1
|
Arkinson C, Dong KC, Gee CL, Martin A. Mechanisms and regulation of substrate degradation by the 26S proteasome. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00778-0. [PMID: 39362999 DOI: 10.1038/s41580-024-00778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
The 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome. We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool. Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues.
Collapse
Affiliation(s)
- Connor Arkinson
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Christine L Gee
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Andreas Martin
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Breckel CA, Johnson ZM, Hickey CM, Hochstrasser M. Yeast 26S proteasome nuclear import is coupled to nucleus-specific degradation of the karyopherin adaptor protein Sts1. Sci Rep 2024; 14:2048. [PMID: 38267508 PMCID: PMC10808114 DOI: 10.1038/s41598-024-52352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
In eukaryotes, the ubiquitin-proteasome system is an essential pathway for protein degradation and cellular homeostasis. 26S proteasomes concentrate in the nucleus of budding yeast Saccharomyces cerevisiae due to the essential import adaptor protein Sts1 and the karyopherin-α protein Srp1. Here, we show that Sts1 facilitates proteasome nuclear import by recruiting proteasomes to the karyopherin-α/β heterodimer. Following nuclear transport, the karyopherin proteins are likely separated from Sts1 through interaction with RanGTP in the nucleus. RanGTP-induced release of Sts1 from the karyopherin proteins initiates Sts1 proteasomal degradation in vitro. Sts1 undergoes karyopherin-mediated nuclear import in the absence of proteasome interaction, but Sts1 degradation in vivo is only observed when proteasomes successfully localize to the nucleus. Sts1 appears to function as a proteasome import factor during exponential growth only, as it is not found in proteasome storage granules (PSGs) during prolonged glucose starvation, nor does it appear to contribute to the rapid nuclear reimport of proteasomes following glucose refeeding and PSG dissipation. We propose that Sts1 acts as a single-turnover proteasome nuclear import factor by recruiting karyopherins for transport and undergoing subsequent RanGTP-initiated ubiquitin-independent proteasomal degradation in the nucleus.
Collapse
Affiliation(s)
- Carolyn Allain Breckel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zane M Johnson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Arvinas, Inc., 5 Science Park, New Haven, CT, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
3
|
Nguyet VTA, Ando R, Furutani N, Izawa S. Severe ethanol stress inhibits yeast proteasome activity at moderate temperatures but not at low temperatures. Genes Cells 2023; 28:736-745. [PMID: 37550872 DOI: 10.1111/gtc.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Since yeast research under laboratory conditions is usually conducted at 25-30°C (moderate temperature range), most of the findings on yeast physiology are based on analyses in this temperature range. Due to inefficiencies in cultivation and analysis, insufficient information is available on yeast physiology in the low-temperature range, although alcoholic beverage production is often conducted at relatively low temperatures (around 15°C). Recently, we reported that severe ethanol stress (10% v/v) inhibits proteasomal proteolysis in yeast cells under laboratory conditions at 28°C. In this study, proteasomal proteolysis at a low temperature (15°C) was evaluated using cycloheximide chase analysis of a short-lived protein (Gic2-3HA), an auxin-inducible degron system (Paf1-AID*-6FLAG), and Spe1-3HA, which is degraded ubiquitin-independently by the proteasome. At 15°C, proteasomal proteolysis was not inhibited under severe ethanol stress, and sufficient proteasomal activity was maintained. These results provide novel insights into the effects of low temperature and ethanol on yeast physiology.
Collapse
Affiliation(s)
- Vo Thi Anh Nguyet
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Ryoko Ando
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Noboru Furutani
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
4
|
Bialek W, Collawn JF, Bartoszewski R. Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions. Molecules 2023; 28:6740. [PMID: 37764516 PMCID: PMC10536765 DOI: 10.3390/molecules28186740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Ubiquitin, a small protein, is well known for tagging target proteins through a cascade of enzymatic reactions that lead to protein degradation. The ubiquitin tag, apart from its signaling role, is paramount in destabilizing the modified protein. Here, we explore the complex role of ubiquitin-mediated protein destabilization in the intricate proteolysis process by the 26S proteasome. In addition, the significance of the so-called ubiquitin-independent pathway and the role of the 20S proteasome are considered. Next, we discuss the ubiquitin-proteasome system's interplay with pathogenic microorganisms and how the microorganisms manipulate this system to establish infection by a range of elaborate pathways to evade or counteract host responses. Finally, we focus on the mechanisms that rely either on (i) hijacking the host and on delivering pathogenic E3 ligases and deubiquitinases that promote the degradation of host proteins, or (ii) counteracting host responses through the stabilization of pathogenic effector proteins.
Collapse
Affiliation(s)
- Wojciech Bialek
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Rafal Bartoszewski
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
5
|
Halwas K, Döring LM, Oehlert FV, Dohmen RJ. Hypusinated eIF5A Promotes Ribosomal Frameshifting during Decoding of ODC Antizyme mRNA in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms232112972. [PMID: 36361762 PMCID: PMC9656687 DOI: 10.3390/ijms232112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Polyamines are essential biogenic poly-cations with important roles in many cellular processes and diseases such as cancer. A rate-limiting step early in the biosynthesis of polyamines is the conversion of ornithine to putrescine by the homodimeric enzyme ornithine decarboxylase (ODC). In a conserved mechanism of posttranslational regulation, ODC antizyme (OAZ) binds to ODC monomers promoting their ubiquitin-independent degradation by the proteasome. Decoding of OAZ mRNA is unusual in that it involves polyamine-regulated bypassing of an internal translation termination (STOP) codon by a ribosomal frameshift (RFS) event. Using Saccharomyces cerevisiae, we earlier showed that high polyamine concentrations lead to increased efficiency of OAZ1 mRNA translation by binding to nascent Oaz1 polypeptide. The binding of polyamines prevents stalling of the ribosomes on OAZ1 mRNA caused by nascent Oaz1 polypeptide thereby promoting synthesis of full-length Oaz1. Polyamine depletion, however, also inhibits RFS during the decoding of constructs bearing the OAZ1 shift site lacking sequences encoding the Oaz1 parts implicated in polyamine binding. Polyamine depletion is known to impair hypusine modification of translation factor eIF5A. Using a novel set of conditional mutants impaired in the function of eIF5A/Hyp2 or its hypusination, we show here that hypusinated eIF5A is required for efficient translation across the OAZ1 RFS site. These findings identify eIF5A as a part of Oaz1 regulation, and thereby of polyamine synthesis. Additional experiments with DFMO, however, show that depletion of polyamines inhibits translation across the OAZ1 RFS site not only by reducing Hyp2 hypusination, but in addition, and even earlier, by affecting RFS more directly.
Collapse
|
6
|
Nguyet VTA, Furutani N, Ando R, Izawa S. Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130241. [PMID: 36075516 DOI: 10.1016/j.bbagen.2022.130241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the budding yeast, Saccharomyces cerevisiae, produces ethanol via alcoholic fermentation, high-concentration ethanol is harmful to yeast cells. Severe ethanol stress (> 9% v/v) inhibits protein synthesis and increases the level of intracellular protein aggregates. However, its effect on proteolysis in yeast cells remains largely unknown. METHODS We examined the effects of ethanol on proteasomal proteolysis in yeast cells through the cycloheximide-chase analysis of short-lived proteins. We also assayed protein degradation in the auxin-inducible degron system and the ubiquitin-independent degradation of Spe1 under ethanol stress conditions. RESULTS We demonstrated that severe ethanol stress strongly inhibited the degradation of the short-lived proteins Rim101 and Gic2. Severe ethanol stress also inhibited protein degradation in the auxin-inducible degron system (Paf1-AID*-6FLAG) and the ubiquitin-independent degradation of Spe1. Proteasomal degradation of these proteins, which was inhibited by severe ethanol stress, resumed rapidly once the ethanol was removed. These results suggested that proteasomal proteolysis in yeast cells is reversibly inhibited by severe ethanol stress. Furthermore, yeast cells pretreated with mild ethanol stress (6% v/v) showed proteasomal proteolysis even with 10% (v/v) ethanol, indicating that yeast cells acquired resistance to proteasome inhibition caused by severe ethanol stress. However, yeast cells failed to acquire sufficient resistance to severe ethanol stress-induced proteasome inhibition when new protein synthesis was blocked with cycloheximide during pretreatment, or when Rpn4 was lost. CONCLUSIONS AND GENERAL SIGNIFICANCE Our results provide novel insights into the adverse effects of severe ethanol stress on proteasomal proteolysis and ethanol adaptability in yeast.
Collapse
Affiliation(s)
- Vo Thi Anh Nguyet
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Noboru Furutani
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoko Ando
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
7
|
The 26S Proteasome Switches between ATP-Dependent and -Independent Mechanisms in Response to Substrate Ubiquitination. Biomolecules 2022; 12:biom12060750. [PMID: 35740875 PMCID: PMC9220805 DOI: 10.3390/biom12060750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin–proteasome system is responsible for the bulk of protein degradation in eukaryotic cells. Proteins are generally targeted to the 26S proteasome through the attachment of polyubiquitin chains. Several proteins also contain ubiquitin-independent degrons (UbIDs) that allow for proteasomal targeting without the need for ubiquitination. Our laboratory previously showed that UbID substrates are less processively degraded than ubiquitinated substrates, but the mechanism underlying this difference remains unclear. We therefore designed two model substrates containing both a ubiquitination site and a UbID for a more direct comparison. We found UbID degradation to be overall less robust, with complete degradation only occurring with loosely folded substrates. UbID degradation was unaffected by the nonhydrolyzable ATP analog ATPγS, indicating that UbID degradation proceeds in an ATP-independent manner. Stabilizing substrates halted UbID degradation, indicating that the proteasome can only capture UbID substrates if they are already at least transiently unfolded, as confirmed using native-state proteolysis. The 26S proteasome therefore switches between ATP-independent weak degradation and ATP-dependent robust unfolding and degradation depending on whether or not the substrate is ubiquitinated.
Collapse
|
8
|
The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation. J Biol Chem 2021; 297:101075. [PMID: 34391778 PMCID: PMC8405934 DOI: 10.1016/j.jbc.2021.101075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
SETD2 is an important methyltransferase that methylates crucial substrates such as histone H3, tubulin, and STAT1 and also physically interacts with transcription and splicing regulators such as Pol II and various hnRNPs. Of note, SETD2 has a functionally uncharacterized extended N-terminal region, the removal of which leads to its stabilization. How this region regulates SETD2 half-life is unclear. Here we show that SETD2 consists of multiple long disordered regions across its length that cumulatively destabilize the protein by facilitating its proteasomal degradation. SETD2 disordered regions can reduce the half-life of the yeast homolog Set2 in mammalian cells as well as in yeast, demonstrating the importance of intrinsic structural features in regulating protein half-life. In addition to the shortened half-life, by performing fluorescence recovery after photobleaching assay we found that SETD2 forms liquid droplets in vivo, another property associated with proteins that contain disordered regions. The phase-separation behavior of SETD2 is exacerbated upon the removal of its N-terminal segment and results in activator-independent histone H3K36 methylation. Our findings reveal that disordered region-facilitated proteolysis is an important mechanism governing SETD2 function.
Collapse
|
9
|
Kandasamy G, Pradhan AK, Palanimurugan R. Ccr4-Not complex subunits Ccr4, Caf1, and Not4 are novel proteolysis factors promoting the degradation of ubiquitin-dependent substrates by the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119010. [PMID: 33727038 DOI: 10.1016/j.bbamcr.2021.119010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 12/22/2022]
Abstract
Degradation of short-lived and abnormal proteins is essential for normal cellular homeostasis. In eukaryotes, such unstable cellular proteins are selectively degraded by the ubiquitin proteasome system (UPS). Abnormalities in protein degradation by the UPS have been linked to several human diseases. Ccr4, Caf1, and Not4 proteins are known components of the Ccr4-Not multimeric complex. Ccr4 and Caf1 have established roles in transcription, mRNA de-adenylation and RNA degradation etc., while Not4 was shown to have important roles in regulating translation and protein quality control pathways. Here we show that Ccr4, Caf1, and Not4 have a novel function at a post-ubiquitylation step in the UPS pathway by promoting ubiquitin-dependent degradation of short-lived proteins by the 26S proteasome. Using a substrate of the well-studied ubiquitin fusion degradation (UFD) pathway, we found that its UPS-mediated degradation was severely impaired upon deletion of CCR4, CAF1, or NOT4 genes in Saccharomyces cerevisiae. Additionally, we show that Ccr4, Caf1, and Not4 bind to cellular ubiquitin conjugates, and that Ccr4 and Caf1 proteins interact with the proteasome. In contrast to Ccr4, Caf1, and Not4, other subunits of the Ccr4-Not complex are dispensable for UFD substrate degradation. From our findings we conclude that the Ccr4-Not complex subunits Ccr4, Caf1, and Not4 have a novel function outside of the canonical Ccr4-Not complex as a factor targeting ubiquitylated substrates for proteasomal degradation.
Collapse
Affiliation(s)
- Ganapathi Kandasamy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India.
| | - Ashis Kumar Pradhan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| | - R Palanimurugan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, Telangana, India
| |
Collapse
|
10
|
Cundiff MD, Hurley CM, Wong JD, Boscia JA, Bashyal A, Rosenberg J, Reichard EL, Nassif ND, Brodbelt JS, Kraut DA. Ubiquitin receptors are required for substrate-mediated activation of the proteasome's unfolding ability. Sci Rep 2019; 9:14506. [PMID: 31601863 PMCID: PMC6787058 DOI: 10.1038/s41598-019-50857-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 12/05/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is responsible for the bulk of protein degradation in eukaryotic cells, but the factors that cause different substrates to be unfolded and degraded to different extents are still poorly understood. We previously showed that polyubiquitinated substrates were degraded with greater processivity (with a higher tendency to be unfolded and degraded than released) than ubiquitin-independent substrates. Thus, even though ubiquitin chains are removed before unfolding and degradation occur, they affect the unfolding of a protein domain. How do ubiquitin chains activate the proteasome’s unfolding ability? We investigated the roles of the three intrinsic proteasomal ubiquitin receptors - Rpn1, Rpn10 and Rpn13 - in this activation. We find that these receptors are required for substrate-mediated activation of the proteasome’s unfolding ability. Rpn13 plays the largest role, but there is also partial redundancy between receptors. The architecture of substrate ubiquitination determines which receptors are needed for maximal unfolding ability, and, in some cases, simultaneous engagement of ubiquitin by multiple receptors may be required. Our results suggest physical models for how ubiquitin receptors communicate with the proteasomal motor proteins.
Collapse
Affiliation(s)
- Mary D Cundiff
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.,Department of Biological Sciences, Carnegie Mellon University, Mellon Institute of Industrial Research, 4400 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Christina M Hurley
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Jeremy D Wong
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Joseph A Boscia
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Aarti Bashyal
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jake Rosenberg
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Eden L Reichard
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.,Department of Chemistry, Lehigh University, 6 E. Packer Ave., Bethlehem, PA, 18015, USA
| | - Nicholas D Nassif
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.,Bronx-Lebanon Hospital Center, 1650 Grand Concourse, Bronx, NY, 10457, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Daniel A Kraut
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
11
|
Lambertos A, Peñafiel R. Polyamine biosynthesis in Xenopus laevis: the xlAZIN2/xlODC2 gene encodes a lysine/ornithine decarboxylase. PLoS One 2019; 14:e0218500. [PMID: 31509528 PMCID: PMC6738921 DOI: 10.1371/journal.pone.0218500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/26/2019] [Indexed: 11/29/2022] Open
Abstract
Ornithine decarboxylase (ODC) is a key enzyme in the biosynthesis of polyamines, organic cations that are implicated in many cellular processes. The enzyme is regulated at the post-translational level by an unusual system that includes antizymes (AZs) and antizyme inhibitors (AZINs). Most studies on this complex regulatory mechanism have been focused on human and rodent cells, showing that AZINs (AZIN1 and AZIN2) are homologues of ODC but devoid of enzymatic activity. Little is known about Xenopus ODC and its paralogues, in spite of the relevance of Xenopus as a model organism for biomedical research. We have used the information existing in different genomic databases to compare the functional properties of the amphibian ODC1, AZIN1 and AZIN2/ODC2, by means of transient transfection experiments of HEK293T cells. Whereas the properties of xlODC1 and xlAZIN1 were similar to those reported for their mammalian orthologues, the former catalyzing the decarboxylation of L-ornithine preferentially to that of L-lysine, xlAZIN2/xlODC2 showed important differences with respect to human and mouse AZIN2. xlAZIN2 did not behave as an antizyme inhibitor, but it rather acts as an authentic decarboxylase forming cadaverine, due to its higher affinity to L-lysine than to L-ornithine as substrate; so, in accordance with this, it should be named as lysine decarboxylase (LDC) or lysine/ornithine decarboxylase (LODC). In addition, AZ1 stimulated the degradation of xlAZIN2 by the proteasome, but the removal of the 21 amino acid C-terminal tail, with a sequence quite different to that of mouse or human ODC, made the protein resistant to degradation. Collectively, our results indicate that in Xenopus there is only one antizyme inhibitor (xlAZIN1) and two decarboxylases, xlODC1 and xlLDC, with clear preferences for L-ornithine and L-lysine, respectively.
Collapse
Affiliation(s)
- Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Rafael Peñafiel
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
12
|
Scheffer J, Hasenjäger S, Taxis C. Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum-associated degradation pathway. Mol Biol Cell 2019; 30:2558-2570. [PMID: 31411939 PMCID: PMC6740197 DOI: 10.1091/mbc.e18-12-0754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein quality mechanisms are fundamental for proteostasis of eukaryotic cells. Endoplasmic reticulum–associated degradation (ERAD) is a well-studied pathway that ensures quality control of secretory and endoplasmic reticulum (ER)–resident proteins. Different branches of ERAD are involved in degradation of malfolded secretory proteins, depending on the localization of the misfolded part, the ER lumen (ERAD-L), the ER membrane (ERAD-M), and the cytosol (ERAD-C). Here we report that modification of several ER transmembrane proteins with the photosensitive degron (psd) module resulted in light-dependent degradation of the membrane proteins via the ERAD-C pathway. We found dependency on the ubiquitylation machinery including the ubiquitin-activating enzyme Uba1, the ubiquitin-conjugating enzymes Ubc6 and Ubc7, and the ubiquitin–protein ligase Doa10. Moreover, we found involvement of the Cdc48 AAA-ATPase complex members Ufd1 and Npl4, as well as the proteasome, in degradation of Sec62-myc-psd. Thus, our work shows that ERAD-C substrates can be systematically generated via synthetic degron constructs, which facilitates future investigations of the ERAD-C pathway.
Collapse
Affiliation(s)
- Johannes Scheffer
- Department of Chemistry/Biochemistry, Philipps-University Marburg, 35043 Marburg, Germany
| | - Sophia Hasenjäger
- Department of Biology/Genetics, Philipps-University Marburg, 35043 Marburg, Germany
| | - Christof Taxis
- Department of Biology/Genetics, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
13
|
Ella H, Reiss Y, Ravid T. The Hunt for Degrons of the 26S Proteasome. Biomolecules 2019; 9:biom9060230. [PMID: 31200568 PMCID: PMC6628059 DOI: 10.3390/biom9060230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of ubiquitin conjugation as a cellular mechanism that triggers proteasomal degradation, the mode of substrate recognition by the ubiquitin-ligation system has been the holy grail of research in the field. This entails the discovery of recognition determinants within protein substrates, which are part of a degron, and explicit E3 ubiquitin (Ub)-protein ligases that trigger their degradation. Indeed, many protein substrates and their cognate E3′s have been discovered in the past 40 years. In the course of these studies, various degrons have been randomly identified, most of which are acquired through post-translational modification, typically, but not exclusively, protein phosphorylation. Nevertheless, acquired degrons cannot account for the vast diversity in cellular protein half-life times. Obviously, regulation of the proteome is largely determined by inherent degrons, that is, determinants integral to the protein structure. Inherent degrons are difficult to predict since they consist of diverse sequence and secondary structure features. Therefore, unbiased methods have been employed for their discovery. This review describes the history of degron discovery methods, including the development of high throughput screening methods, state of the art data acquisition and data analysis. Additionally, it summarizes major discoveries that led to the identification of cognate E3 ligases and hitherto unrecognized complexities of degron function. Finally, we discuss future perspectives and what still needs to be accomplished towards achieving the goal of understanding how the eukaryotic proteome is regulated via coordinated action of components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Hadar Ella
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yuval Reiss
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Tommer Ravid
- Department of Biological Chemistry, Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
14
|
Inobe T, Tsukamoto M, Nozaki M. Proteasome-mediated protein degradation is enhanced by fusion ubiquitin with unstructured degron. Biochem Biophys Res Commun 2018; 501:948-954. [PMID: 29777695 DOI: 10.1016/j.bbrc.2018.05.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Abstract
Methods to induce proteasomal degradation of unwanted proteins are valuable in biomedical studies and thus receive increasing attention. For efficient degradation, the proteasome requires both a ubiquitin tag, which delivers substrates to the proteasome, and an unstructured region, where the proteasome engages the substrate for unfolding and degradation. We fused two degron components into a single molecule to create a fusion protein comprising ubiquitin and Rpn4-derived unstructured region. We demonstrated that the fusion protein retained its function to polyubiquitinate target proteins, thereby inducing more efficient proteasomal target degradation than wild-type ubiquitin in vitro and in cells. These results provide novel strategies for robust degradation enhancement of polyubiquitinated proteins.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Life Sciences and Bioengineering, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan; Graduate School of Innovative Life Sciences, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan.
| | - Masayuki Tsukamoto
- Department of Life Sciences and Bioengineering, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Miyuki Nozaki
- Department of Life Sciences and Bioengineering, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| |
Collapse
|
15
|
Kandasamy G, Andréasson C. Hsp70-Hsp110 chaperones deliver ubiquitin dependent and independent substrates to the 26S proteasome for proteolysis. J Cell Sci 2018; 131:jcs.210948. [DOI: 10.1242/jcs.210948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/14/2018] [Indexed: 02/01/2023] Open
Abstract
In protein quality control, proteotoxic misfolded proteins are recognized by molecular chaperones, ubiquitylated by dedicated quality-control ligases and delivered to 26S proteasome for degradation. The chaperone Hsp70 and its nucleotide exchange factor Hsp110 functions in the degradation of misfolded proteins by the ubiquitin-proteasome system via poorly understood mechanisms. Here we report that yeast Hsp110 (Sse1 and Sse2) functions in the degradation of Hsp70-associated ubiquitin conjugates at the post-ubiquitylation step and is required for the proteasomal degradation of ubiquitin-independent substrates. Hsp110 associates with the 19S regulatory particle of the 26S proteasome and interacts with Hsp70 to facilitate the delivery of Hsp70 substrates for proteasomal degradation. Using a highly defined ubiquitin-independent proteasome substrate we show that the mere introduction of a single Hsp70-binding site renders its degradation dependent on Hsp110. The findings define a dedicated and chaperone-dependent pathway for the efficient shuttling of cellular proteins to the proteasome with profound implications for understanding protein quality control and cellular stress management.
Collapse
Affiliation(s)
- Ganapathi Kandasamy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| |
Collapse
|
16
|
Protein degradation, the main hub in the regulation of cellular polyamines. Biochem J 2017; 473:4551-4558. [PMID: 27941031 DOI: 10.1042/bcj20160519c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and rate-limiting enzyme in the biosynthesis of polyamines, low-molecular-mass aliphatic polycations that are ubiquitously present in all living cells and are essential for fundamental cellular processes. Most cellular polyamines are bound, whereas the free pools, which regulate cellular functions, are subjected to tight regulation. The regulation of the free polyamine pools is manifested by modulation of their synthesis, catabolism, uptake and excretion. A central element that enables this regulation is the rapid degradation of key enzymes and regulators of these processes, particularly that of ODC. ODC degradation is part of an autoregulatory circuit that responds to the intracellular level of the free polyamines. The driving force of this regulatory circuit is a protein termed antizyme (Az). Az stimulates the degradation of ODC and inhibits polyamine uptake. Az acts as a sensor of the free intracellular polyamine pools as it is expressed via a polyamine-stimulated ribosomal frameshifting. Az binds to monomeric ODC subunits to prevent their reassociation into active homodimers and facilitates their ubiquitin-independent degradation by the 26S proteasome. In addition, through a yet unidentified mechanism, Az inhibits polyamine uptake. Interestingly, a protein, termed antizyme inhibitor (AzI) that is highly homologous with ODC, but retains no ornithine decarboxylating activity, seems to regulate cellular polyamines through its ability to negate Az. Overall, the degradation of ODC is a net result of interactions with regulatory proteins and possession of signals that mediate its ubiquitin-independent recognition by the proteasome.
Collapse
|
17
|
Joshi RG, Ratna Prabha C. Degrons of yeast and mammalian ornithine decarboxylase enzymes make potent combination for regulated targeted protein degradation. Appl Microbiol Biotechnol 2016; 101:2905-2917. [DOI: 10.1007/s00253-016-8023-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
|
18
|
Reichard EL, Chirico GG, Dewey WJ, Nassif ND, Bard KE, Millas NE, Kraut DA. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome. J Biol Chem 2016; 291:18547-61. [PMID: 27405762 DOI: 10.1074/jbc.m116.720151] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, proteins are targeted to the proteasome for degradation by polyubiquitination. These proteins bind to ubiquitin receptors, are engaged and unfolded by proteasomal ATPases, and are processively degraded. The factors determining to what extent the proteasome can successfully unfold and degrade a substrate are still poorly understood. We find that the architecture of polyubiquitin chains attached to a substrate affects the ability of the proteasome to unfold and degrade the substrate, with K48- or mixed-linkage chains leading to greater processivity than K63-linked chains. Ubiquitin-independent targeting of substrates to the proteasome gave substantially lower processivity of degradation than ubiquitin-dependent targeting. Thus, even though ubiquitin chains are removed early in degradation, during substrate engagement, remarkably they dramatically affect the later unfolding of a protein domain. Our work supports a model in which a polyubiquitin chain associated with a substrate switches the proteasome into an activated state that persists throughout the degradation process.
Collapse
Affiliation(s)
- Eden L Reichard
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Giavanna G Chirico
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - William J Dewey
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Nicholas D Nassif
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Katelyn E Bard
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Nickolas E Millas
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Daniel A Kraut
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| |
Collapse
|
19
|
Paci A, Liu PXH, Zhang L, Zhao R. The Proteasome Subunit Rpn8 Interacts with the Small Nucleolar RNA Protein (snoRNP) Assembly Protein Pih1 and Mediates Its Ubiquitin-independent Degradation in Saccharomyces cerevisiae. J Biol Chem 2016; 291:11761-75. [PMID: 27053109 DOI: 10.1074/jbc.m115.702043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
Pih1 is a scaffold protein of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) protein complex, which is conserved in fungi and animals. The chaperone-like activity of the R2TP complex has been implicated in the assembly of multiple protein complexes, such as the small nucleolar RNA protein complex. However, the mechanism of the R2TP complex activity in vivo and the assembly of the complex itself are still largely unknown. Pih1 is an unstable protein and tends to aggregate when expressed alone. The C-terminal fragment of Pih1 contains multiple destabilization factors and acts as a degron when fused to other proteins. In this study, we investigated Pih1 interactors and identified a specific interaction between Pih1 and the proteasome subunit Rpn8 in yeast Saccharomyces cerevisiae when HSP90 co-chaperone Tah1 is depleted. By analyzing truncation mutants, we identified that the C-terminal 30 amino acids of Rpn8 are sufficient for the binding to Pih1 C terminus. With in vitro and in vivo degradation assays, we showed that the Pih1 C-terminal fragment Pih1(282-344) is able to induce a ubiquitin-independent degradation of GFP. Additionally, we demonstrated that truncation of the Rpn8 C-terminal disordered region does not affect proteasome assembly but specifically inhibits the degradation of the GFP-Pih1(282-344) fusion protein in vivo and Pih1 in vitro We propose that Pih1 is a ubiquitin-independent proteasome substrate, and the direct interaction with Rpn8 C terminus mediates its proteasomal degradation.
Collapse
Affiliation(s)
- Alexandr Paci
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Peter X H Liu
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Lingjie Zhang
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Rongmin Zhao
- From the Department of Biological Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
20
|
Engineering degrons of yeast ornithine decarboxylase as vehicles for efficient targeted protein degradation. Biochim Biophys Acta Gen Subj 2015; 1850:2452-63. [DOI: 10.1016/j.bbagen.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
|
21
|
Finley D, Chen X, Walters KJ. Gates, Channels, and Switches: Elements of the Proteasome Machine. Trends Biochem Sci 2015; 41:77-93. [PMID: 26643069 DOI: 10.1016/j.tibs.2015.10.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
The proteasome has emerged as an intricate machine that has dynamic mechanisms to regulate the timing of its activity, its selection of substrates, and its processivity. The 19-subunit regulatory particle (RP) recognizes ubiquitinated proteins, removes ubiquitin, and injects the target protein into the proteolytic chamber of the core particle (CP) via a narrow channel. Translocation into the CP requires substrate unfolding, which is achieved through mechanical force applied by a hexameric ATPase ring of the RP. Recent cryoelectron microscopy (cryoEM) studies have defined distinct conformational states of the RP, providing illustrative snapshots of what appear to be progressive steps of substrate engagement. Here, we bring together this new information with molecular analyses to describe the principles of proteasome activity and regulation.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Xiang Chen
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Kylie J Walters
- Protein Processing Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
22
|
Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J Mol Biol 2015; 427:3389-406. [DOI: 10.1016/j.jmb.2015.06.020] [Citation(s) in RCA: 401] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/12/2015] [Accepted: 06/29/2015] [Indexed: 11/23/2022]
|
23
|
Fortmann KT, Lewis RD, Ngo KA, Fagerlund R, Hoffmann A. A Regulated, Ubiquitin-Independent Degron in IκBα. J Mol Biol 2015; 427:2748-56. [PMID: 26191773 DOI: 10.1016/j.jmb.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
Whereas ubiquitin-dependent degrons have been characterized in some detail, how proteins may be targeted to ubiquitin-independent proteasomal degradation remains unclear. Here we show that IκBα contains an ubiquitin-independent degron whose activity is portable to heterologous proteins such as the globular protein GFP (green fluorescent protein) via a proteasome-dependent, ubiquitin-independent, non-lysosomal pathway. The ubiquitin-independent degradation signal resides in an 11-amino-acid sequence, which is not only sufficient but also required for IκBα's short half-life. Finally, we show that this degron's activity is regulated by the interaction with NFκB, which controls its solvent exposure, and we demonstrate that this regulation of the degron's activity is critical for IκBα's signaling functions.
Collapse
Affiliation(s)
- Karen T Fortmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Russell D Lewis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kim A Ngo
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Riku Fagerlund
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Affiliation(s)
- Christof Taxis
- Department of Biology/Genetics, Philipps-University Marburg, Germany
| |
Collapse
|
25
|
Beenukumar RR, Gödderz D, Palanimurugan R, Dohmen RJ. Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome. MICROBIAL CELL 2015; 2:197-207. [PMID: 28357293 PMCID: PMC5349141 DOI: 10.15698/mic2015.06.206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC monomers and targets them to the proteasome. Here, we report that polyamines, aside from their role in the control of OAZ synthesis and stability, directly enhance OAZ-mediated ODC degradation by the proteasome. Using a stable mutant of OAZ, we show that polyamines promote ODC degradation in Saccharomyces cerevisiae cells even when OAZ levels are not changed. Furthermore, polyamines stimulated the in vitro degradation of ODC by the proteasome in a reconstituted system using purified components. In these assays, spermine shows a greater effect than spermidine. By contrast, polyamines do not have any stimulatory effect on the degradation of ubiquitin-dependent substrates.
Collapse
Affiliation(s)
- R R Beenukumar
- Institute for Genetics, University of Cologne, Biocenter, Zülpicher Str. 47a, D-50674 Cologne, Germany
| | - Daniela Gödderz
- Institute for Genetics, University of Cologne, Biocenter, Zülpicher Str. 47a, D-50674 Cologne, Germany. ; Present address: Karolinska Institute, Department for Cell- and Molecular Biology, Von Eulers väg 3, 171 77 Stockholm
| | - R Palanimurugan
- Institute for Genetics, University of Cologne, Biocenter, Zülpicher Str. 47a, D-50674 Cologne, Germany. ; Present address: Center for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, India
| | - R J Dohmen
- Institute for Genetics, University of Cologne, Biocenter, Zülpicher Str. 47a, D-50674 Cologne, Germany
| |
Collapse
|
26
|
Xu L, Long J, Wang P, Liu K, Mai L, Guo Y. Association between the ornithine decarboxylase G316A polymorphism and breast cancer survival. Oncol Lett 2015; 10:485-491. [PMID: 26171056 DOI: 10.3892/ol.2015.3201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 02/19/2015] [Indexed: 11/05/2022] Open
Abstract
Ornithine decarboxylase (ODC) is a significant rate-limiting enzyme in polyamine synthesis, required for normal cell growth, and is highly expressed in various malignancies, including colorectal and breast cancer. In the present study, the associations between the ODC G316A single nucleotide polymorphism (SNP) and breast cancer-specific survival were investigated. In addition, the functional effects of this SNP were examined in the MCF-7 human breast cancer cell line. The present study recruited 300 stage I-III breast cancer cases, which were diagnosed at the Affiliated Cancer Hospital of Zhengzhou University (Zhengzhou, China) between 2002 and 2003, with follow-up visits conducted until May 2013. ODC G316A was genotyped (ODC GG vs. ODC AG/AA) in the 300 cases and the association of the genotypes with cancer-specific survival was analyzed. In the MCF-7 cell line, the ODC allele-specific binding of E-box transcription factors was determined using western blot and chromatin immunoprecipitation assays. Survival differences were observed between the two genotypes: Compared with the ODC GG genotype, patients with ODC GA/AA exhibited significantly higher survival rates (P<0.05). In cultured cells, the ODC SNP, which is flanked by two E-boxes, appeared to predict ODC promoter activity. Furthermore, the E-box activator c-MYC and repressor MAX interactor 1 were found to preferentially bind to ODC minor A-alleles compared with major G-alleles, in cultured MCF-7 cells. In conclusion, the results of the current study suggest that the regulation of ODC may affect survival in breast cancer patients and indicate a model in which the ODC SNP may be protective for breast adenoma recurrence and detrimental for survival following a diagnosis of breast cancer.
Collapse
Affiliation(s)
- Linping Xu
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Jianping Long
- Department of Breast Surgery, Maternity and Child-Care Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Peng Wang
- Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Ling Mai
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yongjun Guo
- Department of Scientific Research and Foreign Affairs, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
27
|
van der Lee R, Lang B, Kruse K, Gsponer J, Sánchez de Groot N, Huynen MA, Matouschek A, Fuxreiter M, Babu MM. Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell Rep 2014; 8:1832-1844. [PMID: 25220455 PMCID: PMC4358326 DOI: 10.1016/j.celrep.2014.07.055] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 06/12/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023] Open
Abstract
Precise control of protein turnover is essential for cellular homeostasis. The ubiquitin-proteasome system is well established as a major regulator of protein degradation, but an understanding of how inherent structural features influence the lifetimes of proteins is lacking. We report that yeast, mouse, and human proteins with terminal or internal intrinsically disordered segments have significantly shorter half-lives than proteins without these features. The lengths of the disordered segments that affect protein half-life are compatible with the structure of the proteasome. Divergence in terminal and internal disordered segments in yeast proteins originating from gene duplication leads to significantly altered half-life. Many paralogs that are affected by such changes participate in signaling, where altered protein half-life will directly impact cellular processes and function. Thus, natural variation in the length and position of disordered segments may affect protein half-life and could serve as an underappreciated source of genetic variation with important phenotypic consequences.
Collapse
Affiliation(s)
- Robin van der Lee
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, the Netherlands.
| | - Benjamin Lang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kai Kruse
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jörg Gsponer
- Centre for High-Throughput Biology, University of British Columbia, East Mall, Vancouver BC V6T 1Z4, Canada
| | | | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, the Netherlands
| | - Andreas Matouschek
- Department of Molecular Biosciences and Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Monika Fuxreiter
- MTA-DE Momentum Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen 4032, Hungary
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
28
|
Erales J, Coffino P. Ubiquitin-independent proteasomal degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:216-21. [PMID: 23684952 DOI: 10.1016/j.bbamcr.2013.05.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
Abstract
Most proteasome substrates are marked for degradation by ubiquitin conjugation, but some are targeted by other means. The properties of these exceptional cases provide insights into the general requirements for proteasomal degradation. Here the focus is on three ubiquitin-independent substrates that have been the subject of detailed study. These are Rpn4, a transcriptional regulator of proteasome homeostasis, thymidylate synthase, an enzyme required for production of DNA precursors and ornithine decarboxylase, the initial enzyme committed to polyamine biosynthesis. It can be inferred from these cases that proteasome association and the presence of an unstructured region are the sole prerequisites for degradation. Based on that inference, artificial substrates have been designed to test the proteasome's capacity for substrate processing and its limitations. Ubiquitin-independent substrates may in some cases be a remnant of the pre-ubiquitome world, but in other cases could provide optimized regulatory solutions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Jenny Erales
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94127, USA
| | | |
Collapse
|
29
|
Characterization of the bipartite degron that regulates ubiquitin-independent degradation of thymidylate synthase. Biosci Rep 2013. [PMID: 23181752 PMCID: PMC3549573 DOI: 10.1042/bsr20120112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TS (thymidylate synthase) is a key enzyme in the de novo biosynthesis of dTMP, and is indispensable for DNA replication. Previous studies have shown that intracellular degradation of the human enzyme [hTS (human thymidylate synthase)] is mediated by the 26S proteasome, and occurs in a ubiquitin-independent manner. Degradation of hTS is governed by a degron that is located at the polypeptide's N-terminus that is capable of promoting the destabilization of heterologous proteins to which it is attached. The hTS degron is bipartite, consisting of two subdomains: an IDR (intrinsically disordered region) that is highly divergent among mammalian species, followed by a conserved amphipathic α-helix (designated hA). In the present report, we have characterized the structure and function of the hTS degron in more detail. We have conducted a bioinformatic analysis of interspecies sequence variation exhibited by the IDR, and find that its hypervariability is not due to diversifying (or positive) selection; rather, it has been subjected to purifying (or negative) selection, although the intensity of such selection is relaxed or weakened compared with that exerted on the rest of the molecule. In addition, we have verified that both subdomains of the hTS degron are required for full activity. Furthermore, their co-operation does not necessitate that they are juxtaposed, but is maintained when they are physically separated. Finally, we have identified a 'cryptic' degron at the C-terminus of hTS, which is activated by the N-terminal degron and appears to function only under certain circumstances; its role in TS metabolism is not known.
Collapse
|
30
|
Polyamine metabolism in fungi with emphasis on phytopathogenic species. JOURNAL OF AMINO ACIDS 2012; 2012:837932. [PMID: 22957208 PMCID: PMC3432380 DOI: 10.1155/2012/837932] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/23/2012] [Indexed: 12/23/2022]
Abstract
Polyamines are essential metabolites present in all living organisms, and this subject has attracted the attention of researchers worldwide interested in defining their mode of action in the variable cell functions in which they are involved, from growth to development and differentiation. Although the mechanism of polyamine synthesis is almost universal, different biological groups show interesting differences in this aspect that require to be further analyzed. For these studies, fungi represent interesting models because of their characteristics and facility of analysis. During the last decades fungi have contributed to the understanding of polyamine metabolism. The use of specific inhibitors and the isolation of mutants have allowed the manipulation of the pathway providing information on its regulation. During host-fungus interaction polyamine metabolism suffers striking changes in response to infection, which requires examination. Additionally the role of polyamine transporter is getting importance because of its role in polyamine regulation. In this paper we analyze the metabolism of polyamines in fungi, and the difference of this process with other biological groups. Of particular importance is the difference of polyamine biosynthesis between fungi and plants, which makes this process an attractive target for the control of phytopathogenic fungi.
Collapse
|
31
|
Ha SW, Ju D, Xie Y. The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits. Biochem Biophys Res Commun 2012; 419:226-31. [PMID: 22349505 DOI: 10.1016/j.bbrc.2012.01.152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 01/31/2012] [Indexed: 01/15/2023]
Abstract
The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. Inspection of its amino acid sequence revealed that the Ub-independent degron of Rpn4 consists of an intrinsically disordered domain followed by a folded segment. Using a photo-crosslinking-label transfer method, we captured three 19S RP subunits (Rpt1, Rpn2 and Rpn5) that bind the Ub-independent degron of Rpn4. This is the first time that specific 19S RP subunits have been identified interacting with a Ub-independent degron. This study provides insight into the mechanism by which Ub-independent substrates are recruited to the 26S proteasome.
Collapse
Affiliation(s)
- Seung-Wook Ha
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
32
|
Melo SP, Barbour KW, Berger FG. Cooperation between an intrinsically disordered region and a helical segment is required for ubiquitin-independent degradation by the proteasome. J Biol Chem 2011; 286:36559-67. [PMID: 21878626 DOI: 10.1074/jbc.m111.274258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasomal complex, which is responsible for the bulk of protein degradation within the cell, recognizes its target substrates via covalently linked polyubiquitin moieties. However, a small but growing number of proteasomal substrates are degraded without a requirement for ubiquitinylation. One such substrate is the pyrimidine biosynthetic enzyme thymidylate synthase (EC 2.1.1.45), which catalyzes the synthesis of TMP and is the sole de novo source of TTP for DNA replication and repair. Previous work showed that intracellular proteolysis of human thymidylate synthase is directed by a degron at the polypeptide's N-terminal end, composed of an intrinsically disordered region (IDR) followed by a highly conserved amphipathic α-helix (hA). In the present report, we show that the hA helix does not function simply as an extension or scaffold for the IDR; rather, it provides a specific structural component that is necessary for degradation. Furthermore, its helical conformation is required for this function. We demonstrate that small domains from heterologous proteins can substitute for the IDR and the hA helix of human thymidylate synthase, indicating that the degradation-promoting function of these regions is not sequence-specific. The results, in general, indicate that cooperation between intrinsically disordered domains and α-helical segments is required for ubiquitin-independent degradation by the proteasome. There appears to be little sequence constraint on the ability of these regions to function as degron constituents. Rather, it is the overall conformation (or lack thereof) that is critical.
Collapse
Affiliation(s)
- Sandra P Melo
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
33
|
Homma K, Fukuchi S, Nishikawa K, Sakamoto S, Sugawara H. Intrinsically disordered regions have specific functions in mitochondrial and nuclear proteins. MOLECULAR BIOSYSTEMS 2011; 8:247-55. [PMID: 21866296 DOI: 10.1039/c1mb05208j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins in general consist not only of globular structural domains (SDs), but also of intrinsically disordered regions (IDRs), i.e. those that do not assume unique three-dimensional structures by themselves. Although IDRs are especially prevalent in eukaryotic proteins, the functions are mostly unknown. To elucidate the functions of IDRs, we first divided eukaryotic proteins into subcellular localizations, identified IDRs by the DICHOT system that accurately divides entire proteins into SDs and IDRs, and examined charge and hydropathy characteristics. On average, mitochondrial proteins have IDRs more positively charged than SDs. Comparison of mitochondrial proteins with orthologous prokaryotic proteins showed that mitochondrial proteins tend to have segments attached at both N and C termini, high fractions of which are IDRs. Segments added to the N-terminus of mitochondrial proteins contain not only signal sequences but also mature proteins and exhibit a positive charge gradient, with the magnitude increasing toward the N-terminus. This finding is consistent with the notion that positively charged residues are added to the N-terminus of proteobacterial proteins so that the extended proteins can be chromosomally encoded and efficiently transported to mitochondria after translation. By contrast, nuclear proteins generally have positively charged SDs and negatively charged IDRs. Among nuclear proteins, DNA-binding proteins have enhanced charge tendencies. We propose that SDs in nuclear proteins tend to be positively charged because of the need to bind to negatively charged nucleotides, while IDRs tend to be negatively charged to interact with other proteins or other regions of the same proteins to avoid premature proteasomal degradation.
Collapse
Affiliation(s)
- Keiichi Homma
- Center for Information Biology-DNA Data Bank of Japan, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
34
|
Suskiewicz MJ, Sussman JL, Silman I, Shaul Y. Context-dependent resistance to proteolysis of intrinsically disordered proteins. Protein Sci 2011; 20:1285-97. [PMID: 21574196 DOI: 10.1002/pro.657] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/05/2011] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs), also known as intrinsically unstructured proteins (IUPs), lack a well-defined 3D structure in vitro and, in some cases, also in vivo. Here, we discuss the question of proteolytic sensitivity of IDPs, with a view to better explaining their in vivo characteristics. After an initial assessment of the status of IDPs in vivo, we briefly survey the intracellular proteolytic systems. Subsequently, we discuss the evidence for IDPs being inherently sensitive to proteolysis. Such sensitivity would not, however, result in enhanced degradation if the protease-sensitive sites were sequestered. Accordingly, IDP access to and degradation by the proteasome, the major proteolytic complex within eukaryotic cells, are discussed in detail. The emerging picture appears to be that IDPs are inherently sensitive to proteasomal degradation along the lines of the "degradation by default" model. However, available data sets of intracellular protein half-lives suggest that intrinsic disorder does not imply a significantly shorter half-life. We assess the power of available systemic half-life measurements, but also discuss possible mechanisms that could protect IDPs from intracellular degradation. Finally, we discuss the relevance of the proteolytic sensitivity of IDPs to their function and evolution.
Collapse
Affiliation(s)
- Marcin J Suskiewicz
- The Israel Structural Proteomics Center, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|