1
|
Jiang Z, Lin Z, Gan Q, Wu P, Zhang X, Xiao Y, She Q, Ni J, Shen Y, Huang Q. The FHA domain protein ArnA functions as a global DNA damage response repressor in the hyperthermophilic archaeon Saccharolobus islandicus. mBio 2023; 14:e0094223. [PMID: 37389462 PMCID: PMC10470591 DOI: 10.1128/mbio.00942-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023] Open
Abstract
Forkhead-associated (FHA) domain proteins specifically recognize phosphorylated threonine via the FHA domain and are involved in signal transduction in various processes especially DNA damage response (DDR) and cell cycle regulation in eukaryotes. Although FHA domain proteins are found in prokaryotes, archaea, and bacteria, their functions are far less clear as compared to the eukaryotic counterparts, and it has not been studied whether archaeal FHA proteins play a role in DDR. Here, we have characterized an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) by genetic, biochemical, and transcriptomic approaches. We find that ΔSisarnA exhibits higher resistance to DNA damage agent 4-nitroquinoline 1-oxide (NQO). The transcription of ups genes, encoding the proteins for pili-mediated cell aggregation and cell survival after DDR, is elevated in ΔSisarnA. The interactions of SisArnA with two predicted partners, SisvWA1 (SisArnB) and SisvWA2 (designated as SisArnE), were enhanced by phosphorylation in vitro. ΔSisarnB displays higher resistance to NQO than the wild type. In addition, the interaction between SisArnA and SisArnB, which is reduced in the NQO-treated cells, is indispensable for DNA binding in vitro. These indicate that SisArnA and SisArnB work together to inhibit the expression of ups genes in vivo. Interestingly, ΔSisarnE is more sensitive to NQO than the wild type, and the interaction between SisArnA and SisArnE is strengthened after NQO treatment, suggesting a positive role of SisArnE in DDR. Finally, transcriptomic analysis reveals that SisArnA represses a number of genes, implying that archaea apply the FHA/phospho-peptide recognition module for extensive transcriptional regulation. IMPORTANCE Cellular adaption to diverse environmental stresses requires a signal sensor and transducer for cell survival. Protein phosphorylation and its recognition by forkhead-associated (FHA) domain proteins are widely used for signal transduction in eukaryotes. Although FHA proteins exist in archaea and bacteria, investigation of their functions, especially those in DNA damage response (DDR), is limited. Therefore, the evolution and functional conservation of FHA proteins in the three domains of life is still a mystery. Here, we find that an FHA protein from the hyperthermophilic Crenarchaeon Saccharolobus islandicus (SisArnA) represses the transcription of pili genes together with its phosphorylated partner SisArnB. SisArnA derepression facilitates DNA exchange and repair in the presence of DNA damage. The fact that more genes including a dozen of those involved in DDR are found to be regulated by SisArnA implies that the FHA/phosphorylation module may serve as an important signal transduction pathway for transcriptional regulation in archaeal DDR.
Collapse
Affiliation(s)
- Zhichao Jiang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zijia Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yuanxi Xiao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Kumar A, Karthikeyan S. Crystal structure of the MSMEG_4306 gene product from Mycobacterium smegmatis. Acta Crystallogr F Struct Biol Commun 2018; 74:166-173. [PMID: 29497021 PMCID: PMC5947703 DOI: 10.1107/s2053230x18002236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
The MSMEG_4306 gene from Mycobacterium smegmatis encodes a protein of unknown function with 242 amino-acid residues that contains a conserved zinc-ribbon domain at its C-terminus. Here, the crystal structure of MSMEG_4306 determined by the single-wavelength anomalous dispersion method using just one zinc ion co-purified with the protein is reported. The crystal structure of MSMEG_4306 shows a coiled-coil helix domain in the N-terminal region and a zinc-ribbon domain in the C-terminal region. A structural similarity search against the Protein Data Bank using MSMEG_4306 as a query revealed two similar structures, namely CT398 from Chlamydia trachomatis and HP0958 from Helicobacter pylori, although they share only ∼15% sequence identity with MSMEG_4306. Based on comparative analysis, it is predicted that MSMEG_4306 may be involved in secretion systems, possibly by interacting with multiple proteins or nucleic acids.
Collapse
Affiliation(s)
- Adarsh Kumar
- CSIR – Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160 036, India
| | - Subramanian Karthikeyan
- CSIR – Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160 036, India
| |
Collapse
|
3
|
Makarova KS, Koonin EV, Albers SV. Diversity and Evolution of Type IV pili Systems in Archaea. Front Microbiol 2016; 7:667. [PMID: 27199977 PMCID: PMC4858521 DOI: 10.3389/fmicb.2016.00667] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/21/2016] [Indexed: 12/25/2022] Open
Abstract
Many surface structures in archaea including various types of pili and the archaellum (archaeal flagellum) are homologous to bacterial type IV pili systems (T4P). The T4P consist of multiple proteins, often with poorly conserved sequences, complicating their identification in sequenced genomes. Here we report a comprehensive census of T4P encoded in archaeal genomes using sensitive methods for protein sequence comparison. This analysis confidently identifies as T4P components about 5000 archaeal gene products, 56% of which are currently annotated as hypothetical in public databases. Combining results of this analysis with a comprehensive comparison of genomic neighborhoods of the T4P, we present models of organization of 10 most abundant variants of archaeal T4P. In addition to the differentiation between major and minor pilins, these models include extra components, such as S-layer proteins, adhesins and other membrane and intracellular proteins. For most of these systems, dedicated major pilin families are identified including numerous stand alone major pilin genes of the PilA family. Evidence is presented that secretion ATPases of the T4P and cognate TadC proteins can interact with different pilin sets. Modular evolution of T4P results in combinatorial variability of these systems. Potential regulatory or modulating proteins for the T4P are identified including KaiC family ATPases, vWA domain-containing proteins and the associated MoxR/GvpN ATPase, TFIIB homologs and multiple unrelated transcription regulators some of which are associated specific T4P. Phylogenomic analysis suggests that at least one T4P system was present in the last common ancestor of the extant archaea. Multiple cases of horizontal transfer and lineage-specific duplication of T4P loci were detected. Generally, the T4P of the archaeal TACK superphylum are more diverse and evolve notably faster than those of euryarchaea. The abundance and enormous diversity of T4P in hyperthermophilic archaea present a major enigma. Apparently, fundamental aspects of the biology of hyperthermophiles remain to be elucidated.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine - National Institutes of Health Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine - National Institutes of Health Bethesda, MD, USA
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg Freiburg, Germany
| |
Collapse
|
4
|
Chen X, Sheng X, Sun X, Zhang Y, Jiang C, Li H, Ding S, Liu Y, Liu W, Li Z, Zhao C. Next-generation Sequencing Extends the Phenotypic Spectrum for LCA5 Mutations: Novel LCA5 Mutations in Cone Dystrophy. Sci Rep 2016; 6:24357. [PMID: 27067258 PMCID: PMC4828721 DOI: 10.1038/srep24357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/29/2016] [Indexed: 01/22/2023] Open
Abstract
We aim to characterize the clinical features and genetic causes for two affected siblings from a Chinese family with cone dystrophy (CD). Two patients and four unaffected family members were recruited and received complete ophthalmic examinations. Genomic DNA was isolated from the peripheral blood samples from all patients. Targeted next-generation sequencing (NGS) approach followed by intrafamilal cosegregation and in silico analyses were employed to determine the genetic defects. Ophthalmic evaluations finalized the clinical diagnosis of CD for the two patients in this family, both of whom presented macular atrophy with no remarkable changes in the peripheral retina. Comprehensive genetic screening approach revealed biallelic missense mutations in the Leber congenital amaurosis 5 (LCA5) gene, p.[Ala212Pro];[Tyr441Cys], as disease causative for this family. Both mutations were novel. The first substitution was predicted to eliminate a hydrogen bond and alter the tertiary structure of lebercilin, protein encoded by LCA5. We for the first time report novel biallelic LCA5 mutations in causing CD. Our study extends the phenotypic and genotypic spectrums for LCA5-associated retinopathies and better illustrates its genotype-phenotype correlations, which would help with better genetic diagnosis, prognosis, and personalized treatment for CD patients.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xunlun Sheng
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, Ningxia 750001, China
| | - Xiantao Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat Sen University, Guangzhou 510000, China
| | - Yuxin Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Chao Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Huiping Li
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, Ningxia 750001, China
| | - Sijia Ding
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yani Liu
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, Ningxia 750001, China
| | - Wenzhou Liu
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, Ningxia 750001, China
| | - Zili Li
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region, Ningxia 750001, China
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China.,Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
5
|
Barta ML, Battaile KP, Lovell S, Hefty PS. Hypothetical protein CT398 (CdsZ) interacts with σ(54) (RpoN)-holoenzyme and the type III secretion export apparatus in Chlamydia trachomatis. Protein Sci 2015; 24:1617-32. [PMID: 26173998 DOI: 10.1002/pro.2746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
A significant challenge to bacteriology is the relatively large proportion of proteins that lack sufficient sequence similarity to support functional annotation (i.e. hypothetical proteins). The aim of this study was to apply protein structural homology to gain insights into a candidate protein of unknown function (CT398) within the medically important, obligate intracellular bacterium Chlamydia trachomatis. C. trachomatis is a major human pathogen responsible for numerous infections throughout the world that can lead to blindness and infertility. A 2.12 Å crystal structure of hypothetical protein CT398 was determined that was comprised of N-terminal coiled-coil and C-terminal Zn-ribbon domains. The structure of CT398 displayed a high degree of structural similarity to FlgZ (Flagellar-associated zinc-ribbon domain protein) from Helicobacter pylori. This observation directed analyses of candidate protein partners of CT398, revealing interactions with two paralogous type III secretion system (T3SS) ATPase-regulators (CdsL and FliH) and the alternative sigma factor RpoN (σ(54) ). Furthermore, genetic introduction of a conditional expression, affinity-tagged construct into C. trachomatis enabled the purification of a CT398-RpoN-holoenzyme complex, suggesting a potential role for CT398 in modulating transcriptional activity during infection. The interactions reported here, in tandem with previous FlgZ studies in H. pylori, indicate that CT398 functions as a regulator of several key areas of chlamydial biology throughout the developmental cycle. Accordingly, we propose that CT398 be named CdsZ (Contact-dependent secretion-associated zinc-ribbon domain protein).
Collapse
Affiliation(s)
- Michael L Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, Illinois
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS, 66045
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, 66045
| |
Collapse
|
6
|
Pereira LE, Tsang J, Mrázek J, Hoover TR. The zinc-ribbon domain of Helicobacter pylori HP0958: requirement for RpoN accumulation and possible roles of homologs in other bacteria. MICROBIAL INFORMATICS AND EXPERIMENTATION 2014; 1:1-10. [PMID: 22408721 PMCID: PMC3372290 DOI: 10.1186/2042-5783-1-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Helicobacter pylori HP0958 protein (FlgZ) prevents the rapid turnover of RpoN (σ54), a transcription factor required for expression of several flagellar genes in H. pylori. FlgZ possesses a zinc-ribbon domain (DUF164) that contains two conserved CXXC motifs which coordinate a zinc ion and is thought to interact with nucleic acids or proteins. Two conserved cysteine residues in FlgZ (Cys-202 and Cys-223) were replaced with serine to assess their significance in FlgZ function. After confirming the importance of the CXXC motifs in the DUF164 domain of FlgZ, the distribution of DUF164 proteins and RpoN homologs in other bacteria was examined to determine if a correlation existed for the concurrence of the two proteins. Results Levels of RpoN were greatly reduced in H. pylori strains that expressed the FlgZC202S or FlgZC223S variants. The FlgZC202S variant, but not the FlgZC223S variant, accumulated at levels similar to the wild-type protein. DUF164 proteins are not universally distributed and appear to be absent in several major bacterial taxa, including Cyanobacteria as well as Alpha-, Beta- and Gammaproteobacteria. With the exception of the Actinobacteria, members of which generally lack RpoN, genes encoding DUF164 proteins and RpoN are frequently found in the same genome. Interestingly, many of the DUF164 proteins in Actinobacteria and Bacteroidetes lack most or even all of the conserved cysteine residues. Conclusions These findings suggest the importance of the zinc-ribbon domain of FlgZ in protecting RpoN from turnover. Since many bacteria that possess a DUF164 protein also contain RpoN, DUF164 proteins may have roles in RpoN protection or function in other bacteria.
Collapse
Affiliation(s)
- Lara E Pereira
- Emory Vaccine Center, 954 Gatewood Road, Emory University, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
7
|
Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1. PLoS One 2012; 7:e46112. [PMID: 23056243 PMCID: PMC3466242 DOI: 10.1371/journal.pone.0046112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/28/2012] [Indexed: 12/11/2022] Open
Abstract
In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.
Collapse
|
8
|
Lertsethtakarn P, Ottemann KM, Hendrixson DR. Motility and chemotaxis in Campylobacter and Helicobacter . Annu Rev Microbiol 2012; 65:389-410. [PMID: 21939377 DOI: 10.1146/annurev-micro-090110-102908] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flagellar motility of Campylobacter jejuni and Helicobacter pylori influences host colonization by promoting migration through viscous milieus such as gastrointestinal mucus. This review explores mechanisms C. jejuni and H. pylori employ to control flagellar biosynthesis and chemotactic responses. These microbes tightly control the activities of σ(54) and σ(28) to mediate ordered flagellar gene expression. In addition to phase-variable and posttranslational mechanisms, flagellar biosynthesis is regulated spatially and numerically so that only a certain number of organelles are placed at polar sites. To mediate chemotaxis, C. jejuni and H. pylori combine basic chemotaxis signal transduction components with several accessory proteins. H. pylori is unusual in that it lacks a methylation-based adaptation system and produces multiple CheV coupling proteins. Chemoreceptors in these bacteria contain nonconserved ligand binding domains, with several chemoreceptors matched to environmental signals. Together, these mechanisms allow for swimming motility that is essential for colonization.
Collapse
Affiliation(s)
- Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
9
|
Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods Mol Biol 2011; 857:107-36. [PMID: 22323219 DOI: 10.1007/978-1-61779-588-6_5] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of applications. Since the usefulness of a model for specific application is determined by its accuracy, model quality estimation is an essential component of protein structure prediction. Comparative protein modeling has become a routine approach in many areas of life science research since fully automated modeling systems allow also nonexperts to build reliable models. In this chapter, we describe practical approaches for automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.
Collapse
|