1
|
Niu S, Guo S, Tewary SK, Wong SM. Effects of deletion at the TTTSTTT motif of Hibiscus latent Singapore virus coat protein on viral replication and long-distance movement. Virology 2019; 526:13-21. [PMID: 30317102 DOI: 10.1016/j.virol.2018.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 11/24/2022]
Abstract
Hibiscus latent Singapore virus (HLSV) mutant HLSV-22A could not express coat protein (CP) nor infect plants systemically (Niu et al., 2015). In this study, a serine- and threonine-rich motif TTTSTTT at the C-terminus of HLSV CP was found to be involved in virus replication and systemic movement. Deletion the last amino acid residue in HLSV-22A led to a more rapid virus replication, but with delayed systemic movement. When the RNA structure in TTTSTTT motif was altered, while keeping its amino acids unchanged, mutants HLSV-87A-mmSL and HLSV-22A-mmSL showed no change in viral replication. These results indicated that the unique TTTSTTT motif is associated with virus replication and systemic movement. Deletion but not substitution of amino acid(s) at the C-terminus of TTTSTTT motif of HLSV CP with short internal poly(A) track enhanced virus replication, whereas the virus with a longer internal poly(A) tract of 87 A showed delayed systemic movement (147 words).
Collapse
Affiliation(s)
- Shengniao Niu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Song Guo
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sunil Kumar Tewary
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China 215123.
| |
Collapse
|
2
|
Abstract
Determining high-resolution structures of proteins with helical symmetry can be challenging due to limitations in experimental data. In such instances, structure-based protein simulations driven by experimental data can provide a valuable approach for building models of helical assemblies. This chapter describes how the Rosetta macromolecular package can be used to model homomeric protein assemblies with helical symmetry in a range of modeling scenarios including energy refinement, symmetrical docking, comparative modeling, and de novo structure prediction. Data-guided structure modeling of helical assemblies with experimental information from electron density, X-ray fiber diffraction, solid-state NMR, and chemical cross-linking mass spectrometry is also described.
Collapse
Affiliation(s)
- Ingemar André
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone. Virus Genes 2016; 52:754-7. [PMID: 27139727 DOI: 10.1007/s11262-016-1344-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone.
Collapse
|
4
|
Clare DK, Pechnikova EV, Skurat EV, Makarov VV, Sokolova OS, Solovyev AG, Orlova EV. Novel Inter-Subunit Contacts in Barley Stripe Mosaic Virus Revealed by Cryo-Electron Microscopy. Structure 2015; 23:1815-1826. [PMID: 26278173 PMCID: PMC4597109 DOI: 10.1016/j.str.2015.06.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/27/2015] [Accepted: 06/21/2015] [Indexed: 11/30/2022]
Abstract
Barley stripe mosaic virus (BSMV, genus Hordeivirus) is a rod-shaped single-stranded RNA virus similar to viruses of the structurally characterized and well-studied genus Tobamovirus. Here we report the first high-resolution structure of BSMV at 4.1 Å obtained by cryo-electron microscopy. We discovered that BSMV forms two types of virion that differ in the number of coat protein (CP) subunits per turn and interactions between the CP subunits. While BSMV and tobacco mosaic virus CP subunits have a similar fold and interact with RNA using conserved residues, the axial contacts between the CP of these two viral groups are considerably different. BSMV CP subunits lack substantial axial contacts and are held together by a previously unobserved lateral contact formed at the virion surface via an interacting loop, which protrudes from the CP hydrophobic core to the adjacent CP subunit. These data provide an insight into diversity in structural organization of helical viruses.
Collapse
Affiliation(s)
- Daniel Kofi Clare
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Eugenia V Pechnikova
- A.V. Shubnikov Institute of Crystallography RAS, 59 Leninsky Avenue, 119333 Moscow, Russia
| | - Eugene V Skurat
- Department of Biology, Moscow State University, 1 Leninskie Gory, Building 12, 119991 Moscow, Russia
| | - Valentin V Makarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Olga S Sokolova
- A.V. Shubnikov Institute of Crystallography RAS, 59 Leninsky Avenue, 119333 Moscow, Russia; Department of Biology, Moscow State University, 1 Leninskie Gory, Building 12, 119991 Moscow, Russia
| | - Andrey G Solovyev
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Elena V Orlova
- Institute of Structural and Molecular Biology, UCL and Birkbeck, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
5
|
Potrzebowski W, André I. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement. Nat Methods 2015; 12:679-84. [DOI: 10.1038/nmeth.3399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/20/2015] [Indexed: 11/09/2022]
|
6
|
Niu S, Cao S, Huang LJ, Tan KCL, Wong SM. The length of an internal poly(A) tract of hibiscus latent Singapore virus is crucial for its replication. Virology 2015; 474:52-64. [PMID: 25463604 DOI: 10.1016/j.virol.2014.10.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/21/2014] [Accepted: 10/26/2014] [Indexed: 11/30/2022]
Abstract
Hibiscus latent Singapore virus (HLSV) mutants were constructed to study roles of its internal poly(A) tract (IPAT) in viral replication and coat protein (CP) expression. Shortening of the IPAT resulted in reduced HLSV RNA accumulation and its minimal length required for HLSV CP expression in plants was 24 nt. Disruption of a putative long range RNA-RNA interacting structure between 5' and 3' untranslated regions of HLSV-22A and -24A resulted in reduced viral RNA and undetectable CP accumulation in inoculated leaves. Replacement of the IPAT in HLSV with an upstream pseudoknot domain (UPD) of Tobacco mosaic virus (TMV) or insertion of the UPD to the immediate downstream of a 24 nt IPAT in HLSV resulted in drastically reduced viral RNA replication. Plants infected with a TMV mutant by replacement of the UPD with 43 nt IPAT exhibited milder mosaic symptoms without necrosis. We have proposed a model for HLSV replication.
Collapse
Affiliation(s)
- Shengniao Niu
- Department of Biological Sciences, National University of Singapore, Singapore 117543; Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, Hainan, China 571101
| | - Shishu Cao
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Li-Jing Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Kelvin Chee-Leong Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China 215123.
| |
Collapse
|
7
|
Wen Y, Lim GXY, Wong SM. Profiling of genes related to cross protection and competition for NbTOM1 by HLSV and TMV. PLoS One 2013; 8:e73725. [PMID: 24023899 PMCID: PMC3762752 DOI: 10.1371/journal.pone.0073725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022] Open
Abstract
Cross protection is the phenomenon through which a mild strain virus suppresses symptoms induced by a closely related severe strain virus in infected plants. Hibiscus latent Singapore virus (HLSV) and Tobacco mosaic virus (TMV) are species within the genus tobamovirus. HLSV can protect Nicotianabenthamiana against TMV-U1 strain, resulting in mild symptoms instead of severe systemic necrosis. The mechanism of cross protection between HLSV and TMV is unknown. In the past, some researchers suggest that the protecting virus strain might occupy virus-specific replication sites within a cell leaving no room for the challenge virus. Quantitative real-time RT-PCR was performed to detect viral RNA levels during cross protection. HLSV accumulation increased in cross protected plants compared with that of single HLSV infected plants, while TMV decreased in cross protected plants. This suggests that there is a competition for host factors between HLSV and TMV for replication. To investigate the mechanism under the cross protection between HLSV and TMV, microarray analysis was conducted to examine the transcriptional levels of global host genes during cross protection, using Tobacco Gene Expression Microarray, 4 x 44 k slides. The transcriptional level of some host genes corresponded to accumulation level of TMV. Some host genes were up-regulated only by HLSV. Tobamovirus multiplication gene 1 (TOM1), essential for tobamovirus multiplication, was involved in competition for replication by HLSV and TMV during cross protection. Both HLSV and TMV accumulation decreased when NbTOM1 was silenced. A large quantity of HLSV resulted in decreased TMV accumulation in HLSV+TMV (100:1) co-infection. These results indicate that host genes involved in the plant defense response and virus multiplication are up-regulated by challenge virus TMV but not by protecting virus HLSV during cross protection.
Collapse
Affiliation(s)
- Yi Wen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Grace Xiao-Yun Lim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, Singapore
- National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Speir JA, Johnson JE. Nucleic acid packaging in viruses. Curr Opin Struct Biol 2012; 22:65-71. [PMID: 22277169 DOI: 10.1016/j.sbi.2011.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 10/14/2022]
Abstract
We review recent literature describing protein nucleic acid interactions and nucleic acid organization in viruses. The nature of the viral genome determines its overall organization and its interactions with the capsid protein. Genomes composed of single strand (ss) RNA and DNA are highly flexible and, in some cases, adapt to the symmetry of the particle-forming protein to show repeated, sequence independent, nucleoprotein interactions. Genomes composed of double-stranded (ds) DNA do not interact strongly with the container due to their intrinsic stiffness, but form well-organized layers in virions. Assembly of virions with ssDNA and ssRNA genomes usually occurs through a cooperative condensation of the protein and genome, while dsDNA viruses usually pump the genome into a preformed capsid with a strong, virally encoded, molecular motor complex. We present data that suggest the packing density of ss genomes and ds genomes are comparable, but the latter exhibit far higher pressures due to their stiffness.
Collapse
Affiliation(s)
- Jeffrey A Speir
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | |
Collapse
|