1
|
Rajalingam D, Piszkin L, Rodriguez-Medina A, Peng JW. Bacterial Phosphorylation Suppresses Carbapenemase Activity of the Class-D β-Lactamase OXA-24/40 from Acinetobacter baumannii. J Am Chem Soc 2024; 146:28648-28652. [PMID: 39400700 DOI: 10.1021/jacs.4c11321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The resistance of Gram-negative bacteria to β-lactam antibiotics is mostly due to deactivation of the antibiotics by bacterial enzymes, β-lactamases. Disclosing the factors regulating β-lactamase activity is vital for developing therapies to combat multidrug-resistant pathogens, such as Acinetobacter baumannii. Recent A. baumannii studies have revealed post-translational phosphorylation of serine β-lactamases at the active site serine. However, the functional consequences of such phosphorylation are unclear. We have taken the first steps to define these consequences through studies of OXA-24/40, a carbapenem-hydrolyzing class D β-lactamase in A. baumannii. We generated OXA-24/40 phosphorylated at its active site serine, S81, and explored its effects via NMR and MS. Phosphorylation inhibits carbapenemase activity by altering the active site conformation and impeding the carboxylation of an active site lysine, a requirement for class D β-lactamase activity. The inhibition varies with the carbapenem side chain properties. Phosphorylation-induced chemical shift perturbations extend beyond the active site, suggesting allosteric effects. Our findings offer the first atomic-level insights into the functional consequences of serine phosphorylation of class D β-lactamases.
Collapse
Affiliation(s)
- Dharshika Rajalingam
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Luke Piszkin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Andrea Rodriguez-Medina
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Klamer ZL, June CM, Wawrzak Z, Taracila MA, Grey JA, Benn AMI, Russell CP, Bonomo RA, Powers RA, Leonard DA, Szarecka A. Structural and Dynamic Features of Acinetobacter baumannii OXA-66 β-Lactamase Explain Its Stability and Evolution of Novel Variants. J Mol Biol 2024; 436:168603. [PMID: 38729259 PMCID: PMC11198252 DOI: 10.1016/j.jmb.2024.168603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
OXA-66 is a member of the OXA-51 subfamily of class D β-lactamases native to the Acinetobacter genus that includes Acinetobacter baumannii, one of the ESKAPE pathogens and a major cause of drug-resistant nosocomial infections. Although both wild type OXA-66 and OXA-51 have low catalytic activity, they are ubiquitous in the Acinetobacter genomes. OXA-51 is also remarkably thermostable. In addition, newly emerging, single and double amino acid variants show increased activity against carbapenems, indicating that the OXA-51 subfamily is growing and gaining clinical significance. In this study, we used molecular dynamics simulations, X-ray crystallography, and thermal denaturation data to examine and compare the dynamics of OXA-66 wt and its gain-of-function variants: I129L (OXA-83), L167V (OXA-82), P130Q (OXA-109), P130A, and W222L (OXA-234). Our data indicate that OXA-66 wt also has a high melting temperature, and its remarkable stability is due to an extensive and rigid hydrophobic bridge formed by a number of residues around the active site and harbored by the three loops, P, Ω, and β5-β6. Compared to the WT enzyme, the mutants exhibit higher flexibility only in the loop regions, and are more stable than other robust carbapenemases, such as OXA-23 and OXA-24/40. All the mutants show increased rotational flexibility of residues I129 and W222, which allows carbapenems to bind. Overall, our data support the hypothesis that structural features in OXA-51 and OXA-66 promote evolution of multiple highly stable variants with increased clinical relevance in A. baumannii.
Collapse
Affiliation(s)
- Zachary L Klamer
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | - Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA
| | - Zdzislaw Wawrzak
- Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, IL, USA
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Joshua A Grey
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | - Alyssa M I Benn
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA
| | | | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA; Departments of Pharmacology, Biochemistry, and Molecular Biology and Microbiology, and Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA.
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA.
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA.
| | - Agnieszka Szarecka
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, USA.
| |
Collapse
|
3
|
Khattak AA, Qian J, Xu L, Tomah AA, Ibrahim E, Khan MZI, Ahmed T, Hatamleh AA, Al-Dosary MA, Ali HM, Li B. Precision drug design against Acidovorax oryzae: leveraging bioinformatics to combat rice brown stripe disease. Front Cell Infect Microbiol 2023; 13:1225285. [PMID: 37886665 PMCID: PMC10598866 DOI: 10.3389/fcimb.2023.1225285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023] Open
Abstract
Bacterial brown stripe disease caused by Acidovorax oryzae is a major threat to crop yields, and the current reliance on pesticides for control is unsustainable due to environmental pollution and resistance. To address this, bacterial-based ligands have been explored as a potential treatment solution. In this study, we developed a protein-protein interaction (PPI) network for A. oryzae by utilizing shared differentially expressed genes (DEGs) and the STRING database. Using a maximal clique centrality (MCC) approach through CytoHubba and Network Analyzer, we identified hub genes within the PPI network. We then analyzed the genomic data of the top 10 proteins, and further narrowed them down to 2 proteins by utilizing betweenness, closeness, degree, and eigenvector studies. Finally, we used molecular docking to screen 100 compounds against the final two proteins (guaA and metG), and Enfumafungin was selected as a potential treatment for bacterial resistance caused by A. oryzae based on their binding affinity and interaction energy. Our approach demonstrates the potential of utilizing bioinformatics and molecular docking to identify novel drug candidates for precision treatment of bacterial brown stripe disease caused by A. oryzae, paving the way for more targeted and sustainable control strategies. The efficacy of Enfumafungin in inhibiting the growth of A. oryzae strain RS-1 was investigated through both computational and wet lab methods. The models of the protein were built using the Swiss model, and their accuracy was confirmed via a Ramachandran plot. Additionally, Enfumafungin demonstrated potent inhibitory action against the bacterial strain, with an MIC of 100 µg/mL, reducing OD600 values by up to 91%. The effectiveness of Enfumafungin was further evidenced through agar well diffusion assays, which exhibited the highest zone of inhibition at 1.42 cm when the concentration of Enfumafungin was at 100 µg/mL. Moreover, Enfumafungin was also able to effectively reduce the biofilm of A. oryzae RS-1 in a concentration-dependent manner. The swarming motility of A. oryzae RS-1 was also found to be significantly inhibited by Enfumafungin. Further validation through TEM observation revealed that bacterial cells exposed to Enfumafungin displayed mostly red fluorescence, indicating destruction of the bacterial cell membrane.
Collapse
Affiliation(s)
- Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiahui Qian
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ali Athafah Tomah
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Plant Protection, College of Agriculture, University of Misan, AL-Amarah, Iraq
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza, Egypt
| | | | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Introvigne ML, Beardsley TJ, Fernando MC, Leonard DA, Wallar BJ, Rudin SD, Taracila MA, Rather PN, Colquhoun JM, Song S, Fini F, Hujer KM, Hujer AM, Prati F, Powers RA, Bonomo RA, Caselli E. Sulfonamidoboronic Acids as "Cross-Class" Inhibitors of an Expanded-Spectrum Class C Cephalosporinase, ADC-33, and a Class D Carbapenemase, OXA-24/40: Strategic Compound Design to Combat Resistance in Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:antibiotics12040644. [PMID: 37107006 PMCID: PMC10135033 DOI: 10.3390/antibiotics12040644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Acinetobacter baumannii is a Gram-negative organism listed as an urgent threat pathogen by the World Health Organization (WHO). Carbapenem-resistant A. baumannii (CRAB), especially, present therapeutic challenges due to complex mechanisms of resistance to β-lactams. One of the most important mechanisms is the production of β-lactamase enzymes capable of hydrolyzing β-lactam antibiotics. Co-expression of multiple classes of β-lactamases is present in CRAB; therefore, the design and synthesis of "cross-class" inhibitors is an important strategy to preserve the efficacy of currently available antibiotics. To identify new, nonclassical β-lactamase inhibitors, we previously identified a sulfonamidomethaneboronic acid CR167 active against Acinetobacter-derived class C β-lactamases (ADC-7). The compound demonstrated affinity for ADC-7 with a Ki = 160 nM and proved to be able to decrease MIC values of ceftazidime and cefotaxime in different bacterial strains. Herein, we describe the activity of CR167 against other β-lactamases in A. baumannii: the cefepime-hydrolysing class C extended-spectrum β-lactamase (ESAC) ADC-33 and the carbapenem-hydrolyzing OXA-24/40 (class D). These investigations demonstrate CR167 as a valuable cross-class (C and D) inhibitor, and the paper describes our attempts to further improve its activity. Five chiral analogues of CR167 were rationally designed and synthesized. The structures of OXA-24/40 and ADC-33 in complex with CR167 and select chiral analogues were obtained. The structure activity relationships (SARs) are highlighted, offering insights into the main determinants for cross-class C/D inhibitors and impetus for novel drug design.
Collapse
Affiliation(s)
- Maria Luisa Introvigne
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Trevor J Beardsley
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Micah C Fernando
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Bradley J Wallar
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Susan D Rudin
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Philip N Rather
- Research Service, Atlanta Veterans Medical Center, Decatur, GA 30033, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Jennifer M Colquhoun
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Shaina Song
- Research Service, Atlanta Veterans Medical Center, Decatur, GA 30033, USA
| | - Francesco Fini
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Kristine M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Fabio Prati
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Emilia Caselli
- Department of Life Sciences, Università di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
5
|
Avci FG, Tastekil I, Jaisi A, Ozbek Sarica P, Sariyar Akbulut B. A review on the mechanistic details of OXA enzymes of ESKAPE pathogens. Pathog Glob Health 2022; 117:219-234. [PMID: 35758005 PMCID: PMC10081068 DOI: 10.1080/20477724.2022.2088496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The production of β-lactamases is a prevalent mechanism that poses serious pressure on the control of bacterial resistance. Furthermore, the unavoidable and alarming increase in the transmission of bacteria producing extended-spectrum β-lactamases complicates treatment alternatives with existing drugs and/or approaches. Class D β-lactamases, designated as OXA enzymes, are characterized by their activity specifically towards oxacillins. They are widely distributed among the ESKAPE bugs that are associated with antibiotic resistance and life-threatening hospital infections. The inadequacy of current β-lactamase inhibitors for conventional treatments of 'OXA' mediated infections confirms the necessity of new approaches. Here, the focus is on the mechanistic details of OXA-10, OXA-23, and OXA-48, commonly found in highly virulent and antibiotic-resistant pathogens Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter spp. to describe their similarities and differences. Furthermore, this review contains a specific emphasis on structural and computational perspectives, which will be valuable to guide efforts in the design/discovery of a common single-molecule drug against ESKAPE pathogens.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Uskudar University, Uskudar, 34662, Turkey
| | - Ilgaz Tastekil
- Bioengineering Department, Marmara University, Kadikoy, 34722, Turkey
| | - Amit Jaisi
- Drug and Cosmetics Excellence Center, School of Pharmacy, Walailak University, 80160, Nakhon Si Thammarat, Thailand
| | | | | |
Collapse
|
6
|
Mitchell JM, June CM, Baggett VL, Lowe BC, Ruble JF, Bonomo RA, Leonard DA, Powers RA. Conformational flexibility in carbapenem hydrolysis drives substrate specificity of the class D carbapenemase OXA-24/40. J Biol Chem 2022; 298:102127. [PMID: 35709986 PMCID: PMC9293634 DOI: 10.1016/j.jbc.2022.102127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022] Open
Abstract
The evolution of multidrug resistance in Acinetobacter spp. increases the risk of our best antibiotics losing their efficacy. From a clinical perspective, the carbapenem-hydrolyzing class D β-lactamase subfamily present in Acinetobacter spp. is particularly concerning because of its ability to confer resistance to carbapenems. The kinetic profiles of class D β-lactamases exhibit variability in carbapenem hydrolysis, suggesting functional differences. To better understand the structure–function relationship between the carbapenem-hydrolyzing class D β-lactamase OXA-24/40 found in Acinetobacter baumannii and carbapenem substrates, we analyzed steady-state kinetics with the carbapenem antibiotics meropenem and ertapenem and determined the structures of complexes of OXA-24/40 bound to imipenem, meropenem, doripenem, and ertapenem, as well as the expanded-spectrum cephalosporin cefotaxime, using X-ray crystallography. We show that OXA-24/40 exhibits a preference for ertapenem compared with meropenem, imipenem, and doripenem, with an increase in catalytic efficiency of up to fourfold. We suggest that superposition of the nine OXA-24/40 complexes will better inform future inhibitor design efforts by providing insight into the complicated and varying ways in which carbapenems are selected and bound by class D β-lactamases.
Collapse
Affiliation(s)
- Joshua M Mitchell
- Department of Chemistry, Grand Valley State University, Allendale, MI
| | - Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, MI
| | - Vincent L Baggett
- Department of Chemistry, Grand Valley State University, Allendale, MI
| | - Beth C Lowe
- Department of Chemistry, Grand Valley State University, Allendale, MI
| | - James F Ruble
- Department of Chemistry, Grand Valley State University, Allendale, MI
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH; Departments of Medicine, Biochemistry, Molecular Biology and Microbiology, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH.
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, MI.
| |
Collapse
|
7
|
C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation. mBio 2022; 13:e0036722. [PMID: 35420470 PMCID: PMC9239083 DOI: 10.1128/mbio.00367-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to β-lactam antibiotics by producing β-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of β-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen’s production of carbapenem-hydrolyzing class D β-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-β-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections.
Collapse
|
8
|
Charzewski Ł, Krzyśko KA, Lesyng B. Exploring Covalent Docking Mechanisms of Boron-Based Inhibitors to Class A, C and D β-Lactamases Using Time-dependent Hybrid QM/MM Simulations. Front Mol Biosci 2021; 8:633181. [PMID: 34434961 PMCID: PMC8380965 DOI: 10.3389/fmolb.2021.633181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, molecular covalent docking has been extensively developed to design new classes of inhibitors that form chemical bonds with their biological targets. This strategy for the design of such inhibitors, in particular boron-based inhibitors, holds great promise for the vast family of β-lactamases produced, inter alia, by Gram-negative antibiotic-resistant bacteria. However, the description of covalent docking processes requires a quantum-mechanical approach, and so far, only a few studies of this type have been presented. This study accurately describes the covalent docking process between two model inhibitors - representing two large families of inhibitors based on boronic-acid and bicyclic boronate scaffolds, and three β-lactamases which belong to the A, C, and D classes. Molecular fragments containing boron can be converted from a neutral, trigonal, planar state with sp2 hybridization to the anionic, tetrahedral sp3 state in a process sometimes referred to as morphing. This study applies multi-scale modeling methods, in particular, the hybrid QM/MM approach which has predictive power reaching well beyond conventional molecular modeling. Time-dependent QM/MM simulations indicated several structural changes and geometric preferences, ultimately leading to covalent docking processes. With current computing technologies, this approach is not computationally expensive, can be used in standard molecular modeling and molecular design works, and can effectively support experimental research which should allow for a detailed understanding of complex processes important to molecular medicine. In particular, it can support the rational design of covalent boron-based inhibitors for β-lactamases as well as for many other enzyme systems of clinical relevance, including SARS-CoV-2 proteins.
Collapse
Affiliation(s)
| | | | - Bogdan Lesyng
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
VanPelt J, Stoffel S, Staude MW, Dempster K, Rose HA, Graney S, Graney E, Braynard S, Kovrigina E, Leonard DA, Peng JW. Arginine Modulates Carbapenem Deactivation by OXA-24/40 in Acinetobacter baumannii. J Mol Biol 2021; 433:167150. [PMID: 34271009 DOI: 10.1016/j.jmb.2021.167150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022]
Abstract
The resistance of Gram-negative bacteria to β-lactam antibiotics stems mainly from β-lactamase proteins that hydrolytically deactivate the β-lactams. Of particular concern are the β-lactamases that can deactivate a class of β-lactams known as carbapenems. Carbapenems are among the few anti-infectives that can treat multi-drug resistant bacterial infections. Revealing the mechanisms of their deactivation by β-lactamases is a necessary step for preserving their therapeutic value. Here, we present NMR investigations of OXA-24/40, a carbapenem-hydrolyzing Class D β-lactamase (CHDL) expressed in the gram-negative pathogen, Acinetobacter baumannii. Using rapid data acquisition methods, we were able to study the "real-time" deactivation of the carbapenem known as doripenem by OXA-24/40. Our results indicate that OXA-24/40 has two deactivation mechanisms: canonical hydrolytic cleavage, and a distinct mechanism that produces a β-lactone product that has weak affinity for the OXA-24/40 active site. The mechanisms issue from distinct active site environments poised either for hydrolysis or β-lactone formation. Mutagenesis reveals that R261, a conserved active site arginine, stabilizes the active site environment enabling β-lactone formation. Our results have implications not only for OXA-24/40, but the larger family of CHDLs now challenging clinical settings on a global scale.
Collapse
Affiliation(s)
- Jamie VanPelt
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shannon Stoffel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael W Staude
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kayla Dempster
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Heath A Rose
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sarah Graney
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erin Graney
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sara Braynard
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Elizaveta Kovrigina
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI 49401, USA
| | - Jeffrey W Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
10
|
Wang YC, Huang SW, Chiang MH, Lee IM, Kuo SC, Yang YS, Chiu CH, Su YS, Chen TL, Wang FD, Lee YT. In vitro and in vivo activities of imipenem combined with BLI-489 against class D β-lactamase-producing Acinetobacter baumannii. J Antimicrob Chemother 2021; 76:451-459. [PMID: 33057603 DOI: 10.1093/jac/dkaa421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND According to our preliminary study, BLI-489 has the potential to inhibit the hydrolysing activity of OXA-51-like β-lactamase produced by carbapenem-resistant Acinetobacter baumannii (CRAb). OBJECTIVES In the present study, the in vitro and in vivo activities of imipenem combined with BLI-489 against CRAb producing carbapenem-hydrolysing class D β-lactamases (CHDLs), namely OXA-23, OXA-24, OXA-51 and OXA-58, were determined. METHODS A chequerboard analysis of imipenem and BLI-489 was performed using 57 and 7 clinical CRAb isolates producing different CHDLs and MBLs, respectively. Four representative strains harbouring different CHDL genes were subjected to a time-kill assay to evaluate the synergistic effects. An in silico docking analysis was conducted to simulate the interactions between BLI-489 and the different families of CHDLs. The in vivo activities of this combination were assessed using a Caenorhabditis elegans survival assay and a mouse pneumonia model. RESULTS Chequerboard analysis showed that imipenem and BLI-489 had a synergistic effect on 14.3, 92.9, 100, 16.7 and 100% of MBL-, OXA-23-, OXA-24-like-, OXA-51-like- and OXA-58-producing CRAb isolates, respectively. In the time-kill assay, imipenem and BLI-489 showed synergy against OXA-24-like-, OXA-51-like- and OXA-58-, but not OXA-23-producing CRAb isolates after 24 h. The in silico docking analysis showed that BLI-489 could bind to the active sites of OXA-24 and OXA-58 to confer strong inhibition activity. The combination of imipenem and BLI-489 exhibited synergistic effects for the rescue of CRAb-infected C. elegans and mice. CONCLUSIONS Imipenem combined with BLI-489 has synergistic effects against CHDL-producing CRAb isolates.
Collapse
Affiliation(s)
- Yung-Chih Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chiang
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Hsiang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Shih Su
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Te-Li Chen
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
Antimicrobial Resistance Conferred by OXA-48 β-Lactamases: Towards a Detailed Mechanistic Understanding. Antimicrob Agents Chemother 2021; 65:AAC.00184-21. [PMID: 33753332 DOI: 10.1128/aac.00184-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OXA-48-type β-lactamases are now routinely encountered in bacterial infections caused by carbapenem-resistant Enterobacterales These enzymes are of high and growing clinical significance due to the importance of carbapenems in treatment of health care-associated infections by Gram-negative bacteria, the wide and increasing dissemination of OXA-48 enzymes on plasmids, and the challenges posed by their detection. OXA-48 confers resistance to penicillin (which is efficiently hydrolyzed) and carbapenem antibiotics (which is more slowly broken down). In addition to the parent enzyme, a growing array of variants of OXA-48 is now emerging. The spectrum of activity of these variants varies, with some hydrolyzing expanded-spectrum oxyimino-cephalosporins. The growth in importance and diversity of the OXA-48 group has motivated increasing numbers of studies that aim to elucidate the relationship between structure and specificity and establish the mechanistic basis for β-lactam turnover in this enzyme family. In this review, we collate recently published structural, kinetic, and mechanistic information on the interactions between clinically relevant β-lactam antibiotics and inhibitors and OXA-48 β-lactamases. Collectively, these studies are starting to form a detailed picture of the underlying bases for the differences in β-lactam specificity between OXA-48 variants and the consequent differences in resistance phenotype. We focus specifically on aspects of carbapenemase and cephalosporinase activities of OXA-48 β-lactamases and discuss β-lactamase inhibitor development in this context. Throughout the review, we also outline key open research questions for future investigation.
Collapse
|
12
|
Aertker KMJ, Chan HTH, Lohans CT, Schofield CJ. Analysis of β-lactone formation by clinically observed carbapenemases informs on a novel antibiotic resistance mechanism. J Biol Chem 2020; 295:16604-16613. [PMID: 32963107 PMCID: PMC7864059 DOI: 10.1074/jbc.ra120.014607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Indexed: 01/18/2023] Open
Abstract
An important mechanism of resistance to β-lactam antibiotics is via their β-lactamase-catalyzed hydrolysis. Recent work has shown that, in addition to the established hydrolysis products, the reaction of the class D nucleophilic serine β-lactamases (SBLs) with carbapenems also produces β-lactones. We report studies on the factors determining β-lactone formation by class D SBLs. We show that variations in hydrophobic residues at the active site of class D SBLs (i.e. Trp105, Val120, and Leu158, using OXA-48 numbering) impact on the relative levels of β-lactones and hydrolysis products formed. Some variants, i.e. the OXA-48 V120L and OXA-23 V128L variants, catalyze increased β-lactone formation compared with the WT enzymes. The results of kinetic and product studies reveal that variations of residues other than those directly involved in catalysis, including those arising from clinically observed mutations, can alter the reaction outcome of class D SBL catalysis. NMR studies show that some class D SBL variants catalyze formation of β-lactones from all clinically relevant carbapenems regardless of the presence or absence of a 1β-methyl substituent. Analysis of reported crystal structures for carbapenem-derived acyl-enzyme complexes reveals preferred conformations for hydrolysis and β-lactone formation. The observation of increased β-lactone formation by class D SBL variants, including the clinically observed carbapenemase OXA-48 V120L, supports the proposal that class D SBL-catalyzed rearrangement of β-lactams to β-lactones is important as a resistance mechanism.
Collapse
Affiliation(s)
| | - H T Henry Chan
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
13
|
Zong G, Zhong C, Fu J, Zhang Y, Zhang P, Zhang W, Xu Y, Cao G, Zhang R. The carbapenem resistance gene bla OXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19. Antimicrob Resist Infect Control 2020; 9:182. [PMID: 33168102 PMCID: PMC7653874 DOI: 10.1186/s13756-020-00832-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Carbapenem resistant Acinetobacter species have caused great difficulties in clinical therapy in the worldwide. Here we describe an Acinetobacter johnsonii M19 with a novel blaOXA-23 containing transposon Tn6681 on the conjugative plasmid pFM-M19 and the ability to transferand carbapenem resistance.
Methods A. johnsonii M19 was isolated under selection with 8 mg/L meropenem from hospital sewage, and the minimum inhibitory concentrations (MICs) for the representative carbapenems imipenem, meropenem and ertapenem were determined. The genome of A. johnsonii M19 was sequenced by PacBio RS II and Illumina HiSeq 4000 platforms. A homologous model of OXA-23 was generated, and molecular docking models with imipenem, meropenem and ertapenem were constructed by Discovery Studio 2.0. Type IV secretion system and conjugation elements were identified by the Pathosystems Resource Integration Center (PATRIC) server and the oriTfinder. Mating experiments were performed to evaluate transfer of OXA-23 to Escherichia coli 25DN. Results MICs of A. johnsonii M19 for imipenem, meropenem and ertapenem were 128 mg/L, 48 mg/L and 24 mg/L, respectively. Genome sequencing identified plasmid pFM-M19, which harbours the carbapenem resistance gene blaOXA-23 within the novel transposon Tn6681. Molecular docking analysis indicated that the elongated hydrophobic tunnel of OXA-23 provides a hydrophobic environment and that Lys-216, Thr-217, Met-221 and Arg-259 were the conserved amino acids bound to imipenem, meropenem and ertapenem. Furthermore, pFM-M19 could transfer blaOXA-23 to E. coli 25DN by conjugation, resulting in carbapenem-resistant transconjugants.
Conclusions Our investigation showed that A. johnsonii M19 is a source and disseminator of blaOXA-23 and carbapenem resistance. The ability to transfer blaOXA-23 to other species by the conjugative plasmid pFM-M19 raises the risk of spread of carbapenem resistance. Graphic abstract The carbapenem resistance gene blaOXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19.![]()
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jiafang Fu
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.,Key Lab for Biotech-Drugs of National Health Commission, Jinan, 250062, China
| | - Yu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Peipei Zhang
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, China.,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.,Key Lab for Biotech-Drugs of National Health Commission, Jinan, 250062, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guangxiang Cao
- Department of Epidemiology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250062, China. .,Shandong Medicinal Biotechnology Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Hujer AM, Hujer KM, Leonard DA, Powers RA, Wallar BJ, Mack AR, Taracila MA, Rather PN, Higgins PG, Prati F, Caselli E, Marshall SH, Clarke T, Greco C, Venepally P, Brinkac L, Kreiswirth BN, Fouts DE, Bonomo RA. A comprehensive and contemporary "snapshot" of β-lactamases in carbapenem resistant Acinetobacter baumannii. Diagn Microbiol Infect Dis 2020; 99:115242. [PMID: 33248392 PMCID: PMC7562987 DOI: 10.1016/j.diagmicrobio.2020.115242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 10/30/2022]
Abstract
Successful treatment of Acinetobacter baumannii infections require early and appropriate antimicrobial therapy. One of the first steps in this process is understanding which β-lactamase (bla) alleles are present and in what combinations. Thus, we performed WGS on 98 carbapenem-resistant A. baumannii (CR Ab). In most isolates, an acquired blaOXA carbapenemase was found in addition to the intrinsic blaOXA allele. The most commonly found allele was blaOXA-23 (n = 78/98). In some isolates, blaOXA-23 was found in addition to other carbapenemase alleles: blaOXA-82 (n = 12/78), blaOXA-72 (n = 2/78) and blaOXA-24/40 (n = 1/78). Surprisingly, 20% of isolates carried carbapenemases not routinely assayed for by rapid molecular diagnostic platforms, i.e., blaOXA-82 and blaOXA-172; all had ISAba1 elements. In 8 CR Ab, blaOXA-82 or blaOXA-172 was the only carbapenemase. Both blaOXA-24/40 and its variant blaOXA-72 were each found in 6/98 isolates. The most prevalent ADC variants were blaADC-30 (21%), blaADC-162 (21%), and blaADC-212 (26%). Complete combinations are reported.
Collapse
Affiliation(s)
- Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Kristine M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA
| | - Bradley J Wallar
- Department of Chemistry, Grand Valley State University, Allendale, MI, USA
| | - Andrew R Mack
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Magdalena A Taracila
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Philip N Rather
- Research Service, Atlanta Veterans Medical Center, Decatur, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
| | - Fabio Prati
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Emilia Caselli
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Steven H Marshall
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | | | | | | | | | - Barry N Kreiswirth
- Hackensack Meridian Health, Center for Discovery and Innovation, Nutley, NJ, USA
| | | | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Departments of Biochemistry, Pharmacology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA.
| | | |
Collapse
|
15
|
Ramachandran B, Jeyakanthan J, Lopes BS. Molecular docking, dynamics and free energy analyses of Acinetobacter baumannii OXA class enzymes with carbapenems investigating their hydrolytic mechanisms. J Med Microbiol 2020; 69:1062-1078. [PMID: 32773005 DOI: 10.1099/jmm.0.001233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction. Acinetobacter baumannii is a critical priority pathogen listed by the World Health Organization due to increasing levels of resistance to carbapenem classes of antibiotics. It causes wound and other nosocomial infections, which can be life-threatening. Hence, there is an urgent need for the development of new classes of antibiotics.Aim. To study the interaction of carabapenems with class D beta-lactamases (oxacillinases) and analyse drug resistance by studying enzyme-substrate complexes using modelling approaches as a means of establishing correlations with the phenotypic data.Methodology. The three-dimensional structures of carbapenems (doripenem, ertapenem, imipenem and meropenem) were obtained from DrugBank and screened against class D beta-lactamases. Further, the study was extended with their variants. The variants' structure was homology-modelled using the Schrödinger Prime module (Schrödinger LLC, NY, USA).Results. The first discovered intrinsic beta-lactamase of Acinetobacter baumannii, OXA-51, had a binding energy value of -40.984 kcal mol-1, whereas other OXA-51 variants, such as OXA-64, OXA-110 and OXA-111, have values of -60.638, -66.756 and -67.751 kcal mol-1, respectively. The free energy values of OXA-51 variants produced better results than those of other groups.Conclusions. Imipenem and meropenem showed MIC values of 2 and 8 µg ml-1, respectively against OXA-51 in earlier studies, indicating that these are the most effective drugs for treatment of A. baumannii infection. According to our results, OXA-51 is an active enzyme that shows better interactions and is capable of hydrolyzing carbapenems. When correlating the hydrogen-bonding interaction with MIC values, the predicted results are in good agreement and might provide initial insights into performing similar studies related to OXA variants or other antibiotic-enzyme-based studies.
Collapse
Affiliation(s)
- Balajee Ramachandran
- Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu, India
| | - Bruno S Lopes
- School of Medicine, Medical Sciences and Nutrition, 0:025 Polwarth building, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
16
|
Stewart NK, Bhattacharya M, Toth M, Smith CA, Vakulenko SB. A surface loop modulates activity of the Bacillus class D β-lactamases. J Struct Biol 2020; 211:107544. [PMID: 32512156 DOI: 10.1016/j.jsb.2020.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022]
Abstract
The expression of β-lactamases is a major mechanism of bacterial resistance to the β-lactam antibiotics. Four molecular classes of β-lactamases have been described (A, B, C and D), however until recently the class D enzymes were thought to exist only in Gram-negative bacteria. In the last few years, class D enzymes have been discovered in several species of Gram-positive microorganisms, such as Bacillus and Clostridia, and an investigation of their kinetic and structural properties has begun in earnest. Interestingly, it was observed that some species of Bacillus produce two distinct class D β-lactamases, one highly active and the other with only basal catalytic activity. Analysis of amino acid sequences of active (BPU-1 from Bacillus pumilus) and inactive (BSU-2 from Bacillus subtilis and BAT-2 from Bacillus atrophaeus) enzymes suggests that presence of three additional amino acid residues in one of the surface loops of inefficient β-lactamases may be responsible for their severely diminished activity. Our structural and docking studies show that the elongated loop of these enzymes severely restricts binding of substrates. Deletion of the three residues from the loops of BSU-2 and BAT-2 β-lactamases relieves the steric hindrance and results in a significant increase in the catalytic activity of the enzymes. These data show that this surface loop plays an important role in modulation of the catalytic activity of Bacillus class D β-lactamases.
Collapse
Affiliation(s)
- Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | | | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Clyde A Smith
- Department of Chemistry, Stanford University, Stanford, CA, USA; Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA, USA.
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
17
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|
18
|
Akhtar A, Pemberton OA, Chen Y. Structural Basis for Substrate Specificity and Carbapenemase Activity of OXA-48 Class D β-Lactamase. ACS Infect Dis 2020; 6:261-271. [PMID: 31872762 DOI: 10.1021/acsinfecdis.9b00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are a diverse family of enzymes that are rapidly becoming the predominant cause of bacterial resistance against β-lactam antibiotics in many regions of the world. OXA-48, an atypical member of CHDLs, is one of the most frequently observed in the clinic and exhibits a unique substrate profile. We applied X-ray crystallography to OXA-48 complexes with multiple β-lactam antibiotics to elucidate this enzyme's carbapenemase activity and its preference of imipenem over meropenem and other substrates such as cefotaxime. In particular, we obtained acyl-enzyme complexes of OXA-48 with imipenem, meropenem, faropenem, cefotaxime, and cefoxitin, and a product complex with imipenem. Importantly, the product complex captures a key reaction milestone with the newly generated carboxylate group still in the oxyanion hole, and represents the first such complex with a wild-type serine β-lactamase. A potential hydrogen bond is observed between the two carboxylate groups from the product and the carbamylated Lys73, representing the stage immediately after the breakage of the acyl-enzyme bond where the product carboxylate would be neutral. The placement of the product carboxylate also illustrates the approximate transient location of the deacylation water that has long eluded structural characterization in class D β-lactamases. Additionally, comparing the product complex with the acyl-enzyme intermediates provides new insights into the various mechanisms by which specific side chain groups hinder the access of the deacylation water to the acyl-enzyme linkage, especially in meropenem. Taken together, these data offer valuable information on the substrate specificity of OXA-48 and the catalytic mechanism of CHDLs.
Collapse
Affiliation(s)
- Afroza Akhtar
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, MDC 3522, Tampa, Florida 33612, United States
| | - Orville A. Pemberton
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, MDC 3522, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, MDC 3522, Tampa, Florida 33612, United States
| |
Collapse
|
19
|
Lizana I, Ortiz-López D, Delgado-Hurtado A, Delgado EJ. Theoretical Evidence for the Nonoccurrence of Tetrahedral Intermediates in the Deacylation Pathway of the Oxacillinase-24/Avibactam Complex. ACS OMEGA 2019; 4:21954-21961. [PMID: 31891074 PMCID: PMC6933777 DOI: 10.1021/acsomega.9b03022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 05/10/2023]
Abstract
Oxacillinases (OXAs) β-lactamases are of special interest because of their capacity to hydrolyze antibacterial drugs such as cephalosporins and carbapenems, which are frequently used as the last option for the treatment of multidrug-resistant bacteria. Although the comprehension of the involved mechanisms at the atomic level is crucial for the rational design of new inhibitors and antibiotics, currently there is no study on the acylation/deacylation mechanisms of the OXA-24/avibactam complex from first principles; therefore, mechanistic details such as activation barriers, characterization of intermediates, and transition states are still uncertain. In this article, we address the deacylation of the OXA-24/avibactam complex by molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics computations. The study supplies mechanistic details not available so far, namely, topology of the potential energy surfaces, characterization of transition states and intermediates, and calculation of the respective activation barriers. The results show that the deacylation occurs via a mechanism of two stages; the first one involves the formation of a dianionic intermediate with a computed activation barrier of 24 kcal/mol. The second stage corresponds to the cleavage of the OS81-C bond promoted by the protonation of the OS81 atom by the carboxylated Lys84 and the concomitant formation of the C7-N6 bond, allowing the liberation of avibactam and recovery of the enzyme. The calculated activation barrier for the second stage is 13 kcal/mol. The structure of the intermediate, formed in the first stage, does not fulfill the characteristics of a tetrahedral intermediate. These results suggest that the recyclization of avibactam from the OXA-24/avibactam complex may occur without the emergence of tetrahedral intermediates, unlike that observed in the class A CTX-M-15.
Collapse
Affiliation(s)
- Ignacio Lizana
- QTC
Group, Department of Physical-Chemistry, Faculty of Chemical
Sciences and Department of Biochemistry and Molecular Biology, Faculty of Biological
Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Diego Ortiz-López
- QTC
Group, Department of Physical-Chemistry, Faculty of Chemical
Sciences and Department of Biochemistry and Molecular Biology, Faculty of Biological
Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Aleksei Delgado-Hurtado
- QTC
Group, Department of Physical-Chemistry, Faculty of Chemical
Sciences and Department of Biochemistry and Molecular Biology, Faculty of Biological
Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Eduardo J. Delgado
- QTC
Group, Department of Physical-Chemistry, Faculty of Chemical
Sciences and Department of Biochemistry and Molecular Biology, Faculty of Biological
Sciences, Universidad de Concepción, Concepción 4070386, Chile
- Millenium
Nucleus on Catalytic Processes Toward Sustainable Chemistry, Santiago 4070386, Chile
- E-mail:
| |
Collapse
|
20
|
Stewart NK, Smith CA, Toth M, Stasyuk A, Vakulenko SB. The crystal structures of CDD-1, the intrinsic class D β-lactamase from the pathogenic Gram-positive bacterium Clostridioides difficile, and its complex with cefotaxime. J Struct Biol 2019; 208:107391. [PMID: 31550535 PMCID: PMC6903424 DOI: 10.1016/j.jsb.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023]
Abstract
Class D β-lactamases, enzymes that degrade β-lactam antibiotics and are widely spread in Gram-negative bacteria, were for a long time not known in Gram-positive organisms. Recently, these enzymes were identified in various non-pathogenic Bacillus species and subsequently in Clostridioides difficile, a major clinical pathogen associated with high morbidity and mortality rates. Comparison of the BPU-1 enzyme from Bacillus pumilus with the CDD-1 and CDD-2 enzymes from C. difficile demonstrated that the latter enzymes have broadened their substrate profile to efficiently hydrolyze the expanded-spectrum methoxyimino cephalosporins, cefotaxime and ceftriaxone. These two antibiotics are major contributors to the development of C. difficile infection, as they suppress sensitive bacterial microflora in the gut but fail to kill the pathogen which is highly resistant to these drugs. To gain insight into the structural features that contribute to the expansion of the substrate profile of CDD enzymes compared to BPU-1, we solved the crystal structures of CDD-1 and its complex with cefotaxime. Comparison of CDD-1 structures with those of class D enzymes from Gram-negative bacteria showed that in the cefotaxime-CDD-1 complex, the antibiotic is bound in a substantially different mode due to structural differences in the enzymes' active sites. We also found that CDD-1 has a uniquely long Ω-loop when compared to all other class D β-lactamases. This Ω-loop extension allows it to engage in hydrogen bonding with the acylated cefotaxime, thus providing additional stabilizing interactions with the substrate which could be responsible for the high catalytic activity of the enzyme for expanded-spectrum cephalosporins.
Collapse
Affiliation(s)
- Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Clyde A Smith
- Department of Chemistry, Stanford University, Stanford, CA, USA; Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA, USA.
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Anastasiya Stasyuk
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA, USA
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
21
|
Structural Analysis of The OXA-48 Carbapenemase Bound to A "Poor" Carbapenem Substrate, Doripenem. Antibiotics (Basel) 2019; 8:antibiotics8030145. [PMID: 31514291 PMCID: PMC6783824 DOI: 10.3390/antibiotics8030145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are a significant threat to public health, and a major resistance determinant that promotes this phenotype is the production of the OXA-48 carbapenemase. The activity of OXA-48 towards carbapenems is a puzzling phenotype as its hydrolytic activity against doripenem is non-detectable. To probe the mechanistic basis for this observation, we determined the 1.5 Å resolution crystal structure of the deacylation deficient K73A variant of OXA-48 in complex with doripenem. Doripenem is observed in the Δ1R and Δ1S tautomeric states covalently attached to the catalytic S70 residue. Likely due to positioning of residue Y211, the carboxylate moiety of doripenem is making fewer hydrogen bonding/salt-bridge interactions with R250 compared to previously determined carbapenem OXA structures. Moreover, the hydroxyethyl side chain of doripenem is making van der Waals interactions with a key V120 residue, which likely affects the deacylation rate of doripenem. We hypothesize that positions V120 and Y211 play important roles in the carbapenemase profile of OXA-48. Herein, we provide insights for the further development of the carbapenem class of antibiotics that could render them less effective to hydrolysis by or even inhibit OXA carbapenemases.
Collapse
|
22
|
Antunes VU, Llontop EE, Vasconcelos FNDC, López de Los Santos Y, Oliveira RJ, Lincopan N, Farah CS, Doucet N, Mittermaier A, Favaro DC. Importance of the β5-β6 Loop for the Structure, Catalytic Efficiency, and Stability of Carbapenem-Hydrolyzing Class D β-Lactamase Subfamily OXA-143. Biochemistry 2019; 58:3604-3616. [PMID: 31355630 DOI: 10.1021/acs.biochem.9b00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The class D β-lactamase OXA-143 has been described as an efficient penicillinase, oxacillinase, and carbapenemase. The D224A variant, known as OXA-231, was described in 2012 as exhibiting less activity toward imipenem and increased oxacillinase activity. Additionally, the P227S mutation was reported as a case of convergent evolution for homologous enzymes. To investigate the impact of both mutations (D224A and P227S), we describe in this paper a deep investigation of the enzymatic activities of these three homologues. OXA-143(P227S) presented enhanced catalytic activity against ampicillin, oxacillins, aztreonam, and carbapenems. In addition, OXA-143(P227S) was the only member capable of hydrolyzing ceftazidime. These enhanced activities were due to a combination of a higher affinity (lower Km) and a higher turnover number (higher kcat). We also determined the crystal structure of apo OXA-231. As expected, the structure of this variant is very similar to the published OXA-143 structure, except for the two M223 conformations and the absence of electron density for three solvent-exposed loop segments. Molecular dynamics calculations showed that both mutants experience higher flexibility compared to that of the wild-type form. Therefore, our results illustrate that D224A and P227S act as deleterious and positive mutations, respectively, within the evolutionary path of the OXA-143 subfamily toward a more efficient carbapenemase.
Collapse
Affiliation(s)
- Víctor U Antunes
- Department of Organic Chemistry , State University of Campinas , São Paulo , SP 13083-970 , Brazil
| | - Edgar E Llontop
- Department of Biochemistry, Institute of Chemistry , University of Sao Paulo , Av. Prof. Lineu Prestes 748 , São Paulo , SP 05508-000 , Brazil
| | | | - Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie , Institut National de la Recherche Scientifique (INRS), Université du Québec , Laval , QC H7V 1B7 , Canada
| | - Ronaldo J Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , 38064-200 Uberaba , MG , Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences , University of Sao Paulo , São Paulo , SP 05508-900 , Brazil
| | - Chuck S Farah
- Department of Biochemistry, Institute of Chemistry , University of Sao Paulo , Av. Prof. Lineu Prestes 748 , São Paulo , SP 05508-000 , Brazil
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie , Institut National de la Recherche Scientifique (INRS), Université du Québec , Laval , QC H7V 1B7 , Canada.,PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications , Université Laval , Québec , QC G1V 0A6 , Canada
| | - Anthony Mittermaier
- Department of Chemistry , McGill University , Montreal , QC H3A 0G4 , Canada.,PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications , Université Laval , Québec , QC G1V 0A6 , Canada
| | - Denize C Favaro
- Department of Organic Chemistry , State University of Campinas , São Paulo , SP 13083-970 , Brazil.,Department of Chemistry , McGill University , Montreal , QC H3A 0G4 , Canada
| |
Collapse
|
23
|
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol 2019; 431:3472-3500. [PMID: 30959050 PMCID: PMC6723624 DOI: 10.1016/j.jmb.2019.04.002] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The β-lactams retain a central place in the antibacterial armamentarium. In Gram-negative bacteria, β-lactamase enzymes that hydrolyze the amide bond of the four-membered β-lactam ring are the primary resistance mechanism, with multiple enzymes disseminating on mobile genetic elements across opportunistic pathogens such as Enterobacteriaceae (e.g., Escherichia coli) and non-fermenting organisms (e.g., Pseudomonas aeruginosa). β-Lactamases divide into four classes; the active-site serine β-lactamases (classes A, C and D) and the zinc-dependent or metallo-β-lactamases (MBLs; class B). Here we review recent advances in mechanistic understanding of each class, focusing upon how growing numbers of crystal structures, in particular for β-lactam complexes, and methods such as neutron diffraction and molecular simulations, have improved understanding of the biochemistry of β-lactam breakdown. A second focus is β-lactamase interactions with carbapenems, as carbapenem-resistant bacteria are of grave clinical concern and carbapenem-hydrolyzing enzymes such as KPC (class A) NDM (class B) and OXA-48 (class D) are proliferating worldwide. An overview is provided of the changing landscape of β-lactamase inhibitors, exemplified by the introduction to the clinic of combinations of β-lactams with diazabicyclooctanone and cyclic boronate serine β-lactamase inhibitors, and of progress and strategies toward clinically useful MBL inhibitors. Despite the long history of β-lactamase research, we contend that issues including continuing unresolved questions around mechanism; opportunities afforded by new technologies such as serial femtosecond crystallography; the need for new inhibitors, particularly for MBLs; the likely impact of new β-lactam:inhibitor combinations and the continuing clinical importance of β-lactams mean that this remains a rewarding research area.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Eilis C Bragginton
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Viivi H A Hirvonen
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
24
|
Stewart NK, Smith CA, Antunes NT, Toth M, Vakulenko SB. Role of the Hydrophobic Bridge in the Carbapenemase Activity of Class D β-Lactamases. Antimicrob Agents Chemother 2019; 63:e02191-18. [PMID: 30530607 PMCID: PMC6355612 DOI: 10.1128/aac.02191-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
Class D carbapenemases are enzymes of the utmost clinical importance due to their ability to confer resistance to the last-resort carbapenem antibiotics. We investigated the role of the conserved hydrophobic bridge in the carbapenemase activity of OXA-23, the major carbapenemase of the important pathogen Acinetobacter baumannii We show that substitution of the bridge residue Phe110 affects resistance to meropenem and doripenem and has little effect on MICs of imipenem. The opposite effect was observed upon substitution of the other bridge residue Met221. Complete disruption of the bridge by the F110A/M221A substitution resulted in a significant loss of affinity for doripenem and meropenem and to a lesser extent for imipenem, which is reflected in the reduced MICs of these antibiotics. In the wild-type OXA-23, the pyrrolidine ring of the meropenem tail forms a hydrophobic interaction with Phe110 of the bridge. Similar interactions would ensue with ring-containing doripenem but not with imipenem, which lacks this ring. Our structural studies showed that this interaction with the meropenem tail is missing in the F110A/M221A mutant. These data explain why disruption of the interaction between the enzyme and the carbapenem substrate impacts the affinity and MICs of meropenem and doripenem to a larger degree than those of imipenem. Our structures also show that the bridge directs the acylated carbapenem into a specific tautomeric conformation. However, it is not this conformation but rather the stabilizing interaction between the tail of the antibiotic and the hydrophobic bridge that contributes to the carbapenemase activity of class D β-lactamases.
Collapse
Affiliation(s)
- Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
25
|
Characterization of the First OXA-10 Natural Variant with Increased Carbapenemase Activity. Antimicrob Agents Chemother 2018; 63:AAC.01817-18. [PMID: 30397053 DOI: 10.1128/aac.01817-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/26/2018] [Indexed: 12/25/2022] Open
Abstract
While carbapenem resistance in Gram-negative bacteria is mainly due to the production of efficient carbapenemases, β-lactamases with a narrower spectrum may also contribute to resistance when combined with additional mechanisms. OXA-10-type class D β-lactamases, previously shown to be weak carbapenemases, could represent such a case. In this study, two novel OXA-10 variants were identified as the sole carbapenem-hydrolyzing enzymes in meropenem-resistant enterobacteria isolated from hospital wastewater and found by next-generation sequencing to express additional β-lactam resistance mechanisms. The new variants, OXA-655 and OXA-656, were carried by two related IncQ1 broad-host-range plasmids. Compared to the sequence of OXA-10, they both harbored a Thr26Met substitution, with OXA-655 also bearing a leucine instead of a valine in position 117 of the SAV catalytic motif. Susceptibility profiling of laboratory strains replicating the natural bla OXA plasmids and of recombinant clones expressing OXA-10 and the novel variants in an isogenic background indicated that OXA-655 is a more efficient carbapenemase. The carbapenemase activity of OXA-655 is due to the Val117Leu substitution, as shown by steady-state kinetic experiments, where the k cat of meropenem hydrolysis was increased 4-fold. In contrast, OXA-655 had no activity toward oxyimino-β-lactams, while its catalytic efficiency against oxacillin was significantly reduced. Moreover, the Val117Leu variant was more efficient against temocillin and cefoxitin. Molecular dynamics indicated that Val117Leu affects the position 117-Leu155 interaction, leading to structural shifts in the active site that may alter carbapenem alignment. The evolutionary potential of OXA-10 enzymes toward carbapenem hydrolysis combined with their spread by promiscuous plasmids indicates that they may pose a future clinical threat.
Collapse
|
26
|
Lohans CT, van Groesen E, Kumar K, Tooke CL, Spencer J, Paton RS, Brem J, Schofield CJ. A New Mechanism for β-Lactamases: Class D Enzymes Degrade 1β-Methyl Carbapenems through Lactone Formation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Emma van Groesen
- Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Kiran Kumar
- Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Catherine L. Tooke
- School of Cellular and Molecular Medicine; University of Bristol; Bristol BS8 1TD UK
| | - James Spencer
- School of Cellular and Molecular Medicine; University of Bristol; Bristol BS8 1TD UK
| | - Robert S. Paton
- Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | - Jürgen Brem
- Department of Chemistry; University of Oxford; Oxford OX1 3TA UK
| | | |
Collapse
|
27
|
Multiple substitutions lead to increased loop flexibility and expanded specificity in Acinetobacter baumannii carbapenemase OXA-239. Biochem J 2018; 475:273-288. [PMID: 29229762 DOI: 10.1042/bcj20170702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022]
Abstract
OXA-239 is a class D carbapenemase isolated from an Acinetobacter baumannii strain found in Mexico. This enzyme is a variant of OXA-23 with three amino acid substitutions in or near the active site. These substitutions cause OXA-239 to hydrolyze late-generation cephalosporins and the monobactam aztreonam with greater efficiency than OXA-23. OXA-239 activity against the carbapenems doripenem and imipenem is reduced ∼3-fold and 20-fold, respectively. Further analysis demonstrated that two of the substitutions (P225S and D222N) are largely responsible for the observed alteration of kinetic parameters, while the third (S109L) may serve to stabilize the protein. Structures of OXA-239 with cefotaxime, doripenem and imipenem bound as acyl-intermediates were determined. These structures reveal that OXA-239 has increased flexibility in a loop that contains P225S and D222N. When carbapenems are bound, the conformation of this loop is essentially identical with that observed previously for OXA-23, with a narrow active site that makes extensive contacts to the ligand. When cefotaxime is bound, the loop can adopt a different conformation that widens the active site to allow binding of that bulky drug. This alternate conformation is made possible by P225S and further stabilized by D222N. Taken together, these results suggest that the three substitutions were selected to expand the substrate specificity profile of OXA-23 to cephalosporins and monobactams. The loss of activity against imipenem, however, suggests that there may be limits to the plasticity of class D enzymes with regard to evolving active sites that can effectively bind multiple classes of β-lactam drugs.
Collapse
|
28
|
Lohans CT, van Groesen E, Kumar K, Tooke CL, Spencer J, Paton RS, Brem J, Schofield CJ. A New Mechanism for β-Lactamases: Class D Enzymes Degrade 1β-Methyl Carbapenems through Lactone Formation. Angew Chem Int Ed Engl 2018; 57:1282-1285. [PMID: 29236332 PMCID: PMC5817396 DOI: 10.1002/anie.201711308] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Indexed: 01/18/2023]
Abstract
β‐Lactamases threaten the clinical use of carbapenems, which are considered antibiotics of last resort. The classical mechanism of serine carbapenemase catalysis proceeds through hydrolysis of an acyl‐enzyme intermediate. We show that class D β‐lactamases also degrade clinically used 1β‐methyl‐substituted carbapenems through the unprecedented formation of a carbapenem‐derived β‐lactone. β‐Lactone formation results from nucleophilic attack of the carbapenem hydroxyethyl side chain on the ester carbonyl of the acyl‐enzyme intermediate. The carbapenem‐derived lactone products inhibit both serine β‐lactamases (particularly class D) and metallo‐β‐lactamases. These results define a new mechanism for the class D carbapenemases, in which a hydrolytic water molecule is not required.
Collapse
Affiliation(s)
| | - Emma van Groesen
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Kiran Kumar
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Robert S Paton
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | |
Collapse
|
29
|
The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis. Nat Commun 2017; 8:2242. [PMID: 29269938 PMCID: PMC5740130 DOI: 10.1038/s41467-017-02339-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/22/2017] [Indexed: 02/08/2023] Open
Abstract
New Delhi metallo-β-lactamases (NDMs), the recent additions to metallo-β-lactamases (MBLs), pose a serious public health threat due to its highly efficient hydrolysis of β-lactam antibiotics and rapid worldwide dissemination. The MBL-hydrolyzing mechanism for carbapenems is less studied than that of penicillins and cephalosporins. Here, we report crystal structures of NDM-1 in complex with hydrolyzed imipenem and meropenem, at resolutions of 1.80–2.32 Å, together with NMR spectra monitoring meropenem hydrolysis. Three enzyme-intermediate/product derivatives, EI1, EI2, and EP, are trapped in these crystals. Our structural data reveal double-bond tautomerization from Δ2 to Δ1, absence of a bridging water molecule and an exclusive β-diastereomeric product, all suggesting that the hydrolytic intermediates are protonated by a bulky water molecule incoming from the β-face. These results strongly suggest a distinct mechanism of NDM-1-catalyzed carbapenem hydrolysis from that of penicillin or cephalosporin hydrolysis, which may provide a novel rationale for design of mechanism-based inhibitors. New Delhi metallo-β-lactamases (NDMs) hydrolyze almost all β-lactam antibiotics and pose a major public health threat. Here, the authors study the mechanism of NDM-1 catalyzed carbapenem hydrolysis and present the crystal structures of the enzyme-intermediate and product complexes, which is important for drug design.
Collapse
|
30
|
Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii. Antimicrob Agents Chemother 2017; 61:AAC.01172-17. [PMID: 28807908 DOI: 10.1128/aac.01172-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
The number of infections caused by Gram-negative pathogens carrying carbapenemases is increasing, and the group of carbapenem-hydrolyzing class D β-lactamases (CHDLs) is especially problematic. Several clinically important CHDLs have been identified in Acinetobacter baumannii, including OXA-23, OXA-24/40, OXA-58, OXA-143, OXA-235, and the chromosomally encoded OXA-51. The selection and dissemination of carbapenem-resistant A. baumannii strains constitutes a serious global threat. Carbapenems have been successfully utilized as last-resort antibiotics for the treatment of multidrug-resistant A. baumannii infections. However, the spread of OXA carbapenemases is compromising the continued use of these antimicrobials. In response to this clinical issue, it is necessary and urgent to design and develop new specific inhibitors with efficacy against these enzymes. The aim of this work was to characterize the inhibitory activity of LN-1-255 (a 6-alkylidene-2-substituted penicillin sulfone) and compare it to that of two established inhibitors (avibactam and tazobactam) against the most relevant enzymes of each group of class D carbapenemases in A. baumannii The β-lactamase inhibitor LN-1-255 demonstrated excellent microbiological synergy and inhibition kinetics parameters against all tested CHDLs and a significantly higher activity than tazobactam and avibactam. A combination of carbapenems and LN-1-255 was effective against A. baumannii class D carbapenemases. Docking assays confirmed the affinity of LN-1-255 for the active site of these enzymes. LN-1-255 represents a potential new β-lactamase inhibitor that may have a significant role in eradicating infections caused by A. baumannii isolates carrying CHDLs.
Collapse
|
31
|
Nosocomial Outbreak of Extensively Drug-Resistant Acinetobacter baumannii Isolates Containing blaOXA-237 Carried on a Plasmid. Antimicrob Agents Chemother 2017; 61:AAC.00797-17. [PMID: 28893775 DOI: 10.1128/aac.00797-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Carbapenem antibiotics are among the mainstays for treating infections caused by Acinetobacter baumannii, especially in the Northwest United States, where carbapenem-resistant A. baumannii remains relatively rare. However, between June 2012 and October 2014, an outbreak of carbapenem-resistant A. baumannii occurred in 16 patients from five health care facilities in the state of Oregon. All isolates were defined as extensively drug resistant. Multilocus sequence typing revealed that the isolates belonged to sequence type 2 (international clone 2 [IC2]) and were >95% similar as determined by repetitive-sequence-based PCR analysis. Multiplex PCR revealed the presence of a blaOXA carbapenemase gene, later identified as blaOXA-237 Whole-genome sequencing of all isolates revealed a well-supported separate branch within a global A. baumannii phylogeny. Pacific Biosciences (PacBio) SMRT sequencing was also performed on one isolate to gain insight into the genetic location of the carbapenem resistance gene. We discovered that blaOXA-237, flanked on either side by ISAba1 elements in opposite orientations, was carried on a 15,198-bp plasmid designated pORAB01-3 and was present in all 16 isolates. The plasmid also contained genes encoding a TonB-dependent receptor, septicolysin, a type IV secretory pathway (VirD4 component, TraG/TraD family) ATPase, an integrase, a RepB family plasmid DNA replication initiator protein, an alpha/beta hydrolase, and a BrnT/BrnA type II toxin-antitoxin system. This is the first reported outbreak in the northwestern United States associated with this carbapenemase. Particularly worrisome is that blaOXA-237 was carried on a plasmid and found in the most prominent worldwide clonal group IC2, potentially giving pORAB01-3 great capacity for future widespread dissemination.
Collapse
|
32
|
González-Bello C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg Med Chem Lett 2017; 27:4221-4228. [PMID: 28827113 DOI: 10.1016/j.bmcl.2017.08.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022]
Abstract
Resistance to available antibiotics in pathogenic bacteria is currently a global challenge since the number of strains that are resistant to multiple types of antibiotics has increased dramatically each year and has spread worldwide. To unlock this problem, the use of an 'antibiotic adjuvant' in combination with an antibiotic is now being exploited. This approach enables us to prolong the lifespan of these life-saving drugs. This digests review provides an overview of the main types of antibiotic adjuvants, the basis of their operation and the remaining issues to be tackled in this field. Particular emphasis is placed on those compounds that are already in clinical development, namely β-lactamase inhibitors.
Collapse
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
33
|
Toth M, Smith CA, Antunes NT, Stewart NK, Maltz L, Vakulenko SB. The role of conserved surface hydrophobic residues in the carbapenemase activity of the class D β-lactamases. Acta Crystallogr D Struct Biol 2017; 73:692-701. [PMID: 28777084 PMCID: PMC5571744 DOI: 10.1107/s2059798317008671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/11/2017] [Indexed: 01/12/2023] Open
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) produce resistance to the last-resort carbapenem antibiotics and render these drugs ineffective for the treatment of life-threatening infections. Here, it is shown that among the clinically important CHDLs, OXA-143 produces the highest levels of resistance to carbapenems and has the highest catalytic efficiency against these substrates. Structural data demonstrate that acylated carbapenems entirely fill the active site of CHDLs, leaving no space for water molecules, including the deacylating water. Since the entrance to the active site is obstructed by the acylated antibiotic, the deacylating water molecule must take a different route for entry. It is shown that in OXA-143 the movement of a conserved hydrophobic valine residue on the surface opens a channel to the active site of the enzyme, which would not only allow the exchange of water molecules between the active site and the milieu, but would also create extra space for a water molecule to position itself in the vicinity of the scissile bond of the acyl-enzyme intermediate to perform deacylation. Structural analysis of the OXA-23 carbapenemase shows that in this enzyme movement of the conserved leucine residue, juxtaposed to the valine on the molecular surface, creates a similar channel to the active site. These data strongly suggest that all CHDLs may employ a mechanism whereupon the movement of highly conserved valine or leucine residues would allow a water molecule to access the active site to promote deacylation. It is further demonstrated that the 6α-hydroxyethyl group of the bound carbapenem plays an important role in the stabilization of this channel. The recognition of a universal deacylation mechanism for CHDLs suggests a direction for the future development of inhibitors and novel antibiotics for these enzymes of utmost clinical importance.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Nuno T. Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nichole K. Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lauren Maltz
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
34
|
|
35
|
Werner JP, Mitchell JM, Taracila MA, Bonomo RA, Powers RA. Exploring the potential of boronic acids as inhibitors of OXA-24/40 β-lactamase. Protein Sci 2017; 26:515-526. [PMID: 27997706 DOI: 10.1002/pro.3100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
β-lactam antibiotics are crucial to the management of bacterial infections in the medical community. Due to overuse and misuse, clinically significant bacteria are now resistant to many commercially available antibiotics. The most widespread resistance mechanism to β-lactams is the expression of β-lactamase enzymes. To overcome β-lactamase mediated resistance, inhibitors were designed to inactivate these enzymes. However, current inhibitors (clavulanic acid, tazobactam, and sulbactam) for β-lactamases also contain the characteristic β-lactam ring, making them susceptible to resistance mechanisms employed by bacteria. This presents a critical need for novel, non-β-lactam inhibitors that can circumvent these resistance mechanisms. The carbapenem-hydrolyzing class D β-lactamases (CHDLs) are of particular concern, given that they efficiently hydrolyze potent carbapenem antibiotics. Unfortunately, these enzymes are not inhibited by clinically available β-lactamase inhibitors, nor are they effectively inhibited by the newest, non-β-lactam inhibitor, avibactam. Boronic acids are known transition state analog inhibitors of class A and C β-lactamases, and are not extensively characterized as inhibitors of class D β-lactamases. Importantly, boronic acids provide a novel way to potentially inhibit class D β-lactamases. Sixteen boronic acids were selected and tested for inhibition of the CHDL OXA-24/40. Several compounds were identified as effective inhibitors of OXA-24/40, with Ki values as low as 5 μM. The X-ray crystal structures of OXA-24/40 in complex with BA3, BA4, BA8, and BA16 were determined and revealed the importance of interactions with hydrophobic residues Tyr112 and Trp115. These boronic acids serve as progenitors in optimization efforts of a novel series of inhibitors for class D β-lactamases.
Collapse
Affiliation(s)
- Josephine P Werner
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | - Joshua M Mitchell
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | - Magdalena A Taracila
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, 44106.,Departments of Medicine, Pharmacology, Biochemistry and Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, 44106.,Departments of Medicine, Pharmacology, Biochemistry and Molecular Biology, and Microbiology, Case Western Reserve University, Cleveland, Ohio, 44106
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| |
Collapse
|
36
|
Staude MW, Leonard DA, Peng JW. Expanded Substrate Activity of OXA-24/40 in Carbapenem-Resistant Acinetobacter baumannii Involves Enhanced Binding Loop Flexibility. Biochemistry 2016; 55:6535-6544. [DOI: 10.1021/acs.biochem.6b00806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Michael W. Staude
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David A. Leonard
- Department
of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Jeffrey W. Peng
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
37
|
June CM, Muckenthaler TJ, Schroder EC, Klamer ZL, Wawrzak Z, Powers RA, Szarecka A, Leonard DA. The structure of a doripenem-bound OXA-51 class D β-lactamase variant with enhanced carbapenemase activity. Protein Sci 2016; 25:2152-2163. [PMID: 27636561 DOI: 10.1002/pro.3040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 11/10/2022]
Abstract
OXA-51 is a class D β-lactamase that is thought to be the native carbapenemase of Acinetobacter baumannii. Many variants of OXA-51 containing active site substitutions have been identified from A. baumannii isolates, and some of these substitutions increase hydrolytic activity toward carbapenem antibiotics. We have determined the high-resolution structures of apo OXA-51 and OXA-51 with one such substitution (I129L) with the carbapenem doripenem trapped in the active site as an acyl-intermediate. The structure shows that acyl-doripenem adopts an orientation very similar to carbapenem ligands observed in the active site of OXA-24/40 (doripenem) and OXA-23 (meropenem). In the OXA-51 variant/doripenem complex, the indole ring of W222 is oriented away from the doripenem binding site, thereby eliminating a clash that is predicted to occur in wildtype OXA-51. Similarly, in the OXA-51 variant complex, L129 adopts a different rotamer compared to I129 in wildtype OXA-51. This alternative position moves its side chain away from the hydroxyethyl moiety of doripenem and relieves another potential clash between the enzyme and carbapenem substrates. Molecular dynamics simulations of OXA-51 and OXA-51 I129L demonstrate that compared to isoleucine, a leucine at this position greatly favors a rotamer that accommodates the ligand. These results provide a molecular justification for how this substitution generates enhanced binding affinity for carbapenems, and therefore helps explain the prevalence of this substitution in clinical OXA-51 variants.
Collapse
Affiliation(s)
- Cynthia M June
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | | | - Emma C Schroder
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | - Zachary L Klamer
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan, 49401
| | - Zdzislaw Wawrzak
- Life Sciences Collaborative Access Team, Synchrotron Research Center, Northwestern University, Argonne, Illinois, 60439
| | - Rachel A Powers
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| | - Agnieszka Szarecka
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan, 49401
| | - David A Leonard
- Department of Chemistry, Grand Valley State University, Allendale, Michigan, 49401
| |
Collapse
|
38
|
Clinical Variants of the Native Class D β-Lactamase of Acinetobacter baumannii Pose an Emerging Threat through Increased Hydrolytic Activity against Carbapenems. Antimicrob Agents Chemother 2016; 60:6155-64. [PMID: 27480863 DOI: 10.1128/aac.01277-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
The threat posed by the chromosomally encoded class D β-lactamase of Acinetobacter baumannii (OXA-51/66) has been unclear, in part because of its relatively low affinity and turnover rate for carbapenems. Several hundred clinical variants of OXA-51/66 have been reported, many with substitutions of active-site residues. We determined the kinetic properties of OXA-66 and five clinical variants with respect to a wide variety of β-lactam substrates. The five variants displayed enhanced activity against carbapenems and in some cases against penicillins, late-generation cephalosporins, and the monobactam aztreonam. Molecular dynamics simulations show that in OXA-66, P130 inhibits the side-chain rotation of I129 and thereby prevents doripenem binding because of steric clash. A single amino acid substitution at this position (P130Q) in the variant OXA-109 greatly enhances the mobility of both I129 and a key active-site tryptophan (W222), thereby facilitating carbapenem binding. This expansion of substrate specificity represents a very worrisome development for the efficacy of β-lactams against this troublesome pathogen.
Collapse
|
39
|
Sgrignani J, Grazioso G, De Amici M. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations. Biochemistry 2016; 55:5191-200. [PMID: 27534275 DOI: 10.1021/acs.biochem.6b00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.
Collapse
Affiliation(s)
- Jacopo Sgrignani
- Istituto di Chimica del Riconoscimento Molecolare, CNR , Via Mario Bianco 9, 20131 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via L. Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
40
|
Abstract
The OXA β-lactamases were among the earliest β-lactamases detected; however, these molecular class D β-lactamases were originally relatively rare and always plasmid mediated. They had a substrate profile limited to the penicillins, but some became able to confer resistance to cephalosporins. From the 1980s onwards, isolates of Acinetobacter baumannii that were resistant to the carbapenems emerged, manifested by plasmid-encoded β-lactamases (OXA-23, OXA-40, and OXA-58) categorized as OXA enzymes because of their sequence similarity to earlier OXA β-lactamases. It was soon found that every A. baumannii strain possessed a chromosomally encoded OXA β-lactamase (OXA-51-like), some of which could confer resistance to carbapenems when the genetic environment around the gene promoted its expression. Similarly, Acinetobacter species closely related to A. baumannii also possessed their own chromosomally encoded OXA β-lactamases; some could be transferred to A. baumannii, and they formed the basis of transferable carbapenem resistance in this species. In some cases, the carbapenem-resistant OXA β-lactamases (OXA-48) have migrated into the Enterobacteriaceae and are becoming a significant cause of carbapenem resistance. The emergence of OXA enzymes that can confer resistance to carbapenems, particularly in A. baumannii, has transformed these β-lactamases from a minor hindrance into a major problem set to demote the clinical efficacy of the carbapenems.
Collapse
|
41
|
Saino H, Sugiyabu T, Ueno G, Yamamoto M, Ishii Y, Miyano M. Crystal Structure of OXA-58 with the Substrate-Binding Cleft in a Closed State: Insights into the Mobility and Stability of the OXA-58 Structure. PLoS One 2015; 10:e0145869. [PMID: 26701320 PMCID: PMC4689445 DOI: 10.1371/journal.pone.0145869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
OXA-58 is a class D β-lactamase from the multi-drug resistant Acinetobacter baumannii. We determined the crystal structure of OXA-58 in a novel crystal, and revealed the structure of the substrate-binding cleft in a closed state, distinct from a previously reported OXA-58 crystal structure with the binding cleft in an open state. In the closed state, the movement of three loops (α3-α4, β6-β7, and β8-α10) forms an arch-like architecture over the binding cleft through interaction between the Phe113 residues of α3-α4 and Met225 of β6-β7. This structure suggests the involvement of these flexible loops in OXA-58 substrate binding. In contrast to the mobile loops, the Ω-loop appeared static, including the conserved loop residues and their hydrogen bonds; the pivotal residue Trp169 within the Ω-loop, ζ-carbamic acid of the modified base catalyst residue Lys86, and nucleophilic residue Ser83. The stability of OXA-58 was enhanced concomitant with an increase in the hydrolytic activity catalyzed by NaHCO3-dependent ζ-carbamic acid formation, with an EC50 of 0.34 mM. The W169A mutant enzyme was significantly thermally unstable even in the presence of 100 mM NaHCO3, whereas the S83A mutant was stabilized with NaHCO3-dependent activation. The ζ-carbamic acid was shown to increase not only OXA-58 hydrolytic activity but also OXA-58 stability through the formation of a hydrogen bond network connected to the Ω-loop with Ser83 and Trp169. Thus, the static Ω-loop is important for OXA-58 stability, whereas the mobile loops of the substrate-binding cleft form the basis for accommodation of the various substituents of β-lactam backbone.
Collapse
Affiliation(s)
- Hiromichi Saino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
- * E-mail:
| | - Tomohiro Sugiyabu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - Masashi Miyano
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
42
|
Class D β-lactamases do exist in Gram-positive bacteria. Nat Chem Biol 2015; 12:9-14. [PMID: 26551395 PMCID: PMC4684797 DOI: 10.1038/nchembio.1950] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022]
Abstract
Production of β-lactamases of the four molecular classes (A, B, C, and D) is the major mechanism of bacterial resistance to β-lactams, the largest class of antibiotics that have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, they have not been reported in Gram-positive bacteria. Here we demonstrate that efficient class D β-lactamases capable of hydrolyzing a wide array of β-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate binding mode quite different from that of all currently known class A, C, and D β-lactamases. They constitute a novel reservoir of antibiotic resistance enzymes.
Collapse
|
43
|
Active-Site Plasticity Is Essential to Carbapenem Hydrolysis by OXA-58 Class D β-Lactamase of Acinetobacter baumannii. Antimicrob Agents Chemother 2015; 60:75-86. [PMID: 26459904 DOI: 10.1128/aac.01393-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/03/2015] [Indexed: 01/09/2023] Open
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are a subgroup of class D β-lactamases, which are enzymes that hydrolyze β-lactams. They have attracted interest due to the emergence of multidrug-resistant Acinetobacter baumannii, which is not responsive to treatment with carbapenems, the usual antibiotics of choice for this bacterium. Unlike other class D β-lactamases, these enzymes efficiently hydrolyze carbapenem antibiotics. To explore the structural requirements for the catalysis of carbapenems by these enzymes, we determined the crystal structure of the OXA-58 CHDL of A. baumannii following acylation of its active-site serine by a 6α-hydroxymethyl penicillin derivative that is a structural mimetic for a carbapenem. In addition, several point mutation variants of the active site of OXA-58, as identified by the crystal structure analysis, were characterized kinetically. These combined studies confirm the mechanistic relevance of a hydrophobic bridge formed over the active site. This structural feature is suggested to stabilize the hydrolysis-productive acyl-enzyme species formed from the carbapenem substrates of this enzyme. Furthermore, our structural studies provide strong evidence that the hydroxyethyl group of carbapenems samples different orientations in the active sites of CHDLs, and the optimum orientation for catalysis depends on the topology of the active site allowing proper closure of the active site. We propose that CHDLs use the plasticity of the active site to drive the mechanism of carbapenem hydrolysis toward efficiency.
Collapse
|
44
|
Smith CA, Antunes NT, Stewart NK, Frase H, Toth M, Kantardjieff KA, Vakulenko S. Structural Basis for Enhancement of Carbapenemase Activity in the OXA-51 Family of Class D β-Lactamases. ACS Chem Biol 2015; 10:1791-6. [PMID: 26042471 DOI: 10.1021/acschembio.5b00090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Class D β-lactamases of Acinetobacter baumannii are enzymes of the utmost clinical importance, producing resistance to last resort carbapenem antibiotics. Although the OXA-51-like enzymes constitute the largest family of class D β-lactamases, they are poorly studied and their importance in conferring carbapenem resistance is controversial. We present the detailed microbiological, kinetic, and structural characterization of the eponymous OXA-51 β-lactamase. Kinetic studies show that OXA-51 has low catalytic efficiency for carbapenems, primarily due to the low affinity of the enzyme for these substrates. Structural studies demonstrate that this low affinity results from the obstruction of the enzyme active site by the side chain of Trp222, which presents a transient steric barrier to an incoming carbapenem substrate. The Trp222Met substitution relieves this steric hindrance and elevates the affinity of the mutant enzyme for carbapenems by 10-fold, significantly increasing the levels of resistance to these antibiotics. The ability of OXA-51 to evolve into a robust carbapenemase as the result of a single amino acid substitution may, in the near future, elevate the ubiquitous enzymes of the OXA-51 family to the status of the most deleterious A. baumannii carbapenemases, with dire clinical consequences.
Collapse
Affiliation(s)
- Clyde A. Smith
- Stanford
Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, United States
| | - Nuno Tiago Antunes
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Nichole K. Stewart
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hilary Frase
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Marta Toth
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Katherine A. Kantardjieff
- College
of Science and Mathematics, California State University, San Marcos, California 92078, United States
| | - Sergei Vakulenko
- Department
of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
45
|
Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16:9654-92. [PMID: 25938965 PMCID: PMC4463611 DOI: 10.3390/ijms16059654] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D). Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.
Collapse
|
46
|
Mitchell JM, Clasman JR, June CM, Kaitany KCJ, LaFleur JR, Taracila MA, Klinger NV, Bonomo RA, Wymore T, Szarecka A, Powers RA, Leonard DA. Structural basis of activity against aztreonam and extended spectrum cephalosporins for two carbapenem-hydrolyzing class D β-lactamases from Acinetobacter baumannii. Biochemistry 2015; 54:1976-87. [PMID: 25710192 DOI: 10.1021/bi501547k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The carbapenem-hydrolyzing class D β-lactamases OXA-23 and OXA-24/40 have emerged worldwide as causative agents for β-lactam antibiotic resistance in Acinetobacter species. Many variants of these enzymes have appeared clinically, including OXA-160 and OXA-225, which both contain a P → S substitution at homologous positions in the OXA-24/40 and OXA-23 backgrounds, respectively. We purified OXA-160 and OXA-225 and used steady-state kinetic analysis to compare the substrate profiles of these variants to their parental enzymes, OXA-24/40 and OXA-23. OXA-160 and OXA-225 possess greatly enhanced hydrolytic activities against aztreonam, ceftazidime, cefotaxime, and ceftriaxone when compared to OXA-24/40 and OXA-23. These enhanced activities are the result of much lower Km values, suggesting that the P → S substitution enhances the binding affinity of these drugs. We have determined the structures of the acylated forms of OXA-160 (with ceftazidime and aztreonam) and OXA-225 (ceftazidime). These structures show that the R1 oxyimino side-chain of these drugs occupies a space near the β5-β6 loop and the omega loop of the enzymes. The P → S substitution found in OXA-160 and OXA-225 results in a deviation of the β5-β6 loop, relieving the steric clash with the R1 side-chain carboxypropyl group of aztreonam and ceftazidime. These results reveal worrying trends in the enhancement of substrate spectrum of class D β-lactamases but may also provide a map for β-lactam improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Magdalena A Taracila
- ∥Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University and Research Service, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | | | - Robert A Bonomo
- ∥Departments of Medicine, Pharmacology, Biochemistry, and Molecular Biology and Microbiology, Case Western Reserve University and Research Service, and Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Troy Wymore
- ⊥UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | | | | |
Collapse
|
47
|
Lahiri SD, Mangani S, Jahić H, Benvenuti M, Durand-Reville TF, De Luca F, Ehmann DE, Rossolini GM, Alm RA, Docquier JD. Molecular basis of selective inhibition and slow reversibility of avibactam against class D carbapenemases: a structure-guided study of OXA-24 and OXA-48. ACS Chem Biol 2015; 10:591-600. [PMID: 25406838 DOI: 10.1021/cb500703p] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Class D (or OXA-type) β-lactamases have expanded to be the most diverse group of serine β-lactamases with a highly heterogeneous β-lactam hydrolysis profile and are typically resistant to marketed β-lactamase inhibitors. Class D enzymes are increasingly found in multidrug resistant (MDR) Acinetobacter baumannii, Pseudomonas aeruginosa, and various species of the Enterobacteriaceae and are posing a serious threat to the clinical utility of β-lactams including the carbapenems, which are typically reserved as the drugs of last resort. Avibactam, a novel non-β-lactam β-lactamase inhibitor, not only inhibits all class A and class C β-lactamases but also has the promise of inhibition of certain OXA enzymes, thus extending the antibacterial activity of the β-lactam used in combination to the organisms that produce these enzymes. X-ray structures of OXA-24 and OXA-48 in complex with avibactam revealed the binding mode of this inhibitor in this diverse class of enzymes and provides a rationale for selective inhibition of OXA-48 members. Additionally, various subunits of the OXA-48 structure in the asymmetric unit provide snapshots of different states of the inhibited enzyme. Overall, these data provide the first structural evidence of the exceptionally slow reversibility observed with avibactam in class D β-lactamases. Mechanisms for acylation and deacylation of avibactam by class D enzymes are proposed, and the likely extent of inhibition of class D β-lactamases by avibactam is discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gian Maria Rossolini
- Department of Experimental and Clinical
Medicine, University of Florence, Florence I-50134, Italy
- Clinical
Microbiology and Virology Unit, Florence Careggi University Hospital, Florence I-50134, Italy
| | | | | |
Collapse
|
48
|
Öztürk H, Ozkirimli E, Özgür A. Classification of Beta-lactamases and penicillin binding proteins using ligand-centric network models. PLoS One 2015; 10:e0117874. [PMID: 25689853 PMCID: PMC4331424 DOI: 10.1371/journal.pone.0117874] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/03/2015] [Indexed: 01/28/2023] Open
Abstract
β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs), which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.
Collapse
Affiliation(s)
- Hakime Öztürk
- Department of Computer Engineering, Bogazici University, Istanbul, Bebek, Turkey
| | - Elif Ozkirimli
- Department of Chemical Engineering, Bogazici University, Istanbul, Bebek, Turkey
- * E-mail: (EO), (AÖ)
| | - Arzucan Özgür
- Department of Computer Engineering, Bogazici University, Istanbul, Bebek, Turkey
- * E-mail: (EO), (AÖ)
| |
Collapse
|
49
|
Common clinical substitutions enhance the carbapenemase activity of OXA-51-like class D β-lactamases from Acinetobacter spp. Antimicrob Agents Chemother 2014; 58:7015-6. [PMID: 25155607 DOI: 10.1128/aac.03651-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|