1
|
Ahmad N, Sharma P, Sharma S, Singh TP. Structure of a novel form of phosphopantetheine adenylyltransferase from Klebsiella pneumoniae at 2.59 Å resolution. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:147-157. [PMID: 38456905 DOI: 10.1007/s00249-024-01703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Phosphopantetheine adenylyltransferase (EC. 2.7.7.3, PPAT) catalyzes the penultimate step of the multistep reaction in the coenzyme A (CoA) biosynthesis pathway. In this step, an adenylyl group from adenosine triphosphate (ATP) is transferred to 4'-phosphopantetheine (PNS) yielding 3'-dephospho-coenzyme A (dpCoA) and pyrophosphate (PPi). PPAT from strain C3 of Klebsiella pneumoniae (KpPPAT) was cloned, expressed and purified. It was crystallized using 0.1 M HEPES buffer and PEG10000 at pH 7.5. The crystals belonged to tetragonal space group P41212 with cell dimensions of a = b = 72.82 Å and c = 200.37 Å. The structure was determined using the molecular replacement method and refined to values of 0.208 and 0.255 for Rcryst and Rfree factors, respectively. The structure determination showed the presence of three crystallographically independent molecules A, B and C in the asymmetric unit. The molecules A and B are observed in the form of a dimer in the asymmetric unit while molecule C belongs to the second dimer whose partner is related by crystallographic twofold symmetry. The polypeptide chain of KpPPAT folds into a β/α structure. The conformations of the side chains of several residues in the substrate binding site in KpPPAT are significantly different from those reported in other PPATs. As a result, the modes of binding of substrates, phosphopantetheine (PNS) and adenosine triphosphate (ATP) differ considerably. The binding studies using fluorescence spectroscopy indicated a KD value of 3.45 × 10-4 M for ATP which is significantly lower than the corresponding values reported for PPAT from other species.
Collapse
Affiliation(s)
- Nabeel Ahmad
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
2
|
El Bakali J, Blaszczyk M, Evans JC, Boland JA, McCarthy WJ, Fathoni I, Dias MVB, Johnson EO, Coyne AG, Mizrahi V, Blundell TL, Abell C, Spry C. Chemical Validation of Mycobacterium tuberculosis Phosphopantetheine Adenylyltransferase Using Fragment Linking and CRISPR Interference. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202300221. [PMID: 38515507 PMCID: PMC10952327 DOI: 10.1002/ange.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 02/11/2023]
Abstract
The coenzyme A (CoA) biosynthesis pathway has attracted attention as a potential target for much-needed novel antimicrobial drugs, including for the treatment of tuberculosis (TB), the lethal disease caused by Mycobacterium tuberculosis (Mtb). Seeking to identify inhibitors of Mtb phosphopantetheine adenylyltransferase (MtbPPAT), the enzyme that catalyses the penultimate step in CoA biosynthesis, we performed a fragment screen. In doing so, we discovered three series of fragments that occupy distinct regions of the MtbPPAT active site, presenting a unique opportunity for fragment linking. Here we show how, guided by X-ray crystal structures, we could link weakly-binding fragments to produce an active site binder with a K D <20 μM and on-target anti-Mtb activity, as demonstrated using CRISPR interference. This study represents a big step toward validating MtbPPAT as a potential drug target and designing a MtbPPAT-targeting anti-TB drug.
Collapse
Affiliation(s)
- Jamal El Bakali
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: Univ. LilleInserm, CHU LilleUMR-S 1172-LiNC-Lille Neuroscience & Cognition59000LilleFrance
| | - Michal Blaszczyk
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
- Present address: Cambridge Institute of Therapeutic Immunology and Infectious DiseaseDepartment of MedicineUniversity of CambridgePuddicombe WayCB2 0AWCambridgeUK
| | - Joanna C. Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research UnitDST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine and Department of PathologyFaculty of Health SciencesUniversity of Cape TownAnzio RoadCape Town, Observatory7925South Africa
- Systems Chemical Biology of Infection and Resistance LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Jennifer A. Boland
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - William J. McCarthy
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: Molecular Structure of Cell Signaling LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Imam Fathoni
- Research School of BiologyThe Australian National UniversityLinnaeus WayACT2601Australia
| | - Marcio V. B. Dias
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
- Present addresses: Department of MicrobiologyInstitute of Biomedical ScienceUniversity of São Paulo (Brazil) and Department of ChemistryUniversity of WarwickUK
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Anthony G. Coyne
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research UnitDST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine and Department of PathologyFaculty of Health SciencesUniversity of Cape TownAnzio RoadCape Town, Observatory7925South Africa
| | - Tom L. Blundell
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - Chris Abell
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Christina Spry
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Research School of BiologyThe Australian National UniversityLinnaeus WayACT2601Australia
| |
Collapse
|
3
|
El Bakali J, Blaszczyk M, Evans JC, Boland JA, McCarthy WJ, Fathoni I, Dias MVB, Johnson EO, Coyne AG, Mizrahi V, Blundell TL, Abell C, Spry C. Chemical Validation of Mycobacterium tuberculosis Phosphopantetheine Adenylyltransferase Using Fragment Linking and CRISPR Interference. Angew Chem Int Ed Engl 2023; 62:e202300221. [PMID: 36757665 PMCID: PMC10947119 DOI: 10.1002/anie.202300221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
The coenzyme A (CoA) biosynthesis pathway has attracted attention as a potential target for much-needed novel antimicrobial drugs, including for the treatment of tuberculosis (TB), the lethal disease caused by Mycobacterium tuberculosis (Mtb). Seeking to identify inhibitors of Mtb phosphopantetheine adenylyltransferase (MtbPPAT), the enzyme that catalyses the penultimate step in CoA biosynthesis, we performed a fragment screen. In doing so, we discovered three series of fragments that occupy distinct regions of the MtbPPAT active site, presenting a unique opportunity for fragment linking. Here we show how, guided by X-ray crystal structures, we could link weakly-binding fragments to produce an active site binder with a KD <20 μM and on-target anti-Mtb activity, as demonstrated using CRISPR interference. This study represents a big step toward validating MtbPPAT as a potential drug target and designing a MtbPPAT-targeting anti-TB drug.
Collapse
Affiliation(s)
- Jamal El Bakali
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: Univ. LilleInserm, CHU LilleUMR-S 1172-LiNC-Lille Neuroscience & Cognition59000LilleFrance
| | - Michal Blaszczyk
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
- Present address: Cambridge Institute of Therapeutic Immunology and Infectious DiseaseDepartment of MedicineUniversity of CambridgePuddicombe WayCB2 0AWCambridgeUK
| | - Joanna C. Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research UnitDST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine and Department of PathologyFaculty of Health SciencesUniversity of Cape TownAnzio RoadCape Town, Observatory7925South Africa
- Systems Chemical Biology of Infection and Resistance LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Jennifer A. Boland
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - William J. McCarthy
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Present address: Molecular Structure of Cell Signaling LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Imam Fathoni
- Research School of BiologyThe Australian National UniversityLinnaeus WayACT2601Australia
| | - Marcio V. B. Dias
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
- Present addresses: Department of MicrobiologyInstitute of Biomedical ScienceUniversity of São Paulo (Brazil) and Department of ChemistryUniversity of WarwickUK
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance LaboratoryThe Francis Crick Institute1 Midland RoadLondonNW1 1ATUK
| | - Anthony G. Coyne
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research UnitDST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in AfricaInstitute of Infectious Disease and Molecular Medicine and Department of PathologyFaculty of Health SciencesUniversity of Cape TownAnzio RoadCape Town, Observatory7925South Africa
| | - Tom L. Blundell
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCambridgeCB2 1GAUK
| | - Chris Abell
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Christina Spry
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Research School of BiologyThe Australian National UniversityLinnaeus WayACT2601Australia
| |
Collapse
|
4
|
Evans JC, Murugesan D, Post JM, Mendes V, Wang Z, Nahiyaan N, Lynch SL, Thompson S, Green SR, Ray PC, Hess J, Spry C, Coyne AG, Abell C, Boshoff HIM, Wyatt PG, Rhee KY, Blundell TL, Barry CE, Mizrahi V. Targeting Mycobacterium tuberculosis CoaBC through Chemical Inhibition of 4'-Phosphopantothenoyl-l-cysteine Synthetase (CoaB) Activity. ACS Infect Dis 2021; 7:1666-1679. [PMID: 33939919 PMCID: PMC8205227 DOI: 10.1021/acsinfecdis.0c00904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.
Collapse
Affiliation(s)
- Joanna C. Evans
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Dinakaran Murugesan
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - John M. Post
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Vitor Mendes
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Zhe Wang
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Navid Nahiyaan
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Sasha L. Lynch
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Stephen Thompson
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Simon R. Green
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Peter C. Ray
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Jeannine Hess
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christina Spry
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anthony G. Coyne
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chris Abell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Paul G. Wyatt
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Kyu Y. Rhee
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Tom L. Blundell
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Clifton E. Barry
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Valerie Mizrahi
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
5
|
Mendes V, Green SR, Evans JC, Hess J, Blaszczyk M, Spry C, Bryant O, Cory-Wright J, Chan DSH, Torres PHM, Wang Z, Nahiyaan N, O’Neill S, Damerow S, Post J, Bayliss T, Lynch SL, Coyne AG, Ray PC, Abell C, Rhee KY, Boshoff HIM, Barry CE, Mizrahi V, Wyatt PG, Blundell TL. Inhibiting Mycobacterium tuberculosis CoaBC by targeting an allosteric site. Nat Commun 2021; 12:143. [PMID: 33420031 PMCID: PMC7794376 DOI: 10.1038/s41467-020-20224-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 11/18/2020] [Indexed: 02/02/2023] Open
Abstract
Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.
Collapse
Affiliation(s)
- Vitor Mendes
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Simon R. Green
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Joanna C. Evans
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Jeannine Hess
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Michal Blaszczyk
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Christina Spry
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Owain Bryant
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - James Cory-Wright
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Daniel S-H. Chan
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Pedro H. M. Torres
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - Zhe Wang
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Navid Nahiyaan
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Sandra O’Neill
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Sebastian Damerow
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - John Post
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Tracy Bayliss
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Sasha L. Lynch
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Anthony G. Coyne
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Peter C. Ray
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Chris Abell
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Kyu Y. Rhee
- grid.5386.8000000041936877XDivision of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Helena I. M. Boshoff
- grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Clifton E. Barry
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa ,grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Valerie Mizrahi
- grid.7836.a0000 0004 1937 1151MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Paul G. Wyatt
- grid.8241.f0000 0004 0397 2876Drug Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH Scotland UK
| | - Tom L. Blundell
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| |
Collapse
|
6
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Gupta A, Sharma P, Singh TP, Sharma S. Phosphopantetheine Adenylyltransferase: A promising drug target to combat antibiotic resistance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140566. [PMID: 33271445 DOI: 10.1016/j.bbapap.2020.140566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/11/2023]
Abstract
Phosphopantetheine Adenylyltransferase (PPAT) is an enzyme that catalyzes the penultimate step in the biosynthesis of Coenzyme A (CoA), which is the active and physiologically functional form of dietary Vitamin B5. CoA serves as a cofactor for numerous metabolic reactions which makes it essential for cellular survival. This enzyme is also subject to feedback inhibition by CoA to maintain its cellular concentration. The steps of the CoA biosynthesis pathway remain conserved from prokaryotes to eukaryotes, with humans and pathogenic micro-organisms showing significant diversity on a sequence, structure and mechanistic level. This suggests that the development of selective inhibitors of microbial CoA biosynthesis should be possible using these enzymes as targets for drug development. Bacterial PPAT shows significant mechanistic difference from its human counterpart CoA synthase, which is a dual protein carrying the activity of both PPAT and next step in the pathway catalyzed by the enzyme Dephospho CoA kinase (DPCK). This review covers the detailed description of the mechanistic, structural and functional aspects of this enzyme. Also, all the attempts to design high efficiency inhibitors of this enzyme using the approach of structure based drug design have been discussed in detail. This comprehensive structural and functional discussion of PPAT will help in further exploiting it as a drug target.
Collapse
Affiliation(s)
- Akshita Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tej P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
8
|
Timofeev VI, Zhukhlistova NE, Kuranova IP. Crystal Packing of Phosphopantetheine Adenylyltransferase from Mycobacterium tuberculosis in Two Crystal Modifications. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Duncan D, Auclair K. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Arch Biochem Biophys 2019; 672:108069. [PMID: 31404525 DOI: 10.1016/j.abb.2019.108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
Prodrugs account for more than 5% of pharmaceuticals approved worldwide. Over the past decades several prodrug design strategies have been firmly established; however, only a few functional groups remain amenable to this approach. The aim of this overview is to highlight the use of coenzyme A (CoA) biosynthetic enzymes as a recently explored bioactivation scheme and provide information about its scope of utility. This emerging tool is likely to have a strong impact on future medicinal and biological studies as it offers promiscuity, orthogonal selectivity, and the capability of assembling exceptionally large molecules.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
10
|
Structural and binding studies of phosphopantetheine adenylyl transferase from Acinetobacter baumannii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:537-547. [DOI: 10.1016/j.bbapap.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 11/21/2022]
|
11
|
Thomas SE, Mendes V, Kim SY, Malhotra S, Ochoa-Montaño B, Blaszczyk M, Blundell TL. Structural Biology and the Design of New Therapeutics: From HIV and Cancer to Mycobacterial Infections: A Paper Dedicated to John Kendrew. J Mol Biol 2017; 429:2677-2693. [PMID: 28648615 DOI: 10.1016/j.jmb.2017.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Interest in applications of protein crystallography to medicine was evident, as the first high-resolution structures emerged in the 50s and 60s. In Cambridge, Max Perutz and John Kendrew sought to understand mutations in sickle cell and other genetic diseases related to hemoglobin, while in Oxford, the group of Dorothy Hodgkin became interested in long-lasting zinc-insulin crystals for treatment of diabetes and later considered insulin redesign, as synthetic insulins became possible. The use of protein crystallography in structure-guided drug discovery emerged as enzyme structures allowed the identification of potential inhibitor-binding sites and optimization of interactions of hits using the structure of the target protein. Early examples of this approach were the use of the structure of renin to design antihypertensives and the structure of HIV protease in design of AIDS antivirals. More recently, use of structure-guided design with fragment-based drug discovery, which reduces the size of screening libraries by decreasing complexity, has improved ligand efficiency in drug design and has been used to progress three oncology drugs through clinical trials to FDA approval. We exemplify current developments in structure-guided target identification and fragment-based lead discovery with efforts to develop new antimicrobials for mycobacterial infections.
Collapse
Affiliation(s)
- Sherine E Thomas
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - So Yeon Kim
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Bernardo Ochoa-Montaño
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK.
| |
Collapse
|
12
|
Chatterjee R, Mondal A, Basu A, Datta S. Transition of phosphopantetheine adenylyltransferase from catalytic to allosteric state is characterized by ternary complex formation in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:773-86. [DOI: 10.1016/j.bbapap.2016.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/02/2016] [Accepted: 03/28/2016] [Indexed: 01/28/2023]
|
13
|
Timofeev VI, Chupova LA, Esipov RS, Kuranova IP. Crystallization and preliminary X-ray diffraction study of phosphopantetheine adenylyltransferase from M. tuberculosis crystallizing in space group P32. CRYSTALLOGR REP+ 2015. [DOI: 10.1134/s106377451505017x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Serrano A, Sebastián M, Arilla-Luna S, Baquedano S, Pallarés MC, Lostao A, Herguedas B, Velázquez-Campoy A, Martínez-Júlvez M, Medina M. Quaternary organization in a bifunctional prokaryotic FAD synthetase: Involvement of an arginine at its adenylyltransferase module on the riboflavin kinase activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:897-906. [DOI: 10.1016/j.bbapap.2015.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/11/2015] [Accepted: 03/15/2015] [Indexed: 01/14/2023]
|
15
|
Cheng CS, Jia KF, Chen T, Chang SY, Lin MS, Yin HS. Experimentally validated novel inhibitors of Helicobacter pylori phosphopantetheine adenylyltransferase discovered by virtual high-throughput screening. PLoS One 2013; 8:e74271. [PMID: 24040220 PMCID: PMC3764209 DOI: 10.1371/journal.pone.0074271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022] Open
Abstract
Helicobacter pylori is a major etiologic agent associated with the development and maintenance of human gastritis. The goal of this study was to develop novel antibiotics against H. pylori, and we thus targeted H. pylori phosphopantetheine adenylyltransferase (HpPPAT). PPAT catalyzes the penultimate step in coenzyme A biosynthesis. Its inactivation effectively prevents bacterial viability, making it an attractive target for antibacterial drug discovery. We employed virtual high-throughput screening and the HpPPAT crystal structure to identify compounds in the PubChem database that might act as inhibitors of HpPPAT. d-amethopterin is a potential inhibitor for blocking HpPPAT activity and suppressing H. pylori viability. Following treatment with d-amethopterin, H. pylori exhibited morphological characteristics associated with cell death. d-amethopterin is a mixed inhibitor of HpPPAT activity; it simultaneously occupies the HpPPAT 4'-phosphopantetheine- and ATP-binding sites. Its binding affinity is in the micromolar range, implying that it is sufficiently potent to serve as a lead compound in subsequent drug development. Characterization of the d-amethopterin and HpPPAT interaction network in a docked model will allow us to initiate rational drug optimization to improve the inhibitory efficacy of d-amethopterin. We anticipate that novel, potent, and selective HpPPAT inhibitors will emerge for the treatment of H. pylori infection.
Collapse
Affiliation(s)
- Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Fan Jia
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shun-Ya Chang
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Hsien-Sheng Yin
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Nakamura T, Pluskal T, Nakaseko Y, Yanagida M. Impaired coenzyme A synthesis in fission yeast causes defective mitosis, quiescence-exit failure, histone hypoacetylation and fragile DNA. Open Biol 2013; 2:120117. [PMID: 23091701 PMCID: PMC3472395 DOI: 10.1098/rsob.120117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/02/2022] Open
Abstract
Biosynthesis of coenzyme A (CoA) requires a five-step process using pantothenate and cysteine in the fission yeast Schizosaccharomyces pombe. CoA contains a thiol (SH) group, which reacts with carboxylic acid to form thioesters, giving rise to acyl-activated CoAs such as acetyl-CoA. Acetyl-CoA is essential for energy metabolism and protein acetylation, and, in higher eukaryotes, for the production of neurotransmitters. We isolated a novel S. pombe temperature-sensitive strain ppc1-537 mutated in the catalytic region of phosphopantothenoylcysteine synthetase (designated Ppc1), which is essential for CoA synthesis. The mutant becomes auxotrophic to pantothenate at permissive temperature, displaying greatly decreased levels of CoA, acetyl-CoA and histone acetylation. Moreover, ppc1-537 mutant cells failed to restore proliferation from quiescence. Ppc1 is thus the product of a super-housekeeping gene. The ppc1-537 mutant showed combined synthetic lethal defects with five of six histone deacetylase mutants, whereas sir2 deletion exceptionally rescued the ppc1-537 phenotype. In synchronous cultures, ppc1-537 cells can proceed to the S phase, but lose viability during mitosis failing in sister centromere/kinetochore segregation and nuclear division. Additionally, double-strand break repair is defective in the ppc1-537 mutant, producing fragile broken DNA, probably owing to diminished histone acetylation. The CoA-supported metabolism thus controls the state of chromosome DNA.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Okinawa Institute of Science and Technology Graduate University, Tancha 1919-1, Onna, Okinawa 904-0495, Japan
| | | | | | | |
Collapse
|
17
|
Timofeev V, Smirnova E, Chupova L, Esipov R, Kuranova I. X-ray study of the conformational changes in the molecule of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis during the catalyzed reaction. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1660-70. [PMID: 23151631 DOI: 10.1107/s0907444912040206] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 09/22/2012] [Indexed: 11/11/2022]
Abstract
Structures of recombinant phosphopantetheine adenylyltransferase (PPAT) from Mycobacterium tuberculosis (PPATMt) in the apo form and in complex with the substrate ATP were determined at 1.62 and 1.70 Å resolution, respectively, using crystals grown in microgravity by the counter-diffusion method. The ATP molecule of the PPATMt-ATP complex was located with full occupancy in the active-site cavity. Comparison of the solved structures with previously determined structures of PPATMt complexed with the reaction product dephosphocoenzyme A (dPCoA) and the feedback inhibitor coenzyme A (CoA) was performed using superposition on C(α) atoms. The peculiarities of the arrangement of the ligands in the active-site cavity of PPATMt are described. The conformational states of the PPAT molecule in the consequent steps of the catalyzed reaction in the apo enzyme and the enzyme-substrate and enzyme-product complexes are characterized. It is shown that the binding of ATP and dPCoA induces the rearrangement of a short part of the polypeptide chain restricting the active-site cavity in the subunits of the hexameric enzyme molecule. The changes in the quaternary structure caused by this rearrangement are accompanied by a variation of the size of the inner water-filled channel which crosses the PPAT molecule along the threefold axis of the hexamer. The molecular mechanism of the observed changes is described.
Collapse
Affiliation(s)
- Vladimir Timofeev
- Laboratory of X-ray Analysis Methods and Synchrotron Radiation, Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, Moscow, Russian Federation.
| | | | | | | | | |
Collapse
|
18
|
Ambady A, Awasthy D, Yadav R, Basuthkar S, Seshadri K, Sharma U. Evaluation of CoA biosynthesis proteins of Mycobacterium tuberculosis as potential drug targets. Tuberculosis (Edinb) 2012; 92:521-8. [PMID: 22954585 DOI: 10.1016/j.tube.2012.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 01/05/2023]
Abstract
Coenzyme A biosynthesis pathway proteins are potential targets for developing inhibitors against bacteria including Mycobacterium tuberculosis. We have evaluated two enzymes in this pathway: phosphopantetheine adenylyltransferase (CoaD) and dephospho CoA kinase (CoaE) for essentiality and selectivity. Based on the previous transposon mutagenesis studies, coaD had been predicted to be a non-essential gene in M. tuberculosis. Our bioinformatics analysis showed that there is no other functional homolog of this enzyme in M. tuberculosis, which suggests that coaD should be an essential gene. In order to get an unambiguous answer on the essentiality of coaD, we attempted inactivation of coaD in wild type and merodiploid backgrounds. It was found that coaD could only be inactivated in the presence of an additional gene copy, confirming it to be an essential gene. Using a similar approach we found that CoaE was also essential for the survival of M. tuberculosis. RT-PCR analysis showed that both coaD and coaE were transcribed in M. tuberculosis. Amino acids alignment and phylogenetic analysis showed CoaD to be distantly related to the human counterpart while CoaE was found to be relatively similar to the human enzyme. Analysis of CoaD and CoaE structures at molecular level allowed us to identify unique residues in the Mtb proteins, thus providing a selectivity handle. The essentiality and selectivity analysis combined with the published biochemical characterization of CoaD and CoaE makes them suitable targets for developing inhibitors against M. tuberculosis.
Collapse
Affiliation(s)
- Anisha Ambady
- AstraZeneca R & D, Infection iMed, Avishkar, Bellary Road, Hebbal, Bangalore, India
| | | | | | | | | | | |
Collapse
|
19
|
Cheng CS, Chen WT, Chen YW, Chen CH, Luo YC, Lyu PC, Yin HS. Substitution of asparagine 76 by a tyrosine residue induces domain swapping in Helicobacter pylori phosphopantetheine adenylyltransferase. J Biomol Struct Dyn 2012; 30:488-502. [PMID: 22694317 DOI: 10.1080/07391102.2012.682213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Phosphopantetheine adenylyltransferase (PPAT) catalyses the penultimate step in coenzyme A biosynthesis in bacteria and is therefore a candidate target for antibacterial drug development. We randomly mutated the residues in the Helicobacter pylori PPAT sequence to identify those that govern protein folding and ligand binding, and we describe the crystal structure of one of these mutants (I4V/N76Y) that contains the mutations I4 → V and N76 → Y. Unlike other PPATs, which are homohexamers, I4V/N76Y is a domain-swapped homotetramer. The protomer structure of this mutant is an open conformation in which the 65 C-terminal residues are intertwined with those of a neighbouring protomer. Despite structural differences between wild-type PPAT and IV4/N76Y, they had similar ligand-binding properties. ATP binding to these two proteins was enthalpically driven, whereas that for Escherichia coli PPAT is entropically driven. The structural packing of the subunits may affect the thermal denaturation of wild-type PPAT and I4V/N76Y. Mutations in hinge regions often induce domain swapping, i.e. the spatial exchange of portions of adjacent protomers, but residues 4 and 76 of H. pylori PPAT are not located in or near to the hinge region. However, one or both of these residues is responsible for the large conformational change in the C-terminal region of each protomer. To identify the residue(s) responsible, we constructed the single-site mutant, N76Y, and found a large displacement of α-helix 4, which indicated that its flexibility allowed the domain swap to occur.
Collapse
Affiliation(s)
- Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology, and College of Life Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
21
|
Yoon HJ, Kang JY, Mikami B, Lee HH, Suh SW. Crystal structure of phosphopantetheine adenylyltransferase from Enterococcus faecalis in the ligand-unbound state and in complex with ATP and pantetheine. Mol Cells 2011; 32:431-5. [PMID: 21912874 PMCID: PMC3887696 DOI: 10.1007/s10059-011-0102-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/21/2011] [Accepted: 08/23/2011] [Indexed: 11/29/2022] Open
Abstract
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the reversible transfer of an adenylyl group from ATP to 4'-phosphopantetheine (Ppant) to form dephospho-CoA (dPCoA) and pyrophosphate in the Coenzyme A (CoA) biosynthetic pathway. Importantly, PPATs are the potential target for developing antibiotics because bacterial and mammalian PPATs share little sequence homology. Previous structural studies revealed the mechanism of the recognizing substrates and products. The binding modes of ATP, ADP, Ppant, and dPCoA are highly similar in all known structures, whereas the binding modes of CoA or 3'-phosphoadenosine 5'-phosphosulfate binding are novel. To provide further structural information on ligand binding by PPATs, the crystal structure of PPAT from Enterococcus faecalis was solved in three forms: (i) apo form, (ii) binary complex with ATP, and (iii) binary complex with pantetheine. The substrate analog, pantetheine, binds to the active site in a similar manner to Ppant. The new structural information reported in this study including pantetheine as a potent inhibitor of PPAT will supplement the existing structural data and should be useful for structure-based antibacterial discovery against PPATs.
Collapse
Affiliation(s)
- Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji Yong Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| | - Bunzo Mikami
- Laboratory of Quality Design and Exploitation, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Kyoto 611-0011, Japan
| | - Hyung Ho Lee
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Korea
- Department of Integrative Biomedical Science and Engineering, Kookmin University, Seoul 136-702, Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
- Department of Biophysics and Chemical Biology, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
22
|
Wubben T, Mesecar AD. Structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase in complex with the feedback inhibitor CoA reveals only one active-site conformation. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:541-5. [PMID: 21543857 PMCID: PMC3087636 DOI: 10.1107/s1744309111010761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/23/2011] [Indexed: 11/10/2022]
Abstract
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in the coenzyme A (CoA) biosynthetic pathway, reversibly transferring an adenylyl group from ATP to 4'-phosphopantetheine to form dephosphocoenzyme A (dPCoA). To complement recent biochemical and structural studies on Mycobacterium tuberculosis PPAT (MtPPAT) and to provide further insight into the feedback regulation of MtPPAT by CoA, the X-ray crystal structure of the MtPPAT enzyme in complex with CoA was determined to 2.11 Å resolution. Unlike previous X-ray crystal structures of PPAT-CoA complexes from other bacteria, which showed two distinct CoA conformations bound to the active site, only one conformation of CoA is observed in the MtPPAT-CoA complex.
Collapse
Affiliation(s)
- T. Wubben
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - A. D. Mesecar
- Departments of Biological Sciences and Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|