1
|
Ahmed N, Ahmed N, Bilodeau DA, Pezacki JP. An unnatural enzyme with endonuclease activity towards small non-coding RNAs. Nat Commun 2023; 14:3777. [PMID: 37355703 PMCID: PMC10290691 DOI: 10.1038/s41467-023-39105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
Endonucleases are enzymes that cleave internal phosphodiester bonds within double-stranded DNA or RNA and are essential for biological functions. Herein, we use genetic code expansion to create an unnatural endonuclease that cleaves non-coding RNAs including short interfering RNA (siRNA) and microRNAs (miRNAs), a function that does not exist in nature. We introduce a metal-chelating unnatural amino acid, (2,2'-bipyridin-5-yl)alanine (BpyAla) to impart endonuclease activity to the viral suppressor of RNA silencing protein p19. Upon binding of copper, the mutant p19-T111BpyAla displays catalytic site-specific cleavage of siRNA and human miRNAs. Catalysis is confirmed using fluorescence polarization and fluorescence turn-on. Global miRNA profiling reveals that the engineered enzyme cleaves miRNAs in a human cell line. The therapeutic potential is demonstrated by targeting miR-122, a critical host factor for the hepatitis C virus (HCV). Unnatural endonuclease function is shown to deplete miR-122 levels with similar effects to an antagomir that reduces HCV levels therapeutically.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
2
|
Jay F, Brioudes F, Voinnet O. A contemporary reassessment of the enhanced transient expression system based on the tombusviral silencing suppressor protein P19. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:186-204. [PMID: 36403224 PMCID: PMC10107623 DOI: 10.1111/tpj.16032] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Transient transgenic expression accelerates pharming and facilitates protein studies in plants. One embodiment of the approach involves leaf infiltration of Agrobacterium strains whose T-DNA is engineered with the gene(s) of interest. However, gene expression during 'agro-infiltration' is intrinsically and universally impeded by the onset of post-transcriptional gene silencing (PTGS). Nearly 20 years ago, a simple method was developed, whereby co-expression of the tombusvirus-encoded P19 protein suppresses PTGS and thus enhances transient gene expression. Yet, how PTGS is activated and suppressed by P19 during the process has remained unclear to date. Here, we address these intertwined questions in a manner also rationalizing how vastly increased protein yields are achieved using a minimal viral replicon as a transient gene expression vector. We also explore, in side-by-side analyses, why some proteins do not accumulate to the expected high levels in the assay, despite vastly increased mRNA levels. We validate that enhanced co-expression of multiple constructs is achieved within the same transformed cells, and illustrate how the P19 system allows rapid protein purification for optimized downstream in vitro applications. Finally, we assess the suitability of the P19 system for subcellular localization studies - an originally unanticipated, yet increasingly popular application - and uncover shortcomings of this specific implement. In revisiting the P19 system using contemporary knowledge, this study sheds light onto its hitherto poorly understood mechanisms while further illustrating its versatility but also some of its limits.
Collapse
Affiliation(s)
- Florence Jay
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Universitätstrasse 28092ZürichSwitzerland
| | - Florian Brioudes
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Universitätstrasse 28092ZürichSwitzerland
| | - Olivier Voinnet
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Universitätstrasse 28092ZürichSwitzerland
| |
Collapse
|
3
|
Tsouris A, Schacherer J, Ishchuk OP. RNA Interference (RNAi ) as a Tool for High-Resolution Phenotypic Screening of the Pathogenic Yeast Candida glabrata. Methods Mol Biol 2022; 2477:313-330. [PMID: 35524125 DOI: 10.1007/978-1-0716-2257-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
After its discovery RNA interference (RNAi) has become a powerful tool to study gene functions in different organisms. RNAi has been applied at genome-wide scale and can be nowadays performed using high-throughput automated systems (robotics). The simplest RNAi process requires the expression of two genes (Dicer and Argonaute) to function. To initiate the silencing, constructs generating either double-strand RNA or antisense RNA are required. Recently, RNAi was reconstituted by expressing Saccharomyces castellii genes in the human pathogenic yeast Candida glabrata and was used to identify new genes related to the virulence of this pathogen.In this chapter, we describe a method to make the C. glabrata pathogenic yeast competent for RNAi and to use RNA silencing as a tool for low- or high-resolution phenotypic screening in this species.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
4
|
Rahman A, Sinha KV, Sopory SK, Sanan-Mishra N. Influence of virus-host interactions on plant response to abiotic stress. PLANT CELL REPORTS 2021; 40:2225-2245. [PMID: 34050797 DOI: 10.1007/s00299-021-02718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Environmental factors play a significant role in controlling growth, development and defense responses of plants. Changes in the abiotic environment not only significantly alter the physiological and molecular pathways in plants, but also result in attracting the insect pests that carry a payload of viruses. Invasion of plants by viruses triggers the RNA silencing based defense mechanism in plants. In counter defense the viruses have gained the ability to suppress the host RNA silencing activities. A new paradigm has emerged, with the recognition that plant viruses also have the intrinsic capacity to modulate host plant response to environmental cues, in an attempt to favour their own survival. Thus, plant-virus interactions provide an excellent system to understand the signals in crosstalk between biotic (virus) and abiotic stresses. In this review, we have summarized the basal plant defense responses to pathogen invasion while emphasizing on the role of RNA silencing as a front line of defense response to virus infection. The emerging knowledge indicates overlap between RNA silencing with the innate immune responses during antiviral defense. The suppressors of RNA silencing serve as Avr proteins, which can be recognized by the host R proteins. The defense signals also function in concert with the phytohormones to influence plant responses to abiotic stresses. The current evidence on the role of virus induced host tolerance to abiotic stresses is also discussed.
Collapse
Affiliation(s)
- Adeeb Rahman
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kumari Veena Sinha
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
5
|
Mousavi SR, Sajjadi MS, Khosravian F, Feizbakhshan S, Salmanizadeh S, Esfahani ZT, Beni FA, Arab A, Kazemi M, Shahzamani K, Sami R, Hosseinzadeh M, Salehi M, Lotfi H. Dysregulation of RNA interference components in COVID-19 patients. BMC Res Notes 2021; 14:401. [PMID: 34715923 PMCID: PMC8554738 DOI: 10.1186/s13104-021-05816-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus causing severe respiratory illness (COVID-19). This virus was initially identified in Wuhan city, a populated area of the Hubei province in China, and still remains one of the major global health challenges. RNA interference (RNAi) is a mechanism of post-transcriptional gene silencing that plays a crucial role in innate viral defense mechanisms by inhibiting the virus replication as well as expression of various viral proteins. Dicer, Drosha, Ago2, and DGCR8 are essential components of the RNAi system, which is supposed to be dysregulated in COVID-19 patients. This study aimed to assess the expression level of the mentioned mRNAs in COVID-19patients compared to healthy individuals. RESULTS Our findings demonstrated that the expression of Dicer, Drosha, and Ago2 was statistically altered in COVID-19 patients compared to healthy subjects. Ultimately, the RNA interference mechanism as a crucial antiviral defense system was suggested to be dysregulated in COVID-19 patients.
Collapse
Affiliation(s)
- Seyyed Reza Mousavi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Sadat Sajjadi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Khosravian
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Feizbakhshan
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Taherian Esfahani
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faeze Ahmadi Beni
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ameneh Arab
- Noor Educational and Medical Center،Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ramin Sami
- Department of Pulmonology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Hosseinzadeh
- Craniofacial and Cleft Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, 8175954319, Isfahan, Iran.
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Physiologically based pharmacokinetic (PBPK) modeling of RNAi therapeutics: Opportunities and challenges. Biochem Pharmacol 2021; 189:114468. [PMID: 33577889 DOI: 10.1016/j.bcp.2021.114468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is a powerful tool with many demonstrated applications in various phases of drug development and regulatory review. RNA interference (RNAi)-based therapeutics are a class of drugs that have unique pharmacokinetic properties and mechanisms of action. With an increasing number of RNAi therapeutics in the pipeline and reaching the market, there is a considerable amount of active research in this area requiring a multidisciplinary approach. The application of PBPK models for RNAi therapeutics is in its infancy and its utility to facilitate the development of this new class of drugs is yet to be fully evaluated. From this perspective, we briefly discuss some of the current computational modeling approaches used in support of efficient development and approval of RNAi therapeutics. Considerations for PBPK model development are highlighted both in a relative context between small molecules and large molecules such as monoclonal antibodies and as it applies to RNAi therapeutics. In addition, the prospects for drawing upon other recognized avenues of PBPK modeling and some of the foreseeable challenges in PBPK model development for these chemical modalities are briefly discussed. Finally, an exploration of the potential application of PBPK model development for RNAi therapeutics is provided. We hope these preliminary thoughts will help initiate a dialogue between scientists in the relevant sectors to examine the value of PBPK modeling for RNAi therapeutics. Such evaluations could help standardize the practice in the future and support appropriate guidance development for strengthening the RNAi therapeutics development program.
Collapse
|
7
|
Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. eLife 2020; 9:e55542. [PMID: 33064077 PMCID: PMC7567605 DOI: 10.7554/elife.55542] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, establishment of de novo DNA methylation is regulated by the RNA-directed DNA methylation (RdDM) pathway. RdDM machinery is known to concentrate in the Cajal body, but the biological significance of this localization has remained elusive. Here, we show that the antiviral methylation of the Tomato yellow leaf curl virus (TYLCV) genome requires the Cajal body in Nicotiana benthamiana cells. Methylation of the viral genome is countered by a virus-encoded protein, V2, which interacts with the central RdDM component AGO4, interfering with its binding to the viral DNA; Cajal body localization of the V2-AGO4 interaction is necessary for the viral protein to exert this function. Taken together, our results draw a long sought-after functional connection between RdDM, the Cajal body, and antiviral DNA methylation, paving the way for a deeper understanding of DNA methylation and antiviral defences in plants.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yi Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Li He
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Guiping Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Watanabe M, Iwakawa HO, Tadakuma H, Tomari Y. Biochemical and single-molecule analyses of the RNA silencing suppressing activity of CrPV-1A. Nucleic Acids Res 2017; 45:10837-10844. [PMID: 28977639 PMCID: PMC5737572 DOI: 10.1093/nar/gkx748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/17/2017] [Indexed: 11/12/2022] Open
Abstract
Viruses often encode viral silencing suppressors (VSSs) to counteract the hosts' RNA silencing activity. The cricket paralysis virus 1A protein (CrPV-1A) is a unique VSS that binds to a specific Argonaute protein (Ago)-the core of the RNA-induced silencing complex (RISC)-in insects to suppress its target cleavage reaction. However, the precise molecular mechanism of CrPV-1A action remains unclear. Here we utilized biochemical and single-molecule imaging approaches to analyze the effect of CrPV-1A during target recognition and cleavage by Drosophila Ago2-RISC. Our results suggest that CrPV-1A obstructs the initial target searching by Ago2-RISC via base pairing in the seed region. The combination of biochemistry and single-molecule imaging may help to pave the way for mechanistic understanding of VSSs with diverse functions.
Collapse
Affiliation(s)
- Mariko Watanabe
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiro-Oki Iwakawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hisashi Tadakuma
- Institute for Protein Research, Osaka University, Suita-shi, Osaka 565-0871, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
9
|
Yang NJ, Kauke MJ, Sun F, Yang LF, Maass KF, Traxlmayr MW, Yu Y, Xu Y, Langer RS, Anderson DG, Wittrup KD. Cytosolic delivery of siRNA by ultra-high affinity dsRNA binding proteins. Nucleic Acids Res 2017. [PMID: 28641400 PMCID: PMC5570165 DOI: 10.1093/nar/gkx546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein-based methods of siRNA delivery are capable of uniquely specific targeting, but are limited by technical challenges such as low potency or poor biophysical properties. Here, we engineered a series of ultra-high affinity siRNA binders based on the viral protein p19 and developed them into siRNA carriers targeted to the epidermal growth factor receptor (EGFR). Combined in trans with a previously described endosome-disrupting agent composed of the pore-forming protein Perfringolysin O (PFO), potent silencing was achieved in vitro with no detectable cytotoxicity. Despite concerns that excessively strong siRNA binding could prevent the discharge of siRNA from its carrier, higher affinity continually led to stronger silencing. We found that this improvement was due to both increased uptake of siRNA into the cell and improved pharmacodynamics inside the cell. Mathematical modeling predicted the existence of an affinity optimum that maximizes silencing, after which siRNA sequestration decreases potency. Our study characterizing the affinity dependence of silencing suggests that siRNA-carrier affinity can significantly affect the intracellular fate of siRNA and may serve as a handle for improving the efficiency of delivery. The two-agent delivery system presented here possesses notable biophysical properties and potency, and provide a platform for the cytosolic delivery of nucleic acids.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monique J Kauke
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fangdi Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucy F Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Katie F Maass
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael W Traxlmayr
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yao Yu
- Protein Analytics, Adimab LLC, Lebanon, NH 03766, USA
| | - Yingda Xu
- Protein Analytics, Adimab LLC, Lebanon, NH 03766, USA
| | - Robert S Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Kontra L, Csorba T, Tavazza M, Lucioli A, Tavazza R, Moxon S, Tisza V, Medzihradszky A, Turina M, Burgyán J. Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants. PLoS Pathog 2016; 12:e1005935. [PMID: 27711201 PMCID: PMC5053613 DOI: 10.1371/journal.ppat.1005935] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5' nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination.
Collapse
Affiliation(s)
- Levente Kontra
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
- Szent István University, Gödöllő, Hungary
| | - Tibor Csorba
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Mario Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia, Rome, Italy
| | - Alessandra Lucioli
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia, Rome, Italy
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia, Rome, Italy
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Viktória Tisza
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Anna Medzihradszky
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Massimo Turina
- National Research Council, Institute for Sustainable Plant Protection, Torino, Italy
| | - József Burgyán
- National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő, Hungary
| |
Collapse
|
11
|
Hedil M, Kormelink R. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins. Viruses 2016; 8:v8070208. [PMID: 27455310 PMCID: PMC4974542 DOI: 10.3390/v8070208] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| |
Collapse
|
12
|
A Novel p19 Fusion Protein as a Delivery Agent for Short-interfering RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e303. [PMID: 27045207 PMCID: PMC5014518 DOI: 10.1038/mtna.2016.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/06/2016] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) is the biological mechanism that allows targeted gene knockdown through the addition of exogenous short-interfering RNAs (siRNAs) to cells and organisms. RNAi has revolutionized cell biology and holds enormous potential for human therapy. One of the major challenges facing RNAi as a therapy is achieving efficient and nontoxic delivery of siRNAs into the cell cytoplasm, since their highly anionic character precludes their passage across the cell membrane unaided. Herein, we report a novel fusion protein between the tombusviral p19 protein, which binds siRNAs with picomolar affinity, and the “TAT” peptide (RKKRRQRRRR), which is derived from the transactivator of transcription (TAT) protein of the human immunodeficiency virus and acts as a cell-penetrating peptide. We demonstrate that this fusion protein, 2x-p19-TAT, delivers siRNAs into the cytoplasm of human hepatoma cells where they elicit potent and sustained gene knockdown activity without toxic effects.
Collapse
|
13
|
Csorba T, Kontra L, Burgyán J. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 2015; 479-480:85-103. [DOI: 10.1016/j.virol.2015.02.028] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/31/2015] [Accepted: 02/16/2015] [Indexed: 12/27/2022]
|
14
|
Isolation of small interfering RNAs using viral suppressors of RNA interference. Methods Mol Biol 2014; 1173:147-55. [PMID: 24920367 DOI: 10.1007/978-1-4939-0931-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The tombusvirus P19 VSR (viral suppressor of RNA interference) binds siRNAs with high affinity, whereas the Flockhouse Virus (FHV) B2 VSR binds both long double-stranded RNA (dsRNA) and small interfering RNAs (siRNAs). Both VSRs are small proteins and function in plant and animal cells. Fusing a Nuclear Localization Signal (NLS) to the N-terminus shifts the localization of the VSR from cytoplasmic to nuclear, allowing researchers to specifically probe the subcellular distribution of siRNAs, and to investigate the function of nuclear and cytoplasmic siRNAs. This chapter provides a detailed protocol for the immunoprecipitation of siRNAs bound to epitope-tagged VSR and subsequent analysis by 3'-end-labeling using cytidine-3',5'-bis phosphate ([5'-(32)P]pCp) and northern blotting.
Collapse
|
15
|
Aqil M, Naqvi AR, Bano AS, Jameel S. The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference. PLoS One 2013; 8:e74472. [PMID: 24023945 PMCID: PMC3762824 DOI: 10.1371/journal.pone.0074472] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022] Open
Abstract
The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR).
Collapse
Affiliation(s)
- Madeeha Aqil
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Afsar Raza Naqvi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Aalia Shahr Bano
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Shahid Jameel
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
16
|
Stankiewicz TR, Schroeder EK, Kelsey NA, Bouchard RJ, Linseman DA. C-terminal binding proteins are essential pro-survival factors that undergo caspase-dependent downregulation during neuronal apoptosis. Mol Cell Neurosci 2013; 56:322-332. [PMID: 23859824 DOI: 10.1016/j.mcn.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022] Open
Abstract
C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficient to cause CGN apoptosis. Similarly, the CtBP inhibitor, 4-methylthio-2-oxobutyric acid, induces expression of the CtBP target Noxa and causes actinomycin-sensitive CGN apoptosis. Unexpectedly, we found that the mechanism of CtBP downregulation in CGNs undergoing apoptosis varies in a stimulus-specific manner involving either the proteasome or caspases. In the case of CGNs deprived of depolarizing potassium (5K apoptotic condition), caspases appear to play a dominant role in CtBP downregulation. However, incubation in 5K does not enhance the kinetics of CtBP1 degradation and recombinant CtBP1 is not cleaved in vitro by caspase-3. In addition, 5K has no significant effect on CtBP transcript expression. Finally, mouse embryonic stem cells display caspase-dependent downregulation of CtBP1 following exposure to staurosporine, an effect that is not observed in DGCR8 knockout cells which are deficient in miRNA processing. These data identify caspase-dependent downregulation of CtBPs as an alternative mechanism to the proteasome for regulation of these transcriptional co-repressors in neurons undergoing apoptosis. Moreover, caspases appear to regulate CtBP expression indirectly, at a post-transcriptional level, and via a mechanism that is dependent upon miRNA processing. We conclude that CtBPs are essential pro-survival proteins in neurons and their downregulation contributes significantly to neuronal apoptosis via the de-repression of pro-apoptotic genes.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA.,Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA
| | - Emily K Schroeder
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA
| | - Natalie A Kelsey
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA
| | - Ron J Bouchard
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA.,Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA.,Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
17
|
Danielson DC, Pezacki JP. Studying the RNA silencing pathway with the p19 protein. FEBS Lett 2013; 587:1198-205. [PMID: 23376479 DOI: 10.1016/j.febslet.2013.01.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 01/05/2023]
Abstract
The origins of the RNA silencing pathway are in defense against invading viruses and in response, viruses have evolved counter-measures to interfere with the host pathway. The p19 protein is expressed by tombusviruses as a suppressor of RNA silencing and functions to sequester small RNA duplexes, thereby preventing induction of the pathway. p19 exhibits size-specific and sequence-independent binding of its small RNA ligands, binding with high affinity to duplexes 20-22 nucleotides long. p19's binding specificity and its ability to sequester small RNAs has made it a unique protein-based tool for probing the molecular mechanisms of the highly complex RNA silencing pathway in a variety of systems. Furthermore, protein engineering of this 'molecular caliper' promises novel applications in biotechnology and medicine where small RNA molecules are of remarkable interest given their potent gene regulatory abilities.
Collapse
Affiliation(s)
- Dana C Danielson
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Canada K1H 8M5
| | | |
Collapse
|
18
|
Hoerter JAH, Krishnan V, Lionberger TA, Walter NG. siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract. PLoS One 2011; 6:e20359. [PMID: 21647381 PMCID: PMC3103583 DOI: 10.1371/journal.pone.0020359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/20/2011] [Indexed: 11/18/2022] Open
Abstract
RNA interference (RNAi) is a set of intracellular pathways in eukaryotes that controls both exogenous and endogenous gene expression. The power of RNAi to knock down (silence) any gene of interest by the introduction of synthetic small-interfering (si)RNAs has afforded powerful insight into biological function through reverse genetic approaches and has borne a new field of gene therapeutics. A number of questions are outstanding concerning the potency of siRNAs, necessitating an understanding of how short double-stranded RNAs are processed by the cell. Recent work suggests unmodified siRNAs are protected in the intracellular environment, although the mechanism of protection still remains unclear. We have developed a set of doubly-fluorophore labeled RNAs (more precisely, RNA/DNA chimeras) to probe in real-time the stability of siRNAs and related molecules by fluorescence resonance energy transfer (FRET). We find that these RNA probes are substrates for relevant cellular degradative processes, including the RNase H1 mediated degradation of an DNA/RNA hybrid and Dicer-mediated cleavage of a 24-nucleotide (per strand) double-stranded RNA. In addition, we find that 21- and 24-nucleotide double-stranded RNAs are relatively protected in human cytosolic cell extract, but less so in blood serum, whereas an 18-nucleotide double-stranded RNA is less protected in both fluids. These results suggest that RNAi effector RNAs are specifically protected in the cellular environment and may provide an explanation for recent results showing that unmodified siRNAs in cells persist intact for extended periods of time.
Collapse
Affiliation(s)
- John A. H. Hoerter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
| | - Vishalakshi Krishnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
| | - Troy A. Lionberger
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nils G. Walter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America,
- * E-mail:
| |
Collapse
|
19
|
MicroRNAs and human retroviruses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:686-93. [PMID: 21640212 PMCID: PMC3177989 DOI: 10.1016/j.bbagrm.2011.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that control a multitude of critical processes in mammalian cells. Increasing evidence has emerged that host miRNAs serve in animal cells to restrict viral infections. In turn, many viruses encode RNA silencing suppressors (RSS) which are employed to moderate the potency of the cell's miRNA selection against viral replication. Some viruses also encode viral miRNAs. In this review, we summarize findings from human immunodeficiency virus type 1 (HIV-1) and human T-cell leukemia virus type 1 (HTLV-1) that illustrate examples of host cell miRNAs that target the viruses, of RSS encoded by viruses, and of host cell miRNA profile changes that are seen in infected cells. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.
Collapse
|