1
|
Ligand Binding Properties of Odorant-Binding Protein OBP5 from Mus musculus. BIOLOGY 2022; 12:biology12010002. [PMID: 36671695 PMCID: PMC9855133 DOI: 10.3390/biology12010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Odorant-binding proteins (OBPs) are abundant soluble proteins secreted in the nasal mucus of a variety of species that are believed to be involved in the transport of odorants toward olfactory receptors. In this study, we report the functional characterization of mouse OBP5 (mOBP5). mOBP5 was recombinantly expressed as a hexahistidine-tagged protein in bacteria and purified using metal affinity chromatography. The oligomeric state and secondary structure composition of mOBP5 were investigated using gel filtration and circular dichroism spectroscopy. Fluorescent experiments revealed that mOBP5 interacts with the fluorescent probe N-phenyl naphthylamine (NPN) with micromolar affinity. Competitive binding experiments with 40 odorants indicated that mOBP5 binds a restricted number of odorants with good affinity. Isothermal titration calorimetry (ITC) confirmed that mOBP5 binds these compounds with association constants in the low micromolar range. Finally, protein homology modeling and molecular docking analysis indicated the amino acid residues of mOBP5 that determine its binding properties.
Collapse
|
2
|
Gonçalves F, Ribeiro A, Silva C, Cavaco-Paulo A. Biotechnological applications of mammalian odorant-binding proteins. Crit Rev Biotechnol 2021; 41:441-455. [PMID: 33541154 DOI: 10.1080/07388551.2020.1853672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The olfactory system of mammals allows the detection and discrimination of thousands of odors from the environment. In mammals, odorant-binding proteins (OBPs) are considered responsible to carry odorant molecules across the aqueous nasal mucus to the olfactory receptors (ORs). The three-dimensional structure of these proteins presents eight antiparallel β-sheets and a short α-helical segment close to the C terminus, typical of the lipocalins family. The great ability of OBPs to bind differentiated ligand molecules has driven the research to understand the mechanisms underlying the OBP function in nature and the development of advanced biotechnological applications. This review describes the role of mammalian OBPs in the olfactory perception, highlighting the influence of several key parameters (amino acids, temperature, ionic strength, and pH) in the formation of the OBP/ligand complex. The information from the literature regarding OBP structure, affinity, the strength of binding, and stability inspiring the development of several applications herein detailed.
Collapse
Affiliation(s)
- Filipa Gonçalves
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho - Campus de Gualtar, Braga, Portugal
| |
Collapse
|
3
|
Nakamura T, Noumi Y, Yamakawa H, Nakamura A, Wen D, Li X, Geng X, Sawada K, Iwasa T. Enhancement of the Olfactory Response by Lipocalin Cp-Lip1 in Newt Olfactory Receptor Cells: An Electrophysiological Study. Chem Senses 2020; 44:523-533. [PMID: 31346612 DOI: 10.1093/chemse/bjz048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we have detected the expression of 2 lipocalin genes (lp1 and lp2) in the olfactory epithelium of the Japanese newt Cynops pyrrhogaster. Recombinant proteins of these genes (Cp-Lip1 and Cp-Lip2, respectively) exhibited high affinities to various odorants, suggesting that they work like the odorant-binding proteins (OBPs). However, the physiological functions of OBP generally remain inconclusive. Here, we examined the effect of Cp-Lip1 on the electrophysiological responses of newt olfactory receptor cells. We observed that the electro-olfactogram induced by the vapor of an odorant with high affinity to Cp-Lip1 appeared to increase in amplitude when a tiny drop of Cp-Lip1 solution was dispersed over the olfactory epithelium. However, the analysis was difficult because of possible interference by intrinsic components in the nasal mucus. We subsequently adopted a mucus-free condition by using suction electrode recordings from isolated olfactory cells, in which impulses were generated by puffs of odorant solution. When various concentration (0-5 µM) of Cp-Lip1 was mixed with the stimulus solution of odorants highly affinitive to Cp-Lip1, the impulse frequency increased in a concentration-dependent manner. The increase by Cp-Lip1 was seen more evidently at lower concentration ranges of stimulus odorants. These results strongly suggest that Cp-Lip1 broadens the sensitivity of the olfactory cells toward the lower concentration of odorants, by which animals can detect very low concentration of odorants.
Collapse
Affiliation(s)
- Tadashi Nakamura
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan.,Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, Japan.,Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Yoshihiro Noumi
- Department of Applied Physics and Chemistry, The University of Electro-Communications, Tokyo, Japan
| | - Hiroyuki Yamakawa
- Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Atsushi Nakamura
- Department of Engineering Sciences, The University of Electro-Communications, Tokyo, Japan
| | - Durige Wen
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Xing Li
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Xiong Geng
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Ken Sawada
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| | - Tatsuo Iwasa
- Division of Engineering, Muroran Institute of Technology, Muroran, Japan
| |
Collapse
|
4
|
Abstract
Odorant binding proteins (OBPs) are small proteins, some of which bind odorants with high specificity. OBPs are relatively easy to produce and show a pronounced stability toward thermal and chemical denaturation. This high stability renders OBPs attractive candidates for the development of odorant detections systems. Unfortunately, binding of odorants is not easy to quantify due to lack of spectroscopic signals upon binding. Therefore, a possible approach to detect binding is to employ the shift in thermal or chemical stability upon ligand-protein interaction. Being a rather indirect approach, the experimental setup should be done with care. Here, the experimental results on stability of OBPs are summarized and issues which should be considered when performing stability experiments are discussed.
Collapse
Affiliation(s)
- Nadja Hellmann
- Department of Chemistry/Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Brulé M, Glaz M, Belloir C, Poirier N, Moitrier L, Neiers F, Briand L. Bacterial expression and purification of vertebrate odorant-binding proteins. Methods Enzymol 2020; 642:125-150. [PMID: 32828250 DOI: 10.1016/bs.mie.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vertebrate odorant-binding proteins (OBPs) are small soluble proteins abundantly secreted in the olfactory mucus of many animal species, including humans. Vertebrate OBPs reversibly bind odorant molecules with micromolar range affinities. Although their physiological role is not clearly understood, OBPs are proposed to carry airborne odorants toward membrane olfactory receptors through the nasal mucus. Measurements of odorant-OBP interactions and structural studies require a large amount of pure OBPs devoid of ligands. The bacterial expression system is the first choice for expressing vertebrate OBPs used in our laboratory and others. This system generally produces OBPs in large amounts without major problems. In this chapter, we describe the milligram-scale production of recombinant pig OBP1 (pOBP1) in E. coli. The different steps of expression and purification are presented and discussed. Protocols for secondary structures investigation by circular dichroism and binding properties of the recombinant protein are also provided. More generally, these approaches can be used to produce and characterize any vertebrate OBPs for use in functional and structural studies.
Collapse
Affiliation(s)
- Marine Brulé
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Margot Glaz
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Christine Belloir
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Nicolas Poirier
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Lucie Moitrier
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
6
|
Osadchuk LV, Osadchuk AV. Genotypic Peculiarities of Olfactory Communication in Male Laboratory Mice (Mus musculus) in a Social Competition Model. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019080120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
|
8
|
A computational microscope focused on the sense of smell. Biochimie 2014; 107 Pt A:3-10. [PMID: 24952349 DOI: 10.1016/j.biochi.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/07/2014] [Indexed: 11/24/2022]
Abstract
In this article, we review studies of the protagonists of the perception of smell focusing on Odorant-Binding Proteins and Olfactory Receptors. We notably put forward studies performed by means of molecular modeling, generally combined with experimental data. Those works clearly emphasize that computational approaches are now a force to reckon with. In the future, they will certainly be more and more used, notably in the framework of a computational microscope meant to observe how the laws of physics govern the biomolecular systems originating our sense of smell.
Collapse
|
9
|
Portman KL, Long J, Carr S, Briand L, Winzor DJ, Searle MS, Scott DJ. Enthalpy/entropy compensation effects from cavity desolvation underpin broad ligand binding selectivity for rat odorant binding protein 3. Biochemistry 2014; 53:2371-9. [PMID: 24665925 DOI: 10.1021/bi5002344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Evolution has produced proteins with exquisite ligand binding specificity, and manipulating this effect has been the basis for much of modern rational drug design. However, there are general classes of proteins with broader ligand selectivity linked to function, the origin of which is poorly understood. The odorant binding proteins (OBPs) sequester volatile molecules for transportation to the olfactory receptors. Rat OBP3, which we characterize by X-ray crystallography and NMR, binds a homologous series of aliphatic γ-lactones within its aromatic-rich hydrophobic pocket with remarkably little variation in affinity but extensive enthalpy/entropy compensation effects. We show that the binding energetics are modulated by two desolvation processes with quite different thermodynamic signatures. Ligand desolvation follows the classical hydrophobic effect; however, cavity desolvation is consistent with the liberation of "high energy" water molecules back into bulk solvent with a strong, but compensated, enthalpic contribution, which together underpin the origins of broad ligand binding selectivity.
Collapse
Affiliation(s)
- Katherine L Portman
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham , Sutton Bonington LE12 5RD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Heydel JM, Coelho A, Thiebaud N, Legendre A, Bon AML, Faure P, Neiers F, Artur Y, Golebiowski J, Briand L. Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events. Anat Rec (Hoboken) 2013; 296:1333-45. [DOI: 10.1002/ar.22735] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jean-Marie Heydel
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Alexandra Coelho
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Nicolas Thiebaud
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Arièle Legendre
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Anne-Marie Le Bon
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Philippe Faure
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Fabrice Neiers
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Yves Artur
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| | - Jérôme Golebiowski
- Université de Nice Sophia Antipolis; CNRS UMR7272, Institut de Chimie de Nice; F-06108 Nice Cedex 2 France
| | - Loïc Briand
- INRA UMR1324, CNRS UMR6265; Université de Bourgogne, Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
11
|
Yabuki M, Scott DJ, Briand L, Taylor AJ. Dynamics of odorant binding to thin aqueous films of rat-OBP3. Chem Senses 2011; 36:659-71. [PMID: 21536621 DOI: 10.1093/chemse/bjr037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Uptake, retention and release of 5 selected odorants (benzaldehyde, 2-methylpyrazine, 2-isobutyl-3-methoxypyrazine, 2-isobutylthiazole, and 2,4,5-trimethylthiazole) by recombinant rat odor-binding protein 3 (rat-OBP3) were measured in a model system under nonequilibrium conditions. Gaseous odorants were introduced into a 100 mm section of a polar deactivated capillary in which aqueous rat-OBP3 films were formed to mimic the olfactory epithelium (OE), and the change in the gas-phase concentration of the outflow gas was monitored in real time using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). The 5 odorants were chosen because they exhibited a broad range of dissociation constants with rat-OBP3 and because they were amenable to detection by on-line APCI-MS. All 5 odorants were quantitatively bound by rat-OBP3, which resulted in an effective concentration of the odorants in the aqueous layer (about 50 000-fold). Odorant release from the rat-OBP3-odorant complex into the gas phase showed that odorant release was governed by the dissociation constant of the complex and the flow rate of odorant-free air. When 2 odorants were introduced into the system, odorant uptake and release were influenced by the method of introduction and their relative affinities for the protein. Because rat-OBP3 exhibits typical odorant-binding characteristics, the results not only provide fundamental information on the kinetics of odorant mass transfer induced by the presence of OBPs in the olfactory mucus layer but also support the possibility that vertebrate OBPs may facilitate the accumulation of odorants in the OE.
Collapse
Affiliation(s)
- Masayuki Yabuki
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | | | | | |
Collapse
|
12
|
Baud O, Etter S, Spreafico M, Bordoli L, Schwede T, Vogel H, Pick H. The mouse eugenol odorant receptor: structural and functional plasticity of a broadly tuned odorant binding pocket. Biochemistry 2010; 50:843-53. [PMID: 21142015 DOI: 10.1021/bi1017396] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular interactions of odorants with their olfactory receptors (ORs) are of central importance for the ability of the mammalian olfactory system to detect and discriminate a vast variety of odors with a limited set of receptors. How a particular OR binds and distinguishes different odorant molecules remains largely unknown on a structural basis. Here we investigated this question for the mouse eugenol receptor (mOR-EG). By screening a large odorant library, we discovered a wide range of chemical structures activating the receptor in heterologous mammalian cells. Potent agonists comprise (i) benzene, (ii) cyclohexane, or (iii) polycyclic structures substituted with alcohol, aldehyde, keto, ether, or esterified carboxylic groups. To detect those amino acids within the receptor that are in contact with a particular bound odorant molecule, we investigated how distinct mOR-EG point mutants were activated by the different odorant agonists found for the wild-type receptor. We identified 11 amino acids as a part of the receptor's ligand binding pocket. Molecular modeling predicted 10 of these residues in transmembrane helices TM3-TM6 and one in the extracellular loop between TM2 and TM3. These amino acids participate in odorant binding with variable importance depending on the type of odorant, revealing functional "fingerprints" of ligand-receptor interactions.
Collapse
Affiliation(s)
- Olivia Baud
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|