as general RNA chaperones, and identify a refolding transition for further dissection of the roles of DEAD box proteins in RNA folding.
Collapse
Affiliation(s)
- Selma Sinan
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
24
|
Potratz JP, Campo MD, Wolf RZ, Lambowitz AM, Russell R. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo. J Mol Biol 2011; 411:661-79. [PMID: 21679717 PMCID: PMC3146569 DOI: 10.1016/j.jmb.2011.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/24/2011] [Accepted: 05/28/2011] [Indexed: 01/03/2023]
Abstract
The yeast DEAD-box protein Mss116p functions as a general RNA chaperone in splicing mitochondrial group I and group II introns. For most of its functions, Mss116p is thought to use ATP-dependent RNA unwinding to facilitate RNA structural transitions, but it has been suggested to assist in the folding of one group II intron (aI5γ) primarily by stabilizing a folding intermediate. Here we compare three aI5γ constructs: one with long exons, one with short exons, and a ribozyme construct lacking exons. The long exons result in slower splicing, suggesting that they misfold and/or stabilize nonnative intronic structures. Nevertheless, Mss116p acceleration of all three constructs depends on ATP and is inhibited by mutations that compromise RNA unwinding, suggesting similar mechanisms. Results of splicing assays and a new two-stage assay that separates ribozyme folding and catalysis indicate that maximal folding of all three constructs by Mss116p requires ATP-dependent RNA unwinding. ATP-independent activation is appreciable for only a subpopulation of the minimal ribozyme construct and not for constructs containing exons. As expected for a general RNA chaperone, Mss116p can also disrupt the native ribozyme, which can refold after Mss116p removal. Finally, using yeast strains with mitochondrial DNA containing only the single intron aI5γ, we show that Mss116p mutants promote splicing in vivo to degrees that correlate with their residual ATP-dependent RNA-unwinding activities. Together, our results indicate that, although DEAD-box proteins play multiple roles in RNA folding, the physiological function of Mss116p in aI5γ splicing includes a requirement for ATP-dependent local unfolding, allowing the conversion of nonfunctional RNA structure into functional RNA structure.
Collapse
Affiliation(s)
- Jeffrey P. Potratz
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Mark Del Campo
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Rachel Z. Wolf
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Alan M. Lambowitz
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Section of Molecular Genetics and Microbiology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Rick Russell
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
25
|
Wan Y, Russell R. Enhanced specificity against misfolding in a thermostable mutant of the Tetrahymena ribozyme. Biochemistry 2011; 50:864-74. [PMID: 21174447 DOI: 10.1021/bi101467q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structured RNAs encode native conformations that are more stable than the vast ensembles of alternative conformations, but how this specificity is evolved is incompletely understood. Here we show that a variant of the Tetrahymena group I intron ribozyme that was generated previously by in vitro selection for enhanced thermostability also displays modestly enhanced specificity against a stable misfolded structure that is globally similar to the native state, despite the absence of selective pressure to increase the energy gap between these structures. The enhanced specificity for native folding arises from mutations in two nucleotides that are close together in space in the native structure, and additional experiments show that these two mutations do not affect the stability of the misfolded conformation relative to the largely unstructured transition state ensemble for interconversion between the native and misfolded conformers. Thus, they selectively stabilize the native state, presumably by strengthening a local tertiary contact network that cannot form in the misfolded conformation. The stabilization is larger in the presence of the peripheral element P5abc, suggesting that cooperative tertiary structure formation plays a key role in the enhanced stability. The increased specificity in the absence of explicit selection suggests that the large energy gap in the wild-type RNA may have arisen analogously, a consequence of selective pressure for stability of the functional structure. More generally, the structural rigidity and intricate networks of contacts in structured RNAs may allow them to evolve substantial structural specificity without explicit negative selection, even against closely related alternative structures.
Collapse
Affiliation(s)
- Yaqi Wan
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, United States
| | | |
Collapse
|
26
|
Abstract
RNAs and RNA-protein complexes (RNPs) traverse rugged energy landscapes as they fold to their native structures, and many continue to undergo conformational rearrangements as they function. Due to the inherent stability of local RNA structure, proteins are required to assist with RNA conformational transitions during initial folding and in exchange between functional structures. DEAD-box proteins are superfamily 2 RNA helicases that are ubiquitously involved in RNA-mediated processes. Some of these proteins use an ATP-dependent cycle of conformational changes to disrupt RNA structure nonprocessively, accelerating structural transitions of RNAs and RNPs in a manner that bears a strong resemblance to the activities of certain groups of protein chaperones. This review summarizes recent work using model substrates and tractable self-splicing intron RNAs, which has given new insights into how DEAD-box proteins promote RNA folding steps and conformational transitions, and it summarizes recent progress in identifying sites and mechanisms of DEAD-box protein activity within more complex cellular targets.
Collapse
Affiliation(s)
- Cynthia Pan
- Department of Chemistry and Biochemistry, University of Texas, Austin, TX, USA
| | | |
Collapse
|