1
|
Choudhury J, Yonezawa K, Anu A, Shimizu N, Chaudhuri B. SAXS/WAXS data of conformationally flexible ribose binding protein. Data Brief 2024; 52:109932. [PMID: 38178847 PMCID: PMC10764985 DOI: 10.1016/j.dib.2023.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Modern artificial intelligence-based protein structure prediction methods, such as Alphafold2, can predict structures of folded proteins with reasonable accuracy. However, Alphafold2 provides a static view of a protein, which does not show the conformational variability of the protein, domain movement in a multi-domain protein, or ligand-induced conformational changes it might undergo in solution. Small-angle X-ay scattering (SAXS) and wide-angle X-ray scattering (WAXS) are solution techniques that can aid in integrative modeling of conformationally flexible proteins, or in validating their predicted ensemble structures. While SAXS is sensitive to global structural features, WAXS can expand the scope of structural modeling by including information about local structural changes. We present SAXS and WAXS datasets obtained from conformationally flexible d-ribose binding protein (RBP) from Escherichia coli in the ribose bound and unbound forms. SAXS/WAXS datasets of RBP provided here may aid in method development efforts for more accurate prediction of structural ensembles of conformationally flexible proteins, and their conformational changes.
Collapse
Affiliation(s)
- Jagrity Choudhury
- GN Ramachandran Protein Center, CSIR Institute of Microbial Technology, Chandigarh 160036, India
| | - Kento Yonezawa
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Anu Anu
- GN Ramachandran Protein Center, CSIR Institute of Microbial Technology, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Nobutaka Shimizu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Barnali Chaudhuri
- GN Ramachandran Protein Center, CSIR Institute of Microbial Technology, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| |
Collapse
|
2
|
Thalhammer A, Bröker NK. Biophysical Approaches for the Characterization of Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:199-229. [PMID: 36178628 DOI: 10.1007/978-1-0716-2624-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.
Collapse
Affiliation(s)
- Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Potsdam, Germany.
| | - Nina K Bröker
- Physical Biochemistry, University of Potsdam, Potsdam, Germany
- Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Nagatomo S, Nagai M, Kitagawa T. Structural origin of cooperativity in human hemoglobin: a view from different roles of α and β subunits in the α2β2 tetramer. Biophys Rev 2022; 14:483-498. [PMID: 35528033 PMCID: PMC9043147 DOI: 10.1007/s12551-022-00945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
This mini-review, mainly based on our resonance Raman studies on the structural origin of cooperative O2 binding in human adult hemoglobin (HbA), aims to answering why HbA is a tetramer consisting of two α and two β subunits. Here, we focus on the Fe-His bond, the sole coordination bond connecting heme to a globin. The Fe-His stretching frequencies reflect the O2 affinity and also the magnitude of strain imposed through globin by inter-subunit interactions, which is the origin of cooperativity. Cooperativity was first explained by Monod, Wyman, and Changeux, referred to as the MWC theory, but later explained by the two tertiary states (TTS) theory. Here, we related the higher-order structures of globin observed mainly by vibrational spectroscopy to the MWC theory. It became clear from the recent spectroscopic studies, X-ray crystallographic analysis, and mutagenesis experiments that the Fe-His bonds exhibit different roles between the α and β subunits. The absence of the Fe-His bond in the α subunit in some mutant and artificial Hbs inhibits T to R quaternary structural change upon O2 binding. However, its absence from the β subunit in mutant and artificial Hbs simply enhances the O2 affinity of the α subunit. Accordingly, the inter-subunit interactions between α and β subunits are nonsymmetric but substantial for HbA to perform cooperative O2 binding.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003 Japan
- School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0942 Japan
| | - Teizo Kitagawa
- Graduate School of Life Science, Picobiology Institute, University of Hyogo, Kouto, Kamigori, Ako-gun Hyogo, 678-1297 Japan
| |
Collapse
|
4
|
Abstract
This chapter reviews how allosteric (heterotrophic) effectors and natural mutations impact hemoglobin (Hb) primary physiological function of oxygen binding and transport. First, an introduction about the structure of Hb is provided, including the ensemble of tense and relaxed Hb states and the dynamic equilibrium of Hb multistate. This is followed by a brief review of Hb variants with altered Hb structure and oxygen binding properties. Finally, a review of different endogenous and exogenous allosteric effectors of Hb is presented with particular emphasis on the atomic interactions of synthetic ligands with altered allosteric function of Hb that could potentially be harnessed for the treatment of diseases.
Collapse
Affiliation(s)
- Mostafa H Ahmed
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Mohini S Ghatge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23219, USA. .,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA.
| |
Collapse
|
5
|
Macdonald R, Mahoney BJ, Ellis-Guardiola K, Maresso A, Clubb RT. NMR experiments redefine the hemoglobin binding properties of bacterial NEAr-iron Transporter domains. Protein Sci 2019; 28:1513-1523. [PMID: 31120610 DOI: 10.1002/pro.3662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/14/2019] [Indexed: 01/02/2023]
Abstract
Iron is a versatile metal cofactor that is used in a wide range of essential cellular processes. During infections, many bacterial pathogens acquire iron from human hemoglobin (Hb), which contains the majority of the body's total iron content in the form of heme (iron protoporphyrin IX). Clinically important Gram-positive bacterial pathogens scavenge heme using an array of secreted and cell-wall-associated receptors that contain NEAr-iron Transporter (NEAT) domains. Experimentally defining the Hb binding properties of NEAT domains has been challenging, limiting our understanding of their function in heme uptake. Here we show that solution-state NMR spectroscopy is a powerful tool to define the Hb binding properties of NEAT domains. The utility of this method is demonstrated using the NEAT domains from Bacillus anthracis and Listeria monocytogenes. Our results are compatible with the existence of at least two types of NEAT domains that are capable of interacting with either Hb or heme. These binding properties can be predicted from their primary sequences, with Hb- and heme-binding NEAT domains being distinguished by the presence of (F/Y)YH(Y/F) and S/YXXXY motifs, respectively. The results of this work should enable the functions of a wide range of NEAT domain containing proteins in pathogenic bacteria to be reliably predicted.
Collapse
Affiliation(s)
- Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, 90095
| | - Brendan J Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, 90095
| | - Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, 90095
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, 90095.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, 90095
| |
Collapse
|
6
|
Cho HS, Schotte F, Stadnytskyi V, DiChiara A, Henning R, Anfinrud P. Dynamics of Quaternary Structure Transitions in R-State Carbonmonoxyhemoglobin Unveiled in Time-Resolved X-ray Scattering Patterns Following a Temperature Jump. J Phys Chem B 2018; 122:11488-11496. [PMID: 30285440 DOI: 10.1021/acs.jpcb.8b07414] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well-known that tetrameric hemoglobin binds ligands cooperatively by undergoing a ligand-induced T → R quaternary structure transition, a structure-function relationship that has long served as a model system for understanding allostery in proteins. However, kinetic studies of the reverse, R → T quaternary structure transition following photolysis of carbonmonoxyhemoglobin (HbCO) reveal complex behavior that may be better explained by the presence of two different R quaternary structures coexisting in thermal equilibrium. Indeed, we report here time-resolved small- and wide-angle X-ray scattering (SAXS/WAXS) patterns of HbCO following a temperature jump that not only provide unambiguous evidence for more than one R state, but also unveil the time scale for interconversion between them. Since the time scale for the photolysis-induced R → T transition is likely different for different R-states, this structural heterogeneity must be accounted for to properly explain the kinetic heterogeneity observed in time-resolved spectroscopic studies following photolysis of HbCO.
Collapse
Affiliation(s)
- Hyun Sun Cho
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 220892-0520 , United States
| | - Friedrich Schotte
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 220892-0520 , United States
| | - Valentyn Stadnytskyi
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 220892-0520 , United States
| | - Anthony DiChiara
- Argonne National Laboratory , 9700 S. Cass Ave. , Argonne , Illinois 60439 , United States
| | - Robert Henning
- Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 , United States
| | - Philip Anfinrud
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 220892-0520 , United States
| |
Collapse
|
7
|
Sjodt M, Macdonald R, Marshall JD, Clayton J, Olson JS, Phillips M, Gell DA, Wereszczynski J, Clubb RT. Energetics underlying hemin extraction from human hemoglobin by Staphylococcus aureus. J Biol Chem 2018. [PMID: 29540481 DOI: 10.1074/jbc.ra117.000803] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a leading cause of life-threatening infections in the United States. It actively acquires the essential nutrient iron from human hemoglobin (Hb) using the iron-regulated surface-determinant (Isd) system. This process is initiated when the closely related bacterial IsdB and IsdH receptors bind to Hb and extract its hemin through a conserved tri-domain unit that contains two NEAr iron Transporter (NEAT) domains that are connected by a helical linker domain. Previously, we demonstrated that the tri-domain unit within IsdH (IsdHN2N3) triggers hemin release by distorting Hb's F-helix. Here, we report that IsdHN2N3 promotes hemin release from both the α- and β-subunits. Using a receptor mutant that only binds to the α-subunit of Hb and a stopped-flow transfer assay, we determined the energetics and micro-rate constants of hemin extraction from tetrameric Hb. We found that at 37 °C, the receptor accelerates hemin release from Hb up to 13,400-fold, with an activation enthalpy of 19.5 ± 1.1 kcal/mol. We propose that hemin removal requires the rate-limiting hydrolytic cleavage of the axial HisF8 Nϵ-Fe3+ bond, which, based on molecular dynamics simulations, may be facilitated by receptor-induced bond hydration. Isothermal titration calorimetry experiments revealed that two distinct IsdHN2N3·Hb protein·protein interfaces promote hemin release. A high-affinity receptor·Hb(A-helix) interface contributed ∼95% of the total binding standard free energy, enabling much weaker receptor interactions with Hb's F-helix that distort its hemin pocket and cause unfavorable changes in the binding enthalpy. We present a model indicating that receptor-introduced structural distortions and increased solvation underlie the IsdH-mediated hemin extraction mechanism.
Collapse
Affiliation(s)
- Megan Sjodt
- From the Department of Chemistry and Biochemistry.,UCLA-DOE Institute of Genomics and Proteomics, and
| | - Ramsay Macdonald
- From the Department of Chemistry and Biochemistry.,UCLA-DOE Institute of Genomics and Proteomics, and
| | | | - Joseph Clayton
- the Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616
| | - John S Olson
- the Department of BioSciences, Rice University, Houston, Texas 77251, and
| | | | - David A Gell
- the School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Jeff Wereszczynski
- the Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Robert T Clubb
- From the Department of Chemistry and Biochemistry, .,UCLA-DOE Institute of Genomics and Proteomics, and.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
8
|
Nagatomo S, Saito K, Yamamoto K, Ogura T, Kitagawa T, Nagai M. Heterogeneity between Two α Subunits of α2β2 Human Hemoglobin and O2 Binding Properties: Raman, 1H Nuclear Magnetic Resonance, and Terahertz Spectra. Biochemistry 2017; 56:6125-6136. [DOI: 10.1021/acs.biochem.7b00733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shigenori Nagatomo
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kohji Yamamoto
- Research
Center for Development of Far-Infrared Region, University of Fukui, Fukui, Fukui 910-8507, Japan
| | - Takashi Ogura
- Picobiology
Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading
Program Center, Sayo, Sayo-gun, Hyogo 679-5148, Japan
| | - Teizo Kitagawa
- Picobiology
Institute, Graduate School of Life Science, University of Hyogo, Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Masako Nagai
- Research
Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
- School
of
Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
9
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
10
|
Fujiwara S, Chatake T, Matsuo T, Kono F, Tominaga T, Shibata K, Sato-Tomita A, Shibayama N. Ligation-Dependent Picosecond Dynamics in Human Hemoglobin As Revealed by Quasielastic Neutron Scattering. J Phys Chem B 2017; 121:8069-8077. [DOI: 10.1021/acs.jpcb.7b05182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Satoru Fujiwara
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Toshiyuki Chatake
- Research
Reactor Institute, Kyoto University, 2 Asashiro-Nishi, Kumatori, Osaka 590-0494, Japan
| | - Tatsuhito Matsuo
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Fumiaki Kono
- Quantum
Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Taiki Tominaga
- Neutron
Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Kaoru Shibata
- Neutron
Science Section, J-PARC Center, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Ayana Sato-Tomita
- Division
of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Naoya Shibayama
- Division
of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
11
|
Lal J, Maccarini M, Fouquet P, Ho NT, Ho C, Makowski L. Modulation of hemoglobin dynamics by an allosteric effector. Protein Sci 2017; 26:505-514. [PMID: 27977887 PMCID: PMC5326564 DOI: 10.1002/pro.3099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure‐function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy‐Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide‐angle X‐ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large‐scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.
Collapse
Affiliation(s)
- Jyotsana Lal
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Marco Maccarini
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Peter Fouquet
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Nancy T Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Chien Ho
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213
| | - Lee Makowski
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois, 60439.,Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115
| |
Collapse
|
12
|
Román-Morales E, López-Alfonzo E, Pietri R, López-Garriga J. Sulfmyoglobin Conformational Change: A Role in the Decrease of Oxy-Myoglobin Functionality. Biochem Biophys Rep 2016; 7:386-393. [PMID: 28138567 PMCID: PMC5269605 DOI: 10.1016/j.bbrep.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/27/2022] Open
Abstract
This work is focused at understanding the interaction of H2S with Myoglobin (Mb), in particular the Sulfmyoglobin (SMb) product, whose physiological role is controversial and not well understood. The scattering curves, Guinier, Kratky, Porod and P(r) plots were analyzed for oxy-Mb and oxy-Hemoglobin I (oxyHbI) in the absence and presence of H2S, using Small and Wide Angle X-ray Scattering (SAXS/WAXS) technique. Three dimensional models were also generated from the SAXS/WAXS data. The results show that SMb formation, produced by oxyMb and H2S interaction, induces a change in the protein conformation where its envelope has a very small cleft and the protein is more flexible, less rigid and compact. Based on the direct relationship between Mb's structural conformation and its functionality, we suggest that the conformational change observed upon SMb formation plays a contribution to the protein decrease in O2 affinity and, therefore, on its functionality.
Collapse
Affiliation(s)
| | | | | | - Juan López-Garriga
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, PO BOX 9019, Mayagüez, Puerto Rico 00681‐9019
| |
Collapse
|
13
|
Chen PC, Hub JS. Validating solution ensembles from molecular dynamics simulation by wide-angle X-ray scattering data. Biophys J 2015; 107:435-447. [PMID: 25028885 DOI: 10.1016/j.bpj.2014.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022] Open
Abstract
Wide-angle x-ray scattering (WAXS) experiments of biomolecules in solution have become increasingly popular because of technical advances in light sources and detectors. However, the structural interpretation of WAXS profiles is problematic, partly because accurate calculations of WAXS profiles from structural models have remained challenging. In this work, we present the calculation of WAXS profiles from explicit-solvent molecular dynamics (MD) simulations of five different proteins. Using only a single fitting parameter that accounts for experimental uncertainties because of the buffer subtraction and dark currents, we find excellent agreement to experimental profiles both at small and wide angles. Because explicit solvation eliminates free parameters associated with the solvation layer or the excluded solvent, which would require fitting to experimental data, we minimize the risk of overfitting. We further find that the influence from water models and protein force fields on calculated profiles are insignificant up to q≈15nm(-1). Using a series of simulations that allow increasing flexibility of the proteins, we show that incorporating thermal fluctuations into the calculations significantly improves agreement with experimental data, demonstrating the importance of protein dynamics in the interpretation of WAXS profiles. In addition, free MD simulations up to one microsecond suggest that the calculated profiles are highly sensitive with respect to minor conformational rearrangements of proteins, such as an increased flexibility of a loop or an increase of the radius of gyration by < 1%. The present study suggests that quantitative comparison between MD simulations and experimental WAXS profiles emerges as an accurate tool to validate solution ensembles of biomolecules.
Collapse
Affiliation(s)
- Po-Chia Chen
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Jochen S Hub
- Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Chaudhuri BN. Emerging applications of small angle solution scattering in structural biology. Protein Sci 2015; 24:267-76. [PMID: 25516491 PMCID: PMC4353354 DOI: 10.1002/pro.2624] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 12/12/2022]
Abstract
Small angle solution X-ray and neutron scattering recently resurfaced as powerful tools to address an array of biological problems including folding, intrinsic disorder, conformational transitions, macromolecular crowding, and self or hetero-assembling of biomacromolecules. In addition, small angle solution scattering complements crystallography, nuclear magnetic resonance spectroscopy, and other structural methods to aid in the structure determinations of multidomain or multicomponent proteins or nucleoprotein assemblies. Neutron scattering with hydrogen/deuterium contrast variation, or X-ray scattering with sucrose contrast variation to a certain extent, is a convenient tool for characterizing the organizations of two-component systems such as a nucleoprotein or a lipid-protein assembly. Time-resolved small and wide-angle solution scattering to study biological processes in real time, and the use of localized heavy-atom labeling and anomalous solution scattering for applications as FRET-like molecular rulers, are amongst promising newer developments. Despite the challenges in data analysis and interpretation, these X-ray/neutron solution scattering based approaches hold great promise for understanding a wide variety of complex processes prevalent in the biological milieu.
Collapse
Affiliation(s)
- Barnali N Chaudhuri
- Faculty of Life Sciences and Biotechnology, South Asian UniversityAkbar Bhawan, Chanakyapuri, New Delhi, India
| |
Collapse
|
15
|
Affiliation(s)
- Yue Yuan
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Ming F. Tam
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Virgil Simplaceanu
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| | - Chien Ho
- Department of Biological Sciences Carnegie Mellon University Pittsburgh, PA 15213
| |
Collapse
|
16
|
The effects of thermal disorder on the solution-scattering profiles of macromolecules. Biophys J 2014; 106:1489-96. [PMID: 24703310 DOI: 10.1016/j.bpj.2014.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/05/2014] [Accepted: 02/21/2014] [Indexed: 11/23/2022] Open
Abstract
The solution-scattering profiles of macromolecules are significantly affected by the thermal motions of their atoms, especially at wide scattering angles, even when only a single conformational state is significantly populated in solution. Here it is shown that the impact thermal motions have on the molecular component of the solution-scattering profile of a single-state macromolecule can be predicted accurately if the variances and covariances of the thermal excursions of its atoms from their average positions are known.
Collapse
|
17
|
Shibayama N, Sugiyama K, Tame JRH, Park SY. Capturing the Hemoglobin Allosteric Transition in a Single Crystal Form. J Am Chem Soc 2014; 136:5097-105. [DOI: 10.1021/ja500380e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Naoya Shibayama
- Division
of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Kanako Sugiyama
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Jeremy R. H. Tame
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Sam-Yong Park
- Drug
Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
18
|
Fan JS, Zheng Y, Choy WY, Simplaceanu V, Ho NT, Ho C, Yang D. Solution structure and dynamics of human hemoglobin in the carbonmonoxy form. Biochemistry 2013; 52:5809-20. [PMID: 23901897 DOI: 10.1021/bi4005683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution structure of human adult carbonmonoxy hemoglobin (HbCO A) was refined using stereospecifically assigned methyl groups and residual dipolar couplings based on our previous nuclear magnetic resonance structure. The tertiary structures of individual chains were found to be very similar to the X-ray structures, while the quaternary structures in solution at low salt concentrations resembled the X-ray R structure more than the R2 structure. On the basis of chemical shift perturbation by inositol hexaphosphate (IHP) titration and docking, we identified five possible IHP binding sites in HbCO A. Amide-water proton exchange experiments demonstrated that αThr38 located in the α1β2 interface and several loop regions in both α- and β-chains were dynamic on the subsecond time scale. Side chain methyl dynamics revealed that methyl groups in the α1β2 interface were dynamic, but those in the α1β1 interface were quite rigid on the nanosecond to picosecond and millisecond to microsecond time scales. All the data strongly suggest a dynamic α1β2 interface that allows conformational changes among different forms (like T, R, and R2) easily in solution. Binding of IHP to HbCO A induced small structural and dynamic changes in the α1β2 interface and the regions around the hemes but did not increase the conformational entropy of HbCO A. The binding also caused conformational changes on the millisecond time scale, very likely arising from the relative motion of the α1β1 dimer with respect to the α2β2 dimer. Heterotropic effectors like IHP may change the oxygen affinity of Hb through modulating the relative motion of the two dimers and then further altering the structure of heme binding regions.
Collapse
Affiliation(s)
- Jing-Song Fan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | | | | | | | | | | | | |
Collapse
|
19
|
Minh DDL, Makowski L. Wide-angle X-ray solution scattering for protein-ligand binding: multivariate curve resolution with Bayesian confidence intervals. Biophys J 2013; 104:873-83. [PMID: 23442966 DOI: 10.1016/j.bpj.2012.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022] Open
Abstract
A new way to use wide-angle x-ray solution scattering to study protein-ligand binding is presented. First, scattering patterns are measured at different protein and ligand concentrations. Multivariate curve resolution based on singular value decomposition and global analysis is applied to estimate the binding affinities and reference patterns (i.e., the scattering patterns of individual components). As validated by simulation, Bayesian confidence intervals provide accurate uncertainty estimates for the binding free energies and reference patterns. Experimental results from several protein-ligand systems demonstrate the feasibility of the approach, which promises to expand the role of wide-angle x-ray scattering as a quantitative biophysical tool.
Collapse
Affiliation(s)
- David D L Minh
- Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | | |
Collapse
|
20
|
Graewert MA, Svergun DI. Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS). Curr Opin Struct Biol 2013; 23:748-54. [PMID: 23835228 DOI: 10.1016/j.sbi.2013.06.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
The advances made in small and wide angle X-ray scattering over the past decades have had a large impact on structural biology. Many new insights into challenging biological probes including large and transient complexes, flexible macromolecules as well as other exciting objects of various sizes were gained with this low resolution technique. Here, we review the recent developments in the experimental setups and in software for data collection and analysis, specifically for hybrid approaches. These progresses have allowed scientists to address a number of intriguing questions which could not be answered with other structural methods alone.
Collapse
Affiliation(s)
- Melissa A Graewert
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestraße 85, Hamburg 22603, Germany
| | | |
Collapse
|
21
|
Sowole MA, Konermann L. Comparative analysis of oxy-hemoglobin and aquomet-hemoglobin by hydrogen/deuterium exchange mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:997-1005. [PMID: 23666601 DOI: 10.1007/s13361-013-0647-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/12/2013] [Accepted: 04/14/2013] [Indexed: 06/02/2023]
Abstract
The function of hemoglobin (Hb) as oxygen transporter is mediated by reversible O2 binding to Fe(2+) heme in each of the α and β subunits. X-ray crystallography revealed different subunit arrangements in oxy-Hb and deoxy-Hb. The deoxy state is stabilized by additional contacts, causing a rigidification that results in strong protection against hydrogen/deuterium exchange (HDX). Aquomet-Hb is a dysfunctional degradation product with four water-bound Fe(3+) centers. Heme release from aquomet-Hb is relatively facile, triggering oxidative damage of membrane lipids. Aquomet-Hb crystallizes in virtually the same conformation as oxy-Hb. Hence, it is commonly implied that the solution-phase properties of aquomet-Hb should resemble those of the oxy state. This work compares the structural dynamics of oxy-Hb and aquomet-Hb by HDX mass spectrometry (MS). It is found that the aquomet state exhibits a solution-phase structure that is significantly more dynamic, as manifested by elevated HDX levels. These enhanced dynamics affect the aquomet α and β subunits in a different fashion. The latter undergoes global destabilization, whereas the former shows elevated HDX levels only in the heme binding region. It is proposed that these enhanced dynamics play a role in facilitating heme release from aquomet-Hb. Our findings should be of particular interest to the MS community because oxy-Hb and aquomet-Hb serve as widely used test analytes for probing the relationship between biomolecular structure in solution and in the gas phase. We are not aware of any prior comparative HDX/MS experiments on oxy-Hb and aquomet-Hb.
Collapse
Affiliation(s)
- Modupeola A Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | | |
Collapse
|
22
|
Mandal SS, Nagarajan B, Amenitsch H, Bhattacharyya AJ. Probing hemoglobin confinement inside submicron silica tubes using synchrotron SAXS and electrochemical response. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:371-82. [DOI: 10.1007/s00249-013-0886-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/10/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023]
|
23
|
Tekpinar M, Zheng W. Coarse-grained and all-atom modeling of structural states and transitions in hemoglobin. Proteins 2012; 81:240-52. [PMID: 22987685 DOI: 10.1002/prot.24180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/27/2012] [Accepted: 09/10/2012] [Indexed: 11/08/2022]
Abstract
Hemoglobin (Hb), an oxygen-binding protein composed of four subunits (α1, α2, β1, and β2), is a well-known example of allosteric proteins that are capable of cooperative ligand binding. Despite decades of studies, the structural basis of its cooperativity remains controversial. In this study, we have integrated coarse-grained (CG) modeling, all-atom simulation, and structural data from X-ray crystallography and wide-angle X-ray scattering (WAXS), aiming to probe dynamic properties of the two structural states of Hb (T and R state) and the transitions between them. First, by analyzing the WAXS data of unliganded and liganded Hb, we have found that the structural ensemble of T or R state is dominated by one crystal structure of Hb with small contributions from other crystal structures of Hb. Second, we have used normal mode analysis to identify two distinct quaternary rotations between the α1β1 and α2β2 dimer, which drive the transitions between T and R state. We have also identified the hot-spot residues whose mutations are predicted to greatly change these quaternary motions. Third, we have generated a CG transition pathway between T and R state, which predicts a clear order of quaternary and tertiary changes involving α and β subunits in Hb. Fourth, we have used the accelerated molecular dynamics to perform an all-atom simulation starting from the T state of Hb, and we have observed a transition toward the R state of Hb. Further analysis of crystal structural data and the all-atom simulation trajectory has corroborated the order of quaternary and tertiary changes predicted by CG modeling.
Collapse
Affiliation(s)
- Mustafa Tekpinar
- Physics Department, University at Buffalo, Buffalo, New York 14260, USA
| | | |
Collapse
|
24
|
Makowski L, Bardhan J, Gore D, Rodi DJ, Fischetti RF. Multi-wavelength anomalous diffraction using medium-angle X-ray solution scattering (MADMAX). Biophys J 2012; 102:927-33. [PMID: 22385864 DOI: 10.1016/j.bpj.2012.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 10/28/2022] Open
Abstract
Proteins are dynamic molecules whose function in virtually all biological processes requires conformational motion. Direct experimental probes of protein structure in solution are needed to characterize these motions. Anomalous scattering from proteins in solution has the potential to act as a precise molecular ruler to determine the positions of specific chemical groups or atoms within proteins under conditions in which structural changes can take place free from the constraints of crystal contacts. In solution, anomalous diffraction has two components: a set of cross-terms that depend on the relative location of the anomalous centers and the rest of the protein, and a set of pure anomalous terms that depend on the distances between the anomalous centers. The cross-terms are demonstrated here to be observable and to provide direct information about the distance between the anomalous center and the center of mass of the protein. The second set of terms appears immeasurably small in the context of current experimental capabilities. Here, we outline the theory underlying anomalous scattering from proteins in solution, predict the anomalous differences expected on the basis of atomic coordinate sets, and demonstrate the measurement of anomalous differences at the iron edge for solutions of myoglobin and hemoglobin.
Collapse
Affiliation(s)
- L Makowski
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|