1
|
Aponte-Diaz D, Harris JM, Kang TE, Korboukh V, Sotoudegan MS, Gray JL, Yennawar NH, Moustafa IM, Macadam A, Cameron CE. Non-lytic spread of poliovirus requires the nonstructural protein 3CD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619132. [PMID: 39464037 PMCID: PMC11507938 DOI: 10.1101/2024.10.18.619132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Non-enveloped viruses like poliovirus (PV) have evolved the capacity to spread by non-lytic mechanisms. For PV, this mechanism exploits the host secretory autophagy pathway. Virions are selectively incorporated into autophagosomes, double-membrane vesicles that travel to the plasma membrane, fuse, and release single-membrane vesicles containing virions. Loading of cellular cargo into autophagosomes relies on direct or indirect interactions with microtubule-associated protein 1B-light chain 3 (LC3) that are mediated by motifs referred to as LC3-interaction regions (LIRs). We have identified a PV mutant with a severe defect in non-lytic spread. An F-to-Y substitution in a putative LIR of the nonstructural protein 3CD prevented virion incorporation into LC3-positive autophagosomes and virion trafficking to the plasma membrane for release. Using high-angle annular dark-field scanning transmission electron microscopy to monitor PV-induced autophagosome biogenesis, for the first time, we show that virus-induced autophagic signals yield normal autophagosomes, even in the absence of virions. The F-to-Y derivative of PV 3CD was unable to support normal autophagosome biogenesis. Together, these studies make a compelling case for a direct role of a viral nonstructural protein in the formation and loading of the vesicular carriers used for non-lytic spread that may depend on the proper structure, accessibility, and/or dynamics of its LIR. The studies of PV 3CD protein reported here will hopefully provoke a more deliberate look at the presence and function of LIR motifs in viral proteins of viruses known to use autophagy as the basis for non-lytic spread.
Collapse
Affiliation(s)
- David Aponte-Diaz
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jayden M Harris
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tongjia Ella Kang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Korboukh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Present address: Strategic Alliances and Program Management, C4 Therapeutics, Inc., Watertown, MA 02472, USA
| | - Mohamad S Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer L Gray
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Macadam
- Division of Vaccines, Medicines and Healthcare Products Regulatory Agency, Herts. EN6 3QG, UK
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Shankar S, Pan J, Yang P, Bian Y, Oroszlán G, Yu Z, Mukherjee P, Filman DJ, Hogle JM, Shekhar M, Coen DM, Abraham J. Viral DNA polymerase structures reveal mechanisms of antiviral drug resistance. Cell 2024; 187:5572-5586.e15. [PMID: 39197451 DOI: 10.1016/j.cell.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024]
Abstract
DNA polymerases are important drug targets, and many structural studies have captured them in distinct conformations. However, a detailed understanding of the impact of polymerase conformational dynamics on drug resistance is lacking. We determined cryoelectron microscopy (cryo-EM) structures of DNA-bound herpes simplex virus polymerase holoenzyme in multiple conformations and interacting with antivirals in clinical use. These structures reveal how the catalytic subunit Pol and the processivity factor UL42 bind DNA to promote processive DNA synthesis. Unexpectedly, in the absence of an incoming nucleotide, we observed Pol in multiple conformations with the closed state sampled by the fingers domain. Drug-bound structures reveal how antivirals may selectively bind enzymes that more readily adopt the closed conformation. Molecular dynamics simulations and the cryo-EM structure of a drug-resistant mutant indicate that some resistance mutations modulate conformational dynamics rather than directly impacting drug binding, thus clarifying mechanisms that drive drug selectivity.
Collapse
Affiliation(s)
- Sundaresh Shankar
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Junhua Pan
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Biomedical Research Institute and School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, China
| | - Pan Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yuemin Bian
- School of Medicine, Shanghai University, Shanghai, China; Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gábor Oroszlán
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zishuo Yu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Purba Mukherjee
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mrinal Shekhar
- Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Center for Integrated Solutions in Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Qandeel BM, Mowafy S, Abouzid K, Farag NA. Lead generation of UPPS inhibitors targeting MRSA: Using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking, and molecular dynamic simulations. BMC Chem 2024; 18:14. [PMID: 38245752 PMCID: PMC10800075 DOI: 10.1186/s13065-023-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024] Open
Abstract
Undecaprenyl Pyrophosphate Synthase (UPPS) is a vital target enzyme in the early stages of bacterial cell wall biosynthesis. UPPS inhibitors have antibacterial activity against resistant strains such as MRSA and VRE. In this study, we used several consecutive computer-based protocols to identify novel UPPS inhibitors. The 3D QSAR pharmacophore model generation (HypoGen algorithm) protocol was used to generate a valid predictive pharmacophore model using a set of UPPS inhibitors with known reported activity. The developed model consists of four pharmacophoric features: one hydrogen bond acceptor, two hydrophobic, and one aromatic ring. It had a correlation coefficient of 0.86 and a null cost difference of 191.39, reflecting its high predictive power. Hypo1 was proven to be statistically significant using Fischer's randomization at a 95% confidence level. The validated pharmacophore model was used for the virtual screening of several databases. The resulting hits were filtered using SMART and Lipinski filters. The hits were docked into the binding site of the UPPS protein, affording 70 hits with higher docking affinities than the reference compound (6TC, - 21.17 kcal/mol). The top five hits were selected through extensive docking analysis and visual inspection based on docking affinities, fit values, and key residue interactions with the UPPS receptor. Moreover, molecular dynamic simulations of the top hits were performed to confirm the stability of the protein-ligand complexes, yielding five promising novel UPPS inhibitors.
Collapse
Affiliation(s)
- Basma M Qandeel
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km28 Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt.
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km28 Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt
| | - Khaled Abouzid
- Department of Pharmaceutical Chemistry, College of Pharmacy, Ain-Shams University, Abbasia, 11566, Egypt
| | - Nahla A Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km28 Cairo-Ismailia Road, Ahmed Orabi District, Cairo, Egypt.
| |
Collapse
|
4
|
Campagnola G, Govindarajan V, Pelletier A, Canard B, Peersen OB. The SARS-CoV nsp12 Polymerase Active Site Is Tuned for Large-Genome Replication. J Virol 2022; 96:e0067122. [PMID: 35924919 PMCID: PMC9400494 DOI: 10.1128/jvi.00671-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes using virally encoded RNA-dependent RNA polymerases (RdRP) with a common active-site structure and closure mechanism upon which replication speed and fidelity can evolve to optimize virus fitness. Coronaviruses (CoV) form large multicomponent RNA replication-transcription complexes containing a core RNA synthesis machine made of the nsp12 RdRP protein with one nsp7 and two nsp8 proteins as essential subunits required for activity. We show that assembly of this complex can be accelerated 5-fold by preincubation of nsp12 with nsp8 and further optimized with the use of a novel nsp8L7 heterodimer fusion protein construct. Using rapid kinetics methods, we measure elongation rates of up to 260 nucleotides (nt)/s for the core replicase, a rate that is unusually fast for a viral polymerase. To address the origin of this fast rate, we examined the roles of two CoV-specific residues in the RdRP active site: Ala547, which replaces a conserved glutamate above the bound NTP, and Ser759, which mutates the palm domain GDD sequence to SDD. Our data show that Ala547 allows for a doubling of replication rate, but this comes at a fidelity cost that is mitigated by using a SDD sequence in the palm domain. Our biochemical data suggest that fixation of mutations in polymerase motifs F and C played a key role in nidovirus evolution by tuning replication rate and fidelity to accommodate their large genomes. IMPORTANCE Replicating large genomes represents a challenge for RNA viruses because fast RNA synthesis is needed to escape innate immunity defenses, but faster polymerases are inherently low-fidelity enzymes. Nonetheless, the coronaviruses replicate their ≈30-kb genomes using the core polymerase structure and mechanism common to all positive-strand RNA viruses. The classic explanation for their success is that the large-genome nidoviruses have acquired an exonuclease-based repair system that compensates for the high polymerase mutation rate. In this work, we establish that the nidoviral polymerases themselves also play a key role in maintaining genome integrity via mutations at two key active-site residues that enable very fast replication rates while maintaining typical mutation rates. Our findings further demonstrate the evolutionary plasticity of the core polymerase platform by showing how it has adapted during the expansion from short-genome picornaviruses to long-genome nidoviruses.
Collapse
Affiliation(s)
- Grace Campagnola
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Vishnu Govindarajan
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Annelise Pelletier
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Bruno Canard
- Centre National de la Recherche Scientifique, Aix-Marseille Université CNRS UMR 7257, AFMB, Marseille, France
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Janissen R, Woodman A, Shengjuler D, Vallet T, Lee KM, Kuijpers L, Moustafa IM, Fitzgerald F, Huang PN, Perkins AL, Harki DA, Arnold JJ, Solano B, Shih SR, Vignuzzi M, Cameron CE, Dekker NH. Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses. Mol Cell 2021; 81:4467-4480.e7. [PMID: 34687604 PMCID: PMC8628313 DOI: 10.1016/j.molcel.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022]
Abstract
Viral RNA-dependent RNA polymerases (RdRps) are a target for broad-spectrum antiviral therapeutic agents. Recently, we demonstrated that incorporation of the T-1106 triphosphate, a pyrazine-carboxamide ribonucleotide, into nascent RNA increases pausing and backtracking by the poliovirus RdRp. Here, by monitoring enterovirus A-71 RdRp dynamics during RNA synthesis using magnetic tweezers, we identify the "backtracked" state as an intermediate used by the RdRp for copy-back RNA synthesis and homologous recombination. Cell-based assays and RNA sequencing (RNA-seq) experiments further demonstrate that the pyrazine-carboxamide ribonucleotide stimulates these processes during infection. These results suggest that pyrazine-carboxamide ribonucleotides do not induce lethal mutagenesis or chain termination but function by promoting template switching and formation of defective viral genomes. We conclude that RdRp-catalyzed intra- and intermolecular template switching can be induced by pyrazine-carboxamide ribonucleotides, defining an additional mechanistic class of antiviral ribonucleotides with potential for broad-spectrum activity.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Andrew Woodman
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Djoshkun Shengjuler
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Louis Kuijpers
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Fiona Fitzgerald
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Angela L Perkins
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA
| | - Belén Solano
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16801, USA.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, 2629 HZ Delft, the Netherlands.
| |
Collapse
|
6
|
Winston DS, Boehr DD. Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity. Enzymes 2021; 49:149-193. [PMID: 34696831 DOI: 10.1016/bs.enz.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.
Collapse
Affiliation(s)
- Dennis S Winston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
7
|
Long C, Romero ME, La Rocco D, Yu J. Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 2021; 19:3339-3348. [PMID: 34104356 PMCID: PMC8175102 DOI: 10.1016/j.csbj.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.
Collapse
Affiliation(s)
- Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | | | - Daniel La Rocco
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Koulgi S, Jani V, Uppuladinne V. N. M, Sonavane U, Joshi R. Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2. PLoS One 2021; 16:e0251801. [PMID: 33984041 PMCID: PMC8118514 DOI: 10.1371/journal.pone.0251801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Drug repurposing studies targeting inhibition of RNA dependent RNA polymerase (RdRP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have exhibited the potential effect of small molecules. In the present work a detailed interaction study between the phytochemicals from Indian medicinal plants and the RdRP of SARS-CoV-2 has been performed. The top four phytochemicals obtained through molecular docking were, swertiapuniside, cordifolide A, sitoindoside IX, and amarogentin belonging to Swertia chirayita, Tinospora cordifolia and Withania somnifera. These ligands bound to the RdRP were further studied using molecular dynamics simulations. The principal component analysis of these systems showed significant conformational changes in the finger and thumb subdomain of the RdRP. Hydrogen bonding, salt-bridge and water mediated interactions supported by MM-GBSA free energy of binding revealed strong binding of cordifolide A and sitoindoside IX to RdRP. The ligand-interacting residues belonged to either of the seven conserved motifs of the RdRP. These residues were polar and charged amino acids, namely, ARG 553, ARG 555, ASP 618, ASP 760, ASP 761, GLU 811, and SER 814. The glycosidic moieties of the phytochemicals were observed to form favourable interactions with these residues. Hence, these phytochemicals may hold the potential to act as RdRP inhibitors owing to their stability in binding to the druggable site.
Collapse
Affiliation(s)
- Shruti Koulgi
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | - Vinod Jani
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | | | - Uddhavesh Sonavane
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| | - Rajendra Joshi
- High Performance Computing—Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune, India
| |
Collapse
|
9
|
Koulgi S, Jani V, V N MU, Sonavane U, Joshi R. Structural insight into the binding interactions of NTPs and nucleotide analogues to RNA dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn 2021; 40:7230-7244. [PMID: 33682633 DOI: 10.1080/07391102.2021.1894985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA dependent RNA polymerase (RdRP) from positive-stranded RNA viruses has always been a hot target for designing of new drugs. Major class of drugs that are targeted against RdRP are nucleotide analogues. Extensive docking and molecular dynamics study describing the binding of natural nucleotides (NTPs) and its analogues leading to significant structural variation in the RdRP has been presented here. RdRP simulations in its apo, NTP-bound, and analogue-bound form have been performed. Nucleotide analogues included in this study were, favipiravir, galidesivir, lamivudine, ribavirin, remdesivir and sofosbuvir. The conformational flexibility of the RdRP molecule has been explored using principal component (PCA) and Markov state modeling (MSM) analysis. PCA inferred the presence of correlated motions among the conserved motifs of RdRP. Inter-domain distances between the finger and thumb subdomain flanking the nascent RNA template entry site sampled open and closed conformations. The ligand and template binding motifs F and G showed negatively correlated motions. K551, R553, and R555, a part of motif F appear to form strong interactions with the ligand molecules. R836, a primer binding residue was observed to strongly bind to the analogues. MSM analysis helped to extract statistically distinct conformations explored by the RdRP. Ensemble docking of the ligands on the Markov states also suggested the involvement of the above residues in ligand interactions. Markov states obtained clearly demarcated the open/closed conformations of the template entry site. These observations on residues from the conserved motifs involved in binding to the ligands may provide an insight into designing new inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Koulgi
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| | - Vinod Jani
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| | - Mallikarjunachari Uppuladinne V N
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| | - Uddhavesh Sonavane
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| | - Rajendra Joshi
- High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchawati, Pashan, Pune, India
| |
Collapse
|
10
|
Chakraborty C, Bhattacharya M, Mallick B, Sharma AR, Lee SS, Agoramoorthy G. SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development. Expert Rev Clin Pharmacol 2021; 14:225-238. [PMID: 33423554 DOI: 10.1080/17512433.2021.1874348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Protein drug targets play a significant choice in different stages of the drug discovery process. There is an urgent need to understand the drug discovery approaches and protein drug targets (PDT) of SARS-CoV-2, with structural insights for the development of SARS-CoV-2 drugs through targeted therapeutic approach.Areas covered: We have described the protein as a drug target class and also discussed various drug discovery approaches for SARS-CoV-2 involving the protein drug targets such as drug repurposing study, designing of viral entry inhibitors, viral replication inhibitors, and different enzymes of the virus. We have performed comprehensive literature search from the popular databases such as PubMed Google scholar, Web of Science, and Scopus. Finally, we have illustrated the structural landscape of different significant viral proteins (3 CLpro or Mpro, PLpro, RdRp, helicase, S protein) and host proteins as drug targets (cathepsin L, furin, TMPRSS2, ACE2).Expert opinion: The structural landscape of PDT with their binding pockets, and significant residues involved in binding has been discussed further to better understand the PDT and the structure-based drug discovery for SARS-CoV-2. This attempt will increase more therapeutic options, and combination therapies with a multi-target strategy.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal India.,Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| | | | - Bidyut Mallick
- Department of Applied Science, Galgotias College of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| | | |
Collapse
|
11
|
Residues within the Foot-and-Mouth Disease Virus 3D pol Nuclear Localization Signal Affect Polymerase Fidelity. J Virol 2020; 94:JVI.00833-20. [PMID: 32581111 DOI: 10.1128/jvi.00833-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/11/2020] [Indexed: 11/20/2022] Open
Abstract
Many RNA viruses encode a proof-reading deficient, low-fidelity RNA-dependent polymerase (RdRp), which generates genetically diverse populations that can adapt to changing environments and thwart antiviral therapies. 3Dpol, the RdRp of the foot-and-mouth disease virus (FMDV), is responsible for replication of viral genomes. The 3Dpol N terminus encodes a nuclear localization signal (NLS) sequence,MRKTKLAPT, important for import of the protein to host nucleus. Previous studies showed that substitutions at residues 18 and 20 of the NLS are defective in proper incorporation of nucleotides and RNA binding. Here, we use a systematic alanine scanning mutagenesis approach to understand the role of individual residues of the NLS in nuclear localization and nucleotide incorporation activities of 3Dpol We identify two residues of 3Dpol NLS, T19 and L21, that are important for the maintenance of enzyme fidelity. The 3Dpol NLS alanine substitutions of T19 and L21 results in aberrant incorporation of nucleoside analogs, conferring a low fidelity phenotype of the enzyme. A molecular dynamics simulation of RNA- and mutagen (RTP)-bound 3Dpol revealed that the T19 residue participates in a hydrogen bond network, including D165 in motif F and R416 at the C terminus of the FMDV 3Dpol and RNA template-primer. Based on these findings and previous studies, we conclude that at least the first six residues of theMRKTKLAPT sequence motif play a vital role in the maintenance of faithful RNA synthesis activity (fidelity) of FMDV 3Dpol, suggesting that the role of the NLS motif in similar viral polymerases needs to be revisited.IMPORTANCE In this study, we employed genetic and molecular dynamics approaches to analyze the role of individual amino acids of the FMDV 3Dpol nuclear localization signal (NLS). The NLS residues were mutated to alanine using a type A full-genome cDNA clone, and the virus progeny was analyzed for defects in growth and in competition with the parental virus. We identified two mutants in 3Dpol, T19A and L21A, that exhibited high rate of mutation, were sensitive to nucleotide analogs, and displayed reduced replicative fitness compared to the parental virus. Using molecular dynamics simulation, we demonstrated that residues T19 and L21 played a role in the structural configuration of the interaction network at the 3Dpol palm subdomain. Cumulatively, our data suggest that the T19 and L21 3Dpol amino acids are important for maintaining the fidelity of the FMDV polymerase and ensuring faithful replication of the FMDV genome.
Collapse
|
12
|
Baker SL, Kaupbayeva B, Lathwal S, Das SR, Russell AJ, Matyjaszewski K. Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules 2019; 20:4272-4298. [PMID: 31738532 DOI: 10.1021/acs.biomac.9b01271] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins, nucleic acids, lipid vesicles, and carbohydrates are the major classes of biomacromolecules that function to sustain life. Biology also uses post-translation modification to increase the diversity and functionality of these materials, which has inspired attaching various other types of polymers to biomacromolecules. These polymers can be naturally (carbohydrates and biomimetic polymers) or synthetically derived and have unique properties with tunable architectures. Polymers are either grafted-to or grown-from the biomacromolecule's surface, and characteristics including polymer molar mass, grafting density, and degree of branching can be controlled by changing reaction stoichiometries. The resultant conjugated products display a chimerism of properties such as polymer-induced enhancement in stability with maintained bioactivity, and while polymers are most often conjugated to proteins, they are starting to be attached to nucleic acids and lipid membranes (cells) as well. The fundamental studies with protein-polymer conjugates have improved our synthetic approaches, characterization techniques, and understanding of structure-function relationships that will lay the groundwork for creating new conjugated biomacromolecular products which could lead to breakthroughs in genetic and tissue engineering.
Collapse
Affiliation(s)
- Stefanie L Baker
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Bibifatima Kaupbayeva
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Sushil Lathwal
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Subha R Das
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Alan J Russell
- Department of Biomedical Engineering , Carnegie Mellon University , Scott Hall 4N201, 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Biological Sciences , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States.,Department of Chemical Engineering , Carnegie Mellon University , 5000 Forbes Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
13
|
Boehr AK, Arnold JJ, Oh HS, Cameron CE, Boehr DD. 2'-C-methylated nucleotides terminate virus RNA synthesis by preventing active site closure of the viral RNA-dependent RNA polymerase. J Biol Chem 2019; 294:16897-16907. [PMID: 31575662 PMCID: PMC6851289 DOI: 10.1074/jbc.ra119.010214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/28/2019] [Indexed: 01/25/2023] Open
Abstract
The 2'-C-methyl ribonucleosides are nucleoside analogs representing an important class of antiviral agents, especially against positive-strand RNA viruses. Their value is highlighted by the highly successful anti-hepatitis C drug sofosbuvir. When appropriately phosphorylated, these nucleotides are successfully incorporated into RNA by the virally encoded RNA-dependent RNA polymerase (RdRp). This activity prevents further RNA extension, but the mechanism is poorly characterized. Previously, we had identified NMR signatures characteristic of formation of RdRp-RNA binary and RdRp-RNA-NTP ternary complexes for the poliovirus RdRp, including an open-to-closed conformational change necessary to prepare the active site for catalysis of phosphoryl transfer. Here we used these observations as a framework for interpreting the effects of 2'-C-methyl adenosine analogs on RNA chain extension in solution-state NMR spectroscopy experiments, enabling us to gain additional mechanistic insights into 2'-C-methyl ribonucleoside-mediated RNA chain termination. Contrary to what has been proposed previously, poliovirus RdRp that was bound to RNA with an incorporated 2'-C-methyl nucleotide could still bind to the next incoming NTP. Our results also indicated that incorporation of the 2'-C-methyl nucleotide does not disrupt RdRp-RNA interactions and does not prevent translocation. Instead, incorporation of the 2'-C-methyl nucleotide blocked closure of the RdRp active site upon binding of the next correct incoming NTP, which prevented further nucleotide addition. We propose that other nucleotide analogs that act as nonobligate chain terminators may operate through a similar mechanism.
Collapse
Affiliation(s)
- Alyson K Boehr
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hyung S Oh
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - David D Boehr
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
14
|
Shi J, Perryman JM, Yang X, Liu X, Musser DM, Boehr AK, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics. Biochemistry 2019; 58:3735-3743. [PMID: 31424194 DOI: 10.1021/acs.biochem.9b00497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The conserved structural motif D is an important determinant of the speed and fidelity of viral RNA-dependent RNA polymerases (RdRps). Structural and computational studies have suggested that conformational changes in the motif-D loop that help to reposition the catalytic lysine represent critical steps in nucleotide selection and incorporation. Conformations of the motif-D loop in the poliovirus RdRp are likely controlled in part by noncovalent interactions involving the motif-D residue Glu364. This residue swivels between making interactions with Lys228 and Asn370 to stabilize the open and closed loop conformations, respectively. We show here that we can rationally control the motif-D loop conformation by breaking these interactions. The K228A variant favors a more active closed conformation, leading to increased nucleotide incorporation rates and decreased nucleotide selectivity, and the N370A variant favors a less active open conformation, leading to decreased nucleotide incorporation rates and increased nucleotide selectivity. Similar competing interactions likely control nucleotide incorporation rates and fidelity in other viral RdRps. Rational engineering of these interactions may be important in the generation of live, attenuated vaccine strains, considering the established relationships between RdRp function and viral pathogenesis.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jacob M Perryman
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xiaorong Yang
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xinran Liu
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Derek M Musser
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Alyson K Boehr
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - David D Boehr
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
15
|
Liu WS, Wang RR, Sun YZ, Li WY, Li HL, Liu CL, Ma Y, Wang RL. Exploring the effect of inhibitor AKB-9778 on VE-PTP by molecular docking and molecular dynamics simulation. J Cell Biochem 2019; 120:17015-17029. [PMID: 31125141 DOI: 10.1002/jcb.28963] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 01/02/2023]
Abstract
Diabetic macular edema, also known as diabetic eye disease, is mainly caused by the overexpression of vascular endothelial protein tyrosine phosphatase (VE-PTP) at hypoxia/ischemic. AKB-9778 is a known VE-PTP inhibitor that can effectively interact with the active site of VE-PTP to inhibit the activity of VE-PTP. However, the binding pattern of VE-PTP with AKB-9778 and the dynamic implications of AKB-9778 on VE-PTP system at the molecular level are poorly understood. Through molecular docking, it was found that the AKB-9778 was docked well in the binding pocket of VE-PTP by the interactions of hydrogen bond and Van der Waals. Furthermore, after molecular dynamic simulations on VE-PTP system and VE-PTP AKB-9778 system, a series of postdynamic analyses found that the flexibility and conformation of the active site undergone an obvious transition after VE-PTP binding with AKB-9778. Moreover, by constructing the RIN, it was found that the different interactions in the active site were the detailed reasons for the conformational differences between these two systems. Thus, the finding here might provide a deeper understanding of AKB-9778 as VE-PTP Inhibitor.
Collapse
Affiliation(s)
- Wen-Shan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying-Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hong-Lian Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chi-Lu Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Long C, E C, Da LT, Yu J. Determining selection free energetics from nucleotide pre-insertion to insertion in viral T7 RNA polymerase transcription fidelity control. Nucleic Acids Res 2019; 47:4721-4735. [PMID: 30916310 PMCID: PMC6511863 DOI: 10.1093/nar/gkz213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
An elongation cycle of a transcribing RNA polymerase (RNAP) usually consists of multiple kinetics steps, so there exist multiple kinetic checkpoints where non-cognate nucleotides can be selected against. We conducted comprehensive free energy calculations on various nucleotide insertions for viral T7 RNAP employing all-atom molecular dynamics simulations. By comparing insertion free energy profiles between the non-cognate nucleotide species (rGTP and dATP) and a cognate one (rATP), we obtained selection free energetics from the nucleotide pre-insertion to the insertion checkpoints, and further inferred the selection energetics down to the catalytic stage. We find that the insertion of base mismatch rGTP proceeds mainly through an off-path along which both pre-insertion screening and insertion inhibition play significant roles. In comparison, the selection against dATP is found to go through an off-path pre-insertion screening along with an on-path insertion inhibition. Interestingly, we notice that two magnesium ions switch roles of leave and stay during the dATP on-path insertion. Finally, we infer that substantial selection energetic is still required to catalytically inhibit the mismatched rGTP to achieve an elongation error rate ∼10-4 or lower; while no catalytic selection seems to be further needed against dATP to obtain an error rate ∼10-2.
Collapse
Affiliation(s)
- Chunhong Long
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Chao E
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Lin-Tai Da
- Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
17
|
Wang RR, Ma Y, Du S, Li WY, Sun YZ, Zhou H, Wang RL. Exploring the reason for increased activity of SHP2 caused by D61Y mutation through molecular dynamics. Comput Biol Chem 2019; 78:133-143. [DOI: 10.1016/j.compbiolchem.2018.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
|
18
|
Abstract
Human rhinovirus is responsible for causing 50% of common cold infections in infants and adults. It belongs to the picornavirus family of nonenveloped positive-strand RNA viruses. The RNA synthesis of rhinovirus is carried out by RNA-dependent RNA polymerase, also known as 3DPol. It catalyzes the synthesis of negative-strand RNA using a positive-strand template. The structure of the enzyme consists of three domains: palm, fingers, and thumb domains and Mg2+ in the active site. These conserved structural features of the enzyme help in catalyzing phosphodiester bond formation between the two consecutive nucleotide units complimentary to the template RNA using a VPg primer. Owing to the presence of over 100 serotypes of the enzyme, designing specific inhibitors targeting the polymerase is a challenging task and until now no clinically approved antirhino viral drug is reported. In this review, we have given detailed information about the structure and function of the enzyme and also discussed some of the inhibitors and their in vivo activity against 3DPol.
Collapse
|
19
|
Sun YZ, Chen XB, Wang RR, Li WY, Ma Y. Exploring the effect of N308D mutation on protein tyrosine phosphatase-2 cause gain-of-function activity by a molecular dynamics study. J Cell Biochem 2018; 120:5949-5961. [PMID: 30304563 DOI: 10.1002/jcb.27883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
Abstract
One of the most common protein tyrosine phosphatase-2 (SHP2) mutations in Noonan syndrome is the N308D mutation, and it increases the activity of the protein. However, the molecular basis of the activation of N308D mutation on SHP2 conformations is poorly understood. Here, molecular dynamic simulations were performed on SHP2 and SHP2-N308D to explore the effect of N308D mutation on SHP2 cause gain of function activity, respectively. The principal component analysis, dynamic cross-correlation map, secondary structure analysis, residue interaction networks, and solvent accessible surface area analysis suggested that the N308D mutation distorted the residues interactions network between the allosteric site (residue Gly244-Gly246) and C-SH2 domain, including the hydrogen bond formation and the binding energy. Meanwhile, the activity of catalytic site (residue Gly503-Val505) located in the Q-loop in mutant increased due to this region's high fluctuations. Therefore, the substrate had more chances to access to the catalytic activity site of the precision time protocol domain of SHP2-N308D, which was easy to be exposed. In addition, we had speculated that the Lys244 located in the allosteric site was the key residue which lead to the protein conformation changes. Consequently, overall calculations presented in this study ultimately provide a useful understanding of the increased activity of SHP2 caused by the N308D mutation.
Collapse
Affiliation(s)
- Ying-Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiu-Bo Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.,Eye Hospital, Tianjin Medical University, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Xing M, Akowuah GA, Gautam V, Gaurav A. Structure-based design of selective phosphodiesterase 4B inhibitors based on ginger phenolic compounds. J Biomol Struct Dyn 2017; 35:2910-2924. [PMID: 27608741 DOI: 10.1080/07391102.2016.1234417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/05/2016] [Indexed: 01/02/2023]
Abstract
Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.
Collapse
Affiliation(s)
- Ming Xing
- a Faculty of Pharmaceutical Sciences , UCSI University , No. 1, UCSI Heights, Jalan Menara Gading, Taman Connaught, 56000 Kuala Lumpur , Federal Territory of Kuala Lumpur , Malaysia
| | - Gabriel Akyirem Akowuah
- a Faculty of Pharmaceutical Sciences , UCSI University , No. 1, UCSI Heights, Jalan Menara Gading, Taman Connaught, 56000 Kuala Lumpur , Federal Territory of Kuala Lumpur , Malaysia
| | - Vertika Gautam
- b Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Federal Territory of Kuala Lumpur , Malaysia
| | - Anand Gaurav
- a Faculty of Pharmaceutical Sciences , UCSI University , No. 1, UCSI Heights, Jalan Menara Gading, Taman Connaught, 56000 Kuala Lumpur , Federal Territory of Kuala Lumpur , Malaysia
| |
Collapse
|
21
|
Walker AR, Cisneros GA. Computational Simulations of DNA Polymerases: Detailed Insights on Structure/Function/Mechanism from Native Proteins to Cancer Variants. Chem Res Toxicol 2017; 30:1922-1935. [PMID: 28877429 PMCID: PMC5696005 DOI: 10.1021/acs.chemrestox.7b00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Genetic information is vital in the
cell cycle of DNA-based organisms.
DNA polymerases (DNA Pols) are crucial players in transactions dealing
with these processes. Therefore, the detailed understanding of the
structure, function, and mechanism of these proteins has been the
focus of significant effort. Computational simulations have been applied
to investigate various facets of DNA polymerase structure and function.
These simulations have provided significant insights over the years.
This perspective presents the results of various computational studies
that have been employed to research different aspects of DNA polymerases
including detailed reaction mechanism investigation, mutagenicity
of different metal cations, possible factors for fidelity synthesis,
and discovery/functional characterization of cancer-related mutations
on DNA polymerases.
Collapse
Affiliation(s)
- Alice R Walker
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas , 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
22
|
Shen H, Deng M, Zhang Y. Effects of mutations on active site conformation and dynamics of RNA-dependent RNA polymerase from Coxsackievirus B3. J Mol Graph Model 2017; 77:330-337. [PMID: 28922636 DOI: 10.1016/j.jmgm.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/01/2022]
Abstract
Recent crystal structures of RNA-dependent RNA polymerase (3Dpol) from Coxsackievirus B3 (CVB3) revealed that a tyrosine mutation at Phe364 (F364Y) resulted in structures with open active site whereas a hydrophobic mutation at Phe364 (F364A) led to conformations with closed active site. Besides, the crystal structures showed that the F364W mutation had no preference between the open and closed active sites, similar to wild-type. In this paper, we present a molecular dynamics (MD) study on CVB3 3Dpol in order to address some important questions raised by experiments. First, MD simulations of F364Y and F364A were carried out to explore how these mutations at Phe364 influence active site dynamics and conformations. Second, MD simulations of wild-type and mutants were performed to discover the connection between active site dynamics and polymerase function. MD simulations reveal that the effect of mutations on active site dynamics is associated with the interaction between the structural motifs A and D in CVB3 3Dpol. Interestingly, we discover that the active site state is influenced by the formation of a hydrogen bond between backbone atoms of Ala231 (in motif A) and Ala358 (in motif D), which has never been revealed before.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific BigData for Advanced Manufacturing Technology, Guizhou Education University No.115, Gaoxin Road, Guiyang, Guizhou, 550018, PR China.
| | - Mingsen Deng
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific BigData for Advanced Manufacturing Technology, Guizhou Education University No.115, Gaoxin Road, Guiyang, Guizhou, 550018, PR China.
| | - Yachao Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific BigData for Advanced Manufacturing Technology, Guizhou Education University No.115, Gaoxin Road, Guiyang, Guizhou, 550018, PR China
| |
Collapse
|
23
|
Shaik MM, Bhattacharjee N, Feliks M, Ng KKS, Field MJ. Norovirus RNA-dependent RNA polymerase: A computational study of metal-binding preferences. Proteins 2017; 85:1435-1445. [PMID: 28383118 DOI: 10.1002/prot.25304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
Abstract
Norovirus (NV) RNA-dependent RNA polymerase (RdRP) is essential for replicating the genome of the virus, which makes this enzyme a key target for the development of antiviral agents against NV gastroenteritis. In this work, a complex of NV RdRP bound to manganese ions and an RNA primer-template duplex was investigated using X-ray crystallography and hybrid quantum chemical/molecular mechanical simulations. Experimentally, the complex crystallized in a tetragonal crystal form. The nature of the primer/template duplex binding in the resulting structure indicates that the complex is a closed back-tracked state of the enzyme, in which the 3'-end of the primer occupies the position expected for the post-incorporated nucleotide before translocation. Computationally, it is found that the complex can accept a range of divalent metal cations without marked distortions in the active site structure. The highest binding energy is for copper, followed closely by manganese and iron, and then by zinc, nickel, and cobalt. Proteins 2017; 85:1435-1445. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Md Munan Shaik
- Division of Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, 02115.,Department of Pediatrics, Harvard Medical School, 3 Blackfan Street, Boston, Massachusetts, 02115
| | - Nicholus Bhattacharjee
- Dynamo Team/DYNAMOP Group, UMR5075, Université Grenoble I, CEA, CNRS, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, Grenoble Cedex 9, 38044, France
| | - Mikolaj Feliks
- Dynamo Team/DYNAMOP Group, UMR5075, Université Grenoble I, CEA, CNRS, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, Grenoble Cedex 9, 38044, France
| | - Kenneth K-S Ng
- Department of Biological Sciences and Alberta Glycomics Centre, University of Calgary, Calgary, Alberta, Canada
| | - Martin J Field
- Dynamo Team/DYNAMOP Group, UMR5075, Université Grenoble I, CEA, CNRS, Institut de Biologie Structurale, 71 Avenue des Martyrs, CS 10090, Grenoble Cedex 9, 38044, France
| |
Collapse
|
24
|
Peersen OB. Picornaviral polymerase structure, function, and fidelity modulation. Virus Res 2017; 234:4-20. [PMID: 28163093 PMCID: PMC5476519 DOI: 10.1016/j.virusres.2017.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Like all positive strand RNA viruses, the picornaviruses replicate their genomes using a virally encoded RNA-dependent RNA polymerase enzyme known as 3Dpol. Over the past decade we have made tremendous advances in our understanding of 3Dpol structure and function, including the discovery of a novel mechanism for closing the active site that allows these viruses to easily fine tune replication fidelity and quasispecies distributions. This review summarizes current knowledge of picornaviral polymerase structure and how the enzyme interacts with RNA and other viral proteins to form stable and processive elongation complexes. The picornaviral RdRPs are among the smallest viral polymerases, but their fundamental molecular mechanism for catalysis appears to be generally applicable as a common feature of all positive strand RNA virus polymerases.
Collapse
Affiliation(s)
- Olve B Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
25
|
Yang X, Liu X, Musser DM, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Triphosphate Reorientation of the Incoming Nucleotide as a Fidelity Checkpoint in Viral RNA-dependent RNA Polymerases. J Biol Chem 2017; 292:3810-3826. [PMID: 28100782 DOI: 10.1074/jbc.m116.750638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Indexed: 11/06/2022] Open
Abstract
The nucleotide incorporation fidelity of the viral RNA-dependent RNA polymerase (RdRp) is important for maintaining functional genetic information but, at the same time, is also important for generating sufficient genetic diversity to escape the bottlenecks of the host's antiviral response. We have previously shown that the structural dynamics of the motif D loop are closely related to nucleotide discrimination. Previous studies have also suggested that there is a reorientation of the triphosphate of the incoming nucleotide, which is essential before nucleophilic attack from the primer RNA 3'-hydroxyl. Here, we have used 31P NMR with poliovirus RdRp to show that the binding environment of the triphosphate is different when correct versus incorrect nucleotide binds. We also show that amino acid substitutions at residues known to interact with the triphosphate can alter the binding orientation/environment of the nucleotide, sometimes lead to protein conformational changes, and lead to substantial changes in RdRp fidelity. The analyses of other fidelity variants also show that changes in the triphosphate binding environment are not always accompanied by changes in the structural dynamics of the motif D loop or other regions known to be important for RdRp fidelity, including motif B. Altogether, our studies suggest that the conformational changes in motifs B and D, and the nucleoside triphosphate reorientation represent separable, "tunable" fidelity checkpoints.
Collapse
Affiliation(s)
| | | | | | - Ibrahim M Moustafa
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jamie J Arnold
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E Cameron
- Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
26
|
Alphonse S, Ghose R. Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Virus Res 2017; 234:135-152. [PMID: 28104452 PMCID: PMC5476504 DOI: 10.1016/j.virusres.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Role of the RNA polymerase in the cystoviral life-cycle. Spatio-temporal regulation of RNA synthesis in cystoviruses. Emerging role of conformational dynamics in polymerase function.
P2, an RNA-directed RNA polymerase (RdRP), is encoded on the largest of the three segments of the double-stranded RNA genome of cystoviruses. P2 performs the dual tasks of replication and transcription de novo on single-stranded RNA templates, and plays a critical role in the viral life-cycle. Work over the last few decades has yielded a wealth of biochemical and structural information on the functional regulation of P2, on its role in the spatiotemporal regulation of RNA synthesis and its variability across the Cystoviridae family. These range from atomic resolution snapshots of P2 trapped in functionally significant states, in complex with catalytic/structural metal ions, polynucleotide templates and substrate nucleoside triphosphates, to P2 in the context of viral capsids providing structural insight into the assembly of supramolecular complexes and regulatory interactions therein. They include in vitro biochemical studies using P2 purified to homogeneity and in vivo studies utilizing infectious core particles. Recent advances in experimental techniques have also allowed access to the temporal dimension and enabled the characterization of dynamics of P2 on the sub-nanosecond to millisecond timescale through measurements of nuclear spin relaxation in solution and single molecule studies of transcription from seconds to minutes. Below we summarize the most significant results that provide critical insight into the role of P2 in regulating RNA synthesis in cystoviruses.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States; Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Chemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Physics, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
27
|
Chan YM, Moustafa IM, Arnold JJ, Cameron CE, Boehr DD. Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein. Structure 2016; 24:509-517. [PMID: 27050688 DOI: 10.1016/j.str.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
Abstract
The 3C protein is a master regulator of the picornaviral infection cycle, responsible for both cleaving viral and host proteins, and interacting with genomic RNA replication elements. Here we use nuclear magnetic resonance spectroscopy and molecular dynamics simulations to show that 3C is conformationally dynamic across multiple timescales. Binding of peptide and RNA lead to structural dynamics changes at both the protease active site and the RNA-binding site, consistent with these sites being dynamically coupled. Indeed, binding of RNA influences protease activity, and likewise, interactions at the active site affect RNA binding. We propose that RNA and peptide binding re-shapes the conformational energy landscape of 3C to regulate subsequent functions, including formation of complexes with other viral proteins. The observed channeling of the 3C energy landscape may be important for regulation of the viral infection cycle.
Collapse
Affiliation(s)
- Yan M Chan
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Pattis JG, May ER. Influence of RNA Binding on the Structure and Dynamics of the Lassa Virus Nucleoprotein. Biophys J 2016; 110:1246-54. [PMID: 27028635 DOI: 10.1016/j.bpj.2016.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/03/2016] [Accepted: 02/02/2016] [Indexed: 12/18/2022] Open
Abstract
Lassa virus protects its viral genome through the formation of a ribonucleoprotein complex in which the nucleoprotein (NP) encapsidates the single-stranded RNA genome. Crystal structures provide evidence that a conformational change must occur to allow for RNA binding. In this study, the mechanism by which NP binds to RNA and how the conformational changes in NP are achieved was investigated with molecular-dynamics simulations. NP was structurally characterized in an open configuration when bound to RNA and in a closed form in the absence of RNA. Our results show that when NP is bound to RNA, the protein is highly dynamic and the system undergoes spontaneous deviations away from the open-state configuration. The equilibrium simulations are supported by free-energy calculations that quantify the influence of RNA on the free-energy surface, which governs NP dynamics. We predict that the globally stable states are qualitatively in agreement with the observed crystal structures, but that both open and closed conformations are thermally accessible in the presence of RNA. The free-energy calculations also provide a prediction of the location of the transition state for RNA binding and identify an intermediate metastable state that exhibits correlated motions that could promote RNA binding.
Collapse
Affiliation(s)
- Jason G Pattis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
29
|
Brown JA, Espiritu MV, Abraham J, Thorpe IF. Computational predictions suggest that structural similarity in viral polymerases may lead to comparable allosteric binding sites. Virus Res 2016; 222:80-93. [PMID: 27262620 PMCID: PMC4969206 DOI: 10.1016/j.virusres.2016.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The identification of ligand-binding sites is often the first step in drug targeting and design. To date there are numerous computational tools available to predict ligand binding sites. These tools can guide or mitigate the need for experimental methods to identify binding sites, which often require significant resources and time. Here, we evaluate four ligand-binding site predictor (LBSP) tools for their ability to predict allosteric sites within the Hepatitis C Virus (HCV) polymerase. Our results show that the LISE LBSP is able to identify all three target allosteric sites within the HCV polymerase as well as a known allosteric site in the Coxsackievirus polymerase. LISE was then employed to identify novel binding sites within the polymerases of the Dengue, West Nile, and Foot-and-mouth Disease viruses. Our results suggest that all three viral polymerases have putative sites that share structural or chemical similarities with allosteric pockets of the HCV polymerase. Thus, these binding locations may represent an evolutionarily conserved structural feature of several viral polymerases that could be exploited for the development of small molecule therapeutics.
Collapse
Affiliation(s)
- Jodian A Brown
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Marie V Espiritu
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Joel Abraham
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Ian F Thorpe
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
30
|
Valdés JJ, Gil VA, Butterill PT, Růžek D. An all-atom, active site exploration of antiviral drugs that target Flaviviridae polymerases. J Gen Virol 2016; 97:2552-2565. [PMID: 27489039 DOI: 10.1099/jgv.0.000569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural 2'-modified nucleosides are the most widely used antiviral therapy. In their triphosphorylated form, also known as nucleotide analogues, they target the active site of viral polymerases. Viral polymerases have an overall right-handed structure that includes the palm, fingers and thumb domains. These domains are further subdivided into structurally conserved motifs A-G, common to all viral polymerases. The structural motifs encapsulate the allosteric/initiation (N1) and orthosteric/catalytic (N2) nucleotide-binding sites. The current study investigated how nucleotide analogues explore the N2 site of viral polymerases from three genera of the family Flaviviridae using a stochastic, biophysical, Metropolis Monte Carlo-based software. The biophysical simulations showed a statistical distinction in nucleotide-binding energy and exploration between phylogenetically related viral polymerases. This distinction is clearly demonstrated by the respective analogue contacts made with conserved viral polymerase residues, the heterogeneous dynamics of structural motifs, and the orientation of the nucleotide analogues within the N2 site. Being able to simulate what occurs within viral-polymerase-binding sites can prove useful in rational drug designs against viruses.
Collapse
Affiliation(s)
- James J Valdés
- Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Victor A Gil
- Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
| | - Philip T Butterill
- Biology Center, Czech Academy of Sciences, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Daniel Růžek
- Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
- Biology Center, Czech Academy of Sciences, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| |
Collapse
|
31
|
Abstract
The RNA-dependent RNA polymerases from positive-strand RNA viruses, such as picornaviruses and flaviviruses, close their active sites for catalysis via a unique NTP-induced conformational change in the palm domain. Combined with a fully prepositioned templating nucleotide, this mechanism is error-prone and results in a distribution of random mutations in the viral progeny often described as a quasi-species. Here we examine the extent to which noncognate NTPs competitively inhibit single-cycle elongation by coxsackievirus B3 3D(pol), a polymerase that generates three to four mutations per 10 kb of RNA synthesized during viral infection. Using an RNA with a templating guanosine combined with 2-aminopurine fluorescence as a reporter for elongation, we find that the cognate CTP has a Km of 24 μM and the three noncognate nucleotides competitively inhibit the reaction with Kic values of 500 μM for GTP, 1300 μM for ATP, and 3000 μM for UTP. Unexpectedly, ATP also acted as an uncompetitive inhibitor with a Kiu of 1800 μM, resulting in allosteric modulation of 3D(pol) that slowed the polymerase elongation rate ≈4-fold. ATP uncompetitive inhibition required the β- and γ-phosphates, and its extent was significantly diminished in two previously characterized low-fidelity polymerases. This led to further mutational analysis and the identification of a putative allosteric binding site below the NTP entry channel at the interface of conserved motifs A and D, although cocrystallization failed to reveal any density for bound ATP in this pocket. The potential role of an ATP allosteric effect during the virus life cycle is discussed.
Collapse
Affiliation(s)
- Jonathan P. Karr
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olve B. Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
32
|
McDonald S, Block A, Beaucourt S, Moratorio G, Vignuzzi M, Peersen OB. Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo. J Biol Chem 2016; 291:13999-14011. [PMID: 27137934 PMCID: PMC4933160 DOI: 10.1074/jbc.m116.726596] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
Positive strand RNA viruses replicate via a virally encoded RNA-dependent RNA polymerase (RdRP) that uses a unique palm domain active site closure mechanism to establish the canonical two-metal geometry needed for catalysis. This mechanism allows these viruses to evolutionarily fine-tune their replication fidelity to create an appropriate distribution of genetic variants known as a quasispecies. Prior work has shown that mutations in conserved motif A drastically alter RdRP fidelity, which can be either increased or decreased depending on the viral polymerase background. In the work presented here, we extend these studies to motif D, a region that forms the outer edge of the NTP entry channel where it may act as a nucleotide sensor to trigger active site closure. Crystallography, stopped-flow kinetics, quench-flow reactions, and infectious virus studies were used to characterize 15 engineered mutations in coxsackievirus B3 polymerase. Mutations that interfere with the transport of the metal A Mg(2+) ion into the active site had only minor effects on RdRP function, but the stacking interaction between Phe(364) and Pro(357), which is absolutely conserved in enteroviral polymerases, was found to be critical for processive elongation and virus growth. Mutating Phe(364) to tryptophan resulted in a genetically stable high fidelity virus variant with significantly reduced pathogenesis in mice. The data further illustrate the importance of the palm domain movement for RdRP active site closure and demonstrate that protein engineering can be used to alter viral polymerase function and attenuate virus growth and pathogenesis.
Collapse
Affiliation(s)
- Seth McDonald
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Andrew Block
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Stéphanie Beaucourt
- Institut Pasteur, CNRS UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Gonzalo Moratorio
- Institut Pasteur, CNRS UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marco Vignuzzi
- Institut Pasteur, CNRS UMR 3569, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523.
| |
Collapse
|
33
|
O'Rourke KF, Gorman SD, Boehr DD. Biophysical and computational methods to analyze amino acid interaction networks in proteins. Comput Struct Biotechnol J 2016; 14:245-51. [PMID: 27441044 PMCID: PMC4939391 DOI: 10.1016/j.csbj.2016.06.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Globular proteins are held together by interacting networks of amino acid residues. A number of different structural and computational methods have been developed to interrogate these amino acid networks. In this review, we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such methods provide into protein function. This information can be leveraged towards the design of new allosteric drugs, and the engineering of new protein function and protein regulation strategies.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
34
|
Cameron CE, Moustafa IM, Arnold JJ. Fidelity of Nucleotide Incorporation by the RNA-Dependent RNA Polymerase from Poliovirus. Enzymes 2016; 39:293-323. [PMID: 27241934 DOI: 10.1016/bs.enz.2016.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Using poliovirus (PV) and its RNA-dependent RNA polymerase (RdRp) as our primary model system, we have advanced knowledge fundamental to the chemistry and fidelity of nucleotide addition by nucleic acid polymerase. Two fidelity checkpoints exist prior to nucleotide addition. The first toggles the enzyme between a nucleotide binding-occluded state and a nucleotide binding-competent state. The second represents an ensemble of conformational states of conserved structural motifs that permits retention of the incoming nucleotide in a state competent for phosphoryl transfer long enough for chemistry to occur. Nucleophilic attack of the alpha-phosphorous atom of the incoming nucleotide produces a pentavalent transition state, collapse of which is facilitated by protonation of the pyrophosphate leaving group by a general acid. All of the relevant conformational states of the enzyme are controlled by a network of interacting residues that permits remote-site residues to control active-site function. The current state of the art for PV RdRp enzymology is such that mechanisms governing fidelity of this enzyme can now be targeted genetically and chemically for development of attenuated viruses and antiviral agents, respectively. Application of the knowledge obtained with the PV RdRp to the development of vaccines and antivirals for emerging RNA viruses represents an important goal for the future.
Collapse
Affiliation(s)
- C E Cameron
- The Pennsylvania State University, University Park, PA, United States.
| | - I M Moustafa
- The Pennsylvania State University, University Park, PA, United States
| | - J J Arnold
- The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
35
|
Kundu A, Roychowdhury A, Bose M, Das AK, Ghosh AK. Reconstitution of the RNA-dependent RNA polymerase activity of Antheraea mylitta cypovirus in vitro using separately expressed different functional domains of the enzyme. J Gen Virol 2016; 97:1709-1719. [PMID: 27008451 DOI: 10.1099/jgv.0.000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antheraea mylitta cytoplasmic polyhedrosis virus is a segmented dsRNA virus of the family Reoviridae. Segment 2 (S2)-encoded RNA-dependent RNA polymerase (RdRp) helps the virus to propagate its genome in the host cell of the silkworm, Antheraea mylitta. Cloning, expression, purification and functional analysis of individual domains of RdRp have demonstrated that the purified domains interact in vitro. The central polymerase domain (PD) shows nucleotide binding properties, but neither the N-terminal domain (NTD) nor the C-terminal domain (CTD). Isolated PD does not exhibit RdRp activity but this activity can be reconstituted when all three domains are included in the reaction mixture. Molecular dynamics simulation suggests that the isolated PD has increased internal motions in comparison to when it is associated with the NTD and CTD. The motions of the separated PD may lead to the formation of a less accessible RNA template-binding channel and, thus, impair RdRp activity.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Amlan Roychowdhury
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Madhuparna Bose
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur-721302, India
| |
Collapse
|
36
|
Davis BC, Brown JA, Thorpe IF. Allosteric inhibitors have distinct effects, but also common modes of action, in the HCV polymerase. Biophys J 2016; 108:1785-1795. [PMID: 25863069 DOI: 10.1016/j.bpj.2015.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/28/2022] Open
Abstract
The RNA-dependent RNA polymerase from the Hepatitis C Virus (gene product NS5B) is a validated drug target because of its critical role in genome replication. There are at least four distinct allosteric sites on the polymerase to which several small molecule inhibitors bind. In addition, numerous crystal structures have been solved with different allosteric inhibitors bound to the polymerase. However, the molecular mechanisms by which these small molecules inhibit the enzyme have not been fully elucidated. There is evidence that allosteric inhibitors alter the intrinsic motions and distribution of conformations sampled by the enzyme. In this study we use molecular dynamics simulations to understand the structural and dynamic changes that result when inhibitors are bound at three different allosteric binding sites on the enzyme. We observe that ligand binding at each site alters the structure and dynamics of NS5B in a distinct manner. Nonetheless, our studies also highlight commonalities in the mechanisms of action of the different inhibitors. Each inhibitor alters the conformational states sampled by the enzyme, either by rigidifying the enzyme and preventing transitions between functional conformational states or by destabilizing the enzyme and preventing functionally relevant conformations from being adequately sampled. By illuminating the molecular mechanisms of allosteric inhibition, these studies delineate the intrinsic functional properties of the enzyme and pave the way for designing novel and more effective polymerase inhibitors. This information may also be important to understand how allosteric regulation occurs in related viral polymerases and other enzymes.
Collapse
Affiliation(s)
- Brittny C Davis
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland
| | - Jodian A Brown
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland
| | - Ian F Thorpe
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland.
| |
Collapse
|
37
|
Shen H, Li G. Bridging the Missing Link between Structure and Fidelity of the RNA-Dependent RNA Polymerase from Poliovirus through Free Energy Simulations. J Chem Theory Comput 2015; 10:5195-205. [PMID: 26584391 DOI: 10.1021/ct5006449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RNA-dependent RNA polymerases (RdRps) are enzymes catalyzing RNA replication from a RNA template. Active-site closure in RdRps, normally induced by correct nucleotide triphosphate (NTP) binding, is a prerequisite for the cycle of nucleotide incorporation. So, a complete understanding of polymerase function (in particular polymerase fidelity) of a RdRp requires more complete knowledge of active-site closure in the RdRp. In this work, based on solved crystal structures, we have built different models for the RNA-dependent RNA polymerase from poliovirus (termed PV 3D(pol)). Through MD simulations and free energy calculations of these PV 3D(pol) models, we have revealed the dynamic correlation between motif A and motif D and between motif A and incoming NTP, have deepened our understanding of polymerase fidelity from dynamic aspects, and have provided an explanation to the puzzle that arises from different observations based on kinetic studies and structural data.
Collapse
Affiliation(s)
- Hujun Shen
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
38
|
Moustafa IM, Gohara DW, Uchida A, Yennawar N, Cameron CE. Conformational Ensemble of the Poliovirus 3CD Precursor Observed by MD Simulations and Confirmed by SAXS: A Strategy to Expand the Viral Proteome? Viruses 2015; 7:5962-86. [PMID: 26610545 PMCID: PMC4664992 DOI: 10.3390/v7112919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 12/22/2022] Open
Abstract
The genomes of RNA viruses are relatively small. To overcome the small-size limitation, RNA viruses assign distinct functions to the processed viral proteins and their precursors. This is exemplified by poliovirus 3CD protein. 3C protein is a protease and RNA-binding protein. 3D protein is an RNA-dependent RNA polymerase (RdRp). 3CD exhibits unique protease and RNA-binding activities relative to 3C and is devoid of RdRp activity. The origin of these differences is unclear, since crystal structure of 3CD revealed "beads-on-a-string" structure with no significant structural differences compared to the fully processed proteins. We performed molecular dynamics (MD) simulations on 3CD to investigate its conformational dynamics. A compact conformation of 3CD was observed that was substantially different from that shown crystallographically. This new conformation explained the unique properties of 3CD relative to the individual proteins. Interestingly, simulations of mutant 3CD showed altered interface. Additionally, accelerated MD simulations uncovered a conformational ensemble of 3CD. When we elucidated the 3CD conformations in solution using small-angle X-ray scattering (SAXS) experiments a range of conformations from extended to compact was revealed, validating the MD simulations. The existence of conformational ensemble of 3CD could be viewed as a way to expand the poliovirus proteome, an observation that may extend to other viruses.
Collapse
Affiliation(s)
- Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - David W Gohara
- Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1100 South Grand Ave, St Louis, MO 63104, USA.
| | - Akira Uchida
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Neela Yennawar
- Huck Institutes of life sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
39
|
Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase. Viruses 2015; 7:5571-86. [PMID: 26516899 PMCID: PMC4632402 DOI: 10.3390/v7102894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/17/2015] [Accepted: 10/18/2015] [Indexed: 12/17/2022] Open
Abstract
The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I) in the RNA-dependent RNA polymerase (RdRp). We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E) help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation.
Collapse
|
40
|
Alphonse S, Bhattacharya S, Wang H, Ghose R. Methyl Relaxation Measurements Reveal Patterns of Fast Dynamics in a Viral RNA-Directed RNA Polymerase. Biochemistry 2015; 54:5828-38. [PMID: 26333183 DOI: 10.1021/acs.biochem.5b00828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics (MD) simulations combined with biochemical studies have suggested the presence of long-range networks of functionally relevant conformational flexibility on the nanosecond time scale in single-subunit RNA polymerases in many RNA viruses. However, experimental verification of these dynamics at a sufficient level of detail has been lacking. Here we describe the fast, picosecond to nanosecond dynamics of an archetypal viral RNA-directed RNA polymerase (RdRp), the 75 kDa P2 protein from cystovirus ϕ12, using analyses of (1)H-(1)H dipole-dipole cross-correlated relaxation at the methyl positions of Ile (δ1), Leu, Val, and Met residues. Our results, which represent the most detailed experimental characterization of fast dynamics in a viral RdRp until date, reveal a highly connected dynamic network as predicted by MD simulations of related systems. Our results suggest that the entry portals for template RNA and substrate NTPs are relatively disordered, while conserved motifs involved in metal binding, nucleotide selection, and catalysis display greater rigidity. Perturbations at the active site through metal binding or functional mutation affect dynamics not only in the immediate vicinity but also at remote regions. Comparison with the limited experimental and extensive functional and in silico results available for homologous systems suggests conservation of the overall pattern of dynamics in viral RdRps.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry, The City College of New York , 160 Convent Avenue, New York, New York 10031, United States
| | - Shibani Bhattacharya
- New York Structural Biology Center , 89 Convent Avenue, New York, New York 10027, United States
| | - Hsin Wang
- Department of Chemistry, The City College of New York , 160 Convent Avenue, New York, New York 10031, United States
| | - Ranajeet Ghose
- Department of Chemistry, The City College of New York , 160 Convent Avenue, New York, New York 10031, United States.,Graduate Center of the City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
41
|
RNA-Dependent RNA Polymerases of Picornaviruses: From the Structure to Regulatory Mechanisms. Viruses 2015; 7:4438-60. [PMID: 26258787 PMCID: PMC4576190 DOI: 10.3390/v7082829] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022] Open
Abstract
RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication within the infected cells. RdRP function is critical not only for the virus life cycle but also for its adaptive potential. The combination of low fidelity of replication and the absence of proofreading and excision activities within the RdRPs result in high mutation frequencies that allow these viruses a rapid adaptation to changing environments. In this review, we summarize the current knowledge about structural and functional aspects on RdRP catalytic complexes, focused mainly in the Picornaviridae family. The structural data currently available from these viruses provided high-resolution snapshots for a range of conformational states associated to RNA template-primer binding, rNTP recognition, catalysis and chain translocation. As these enzymes are major targets for the development of antiviral compounds, such structural information is essential for the design of new therapies.
Collapse
|
42
|
Duan B, Wu S, Da LT, Yu J. A critical residue selectively recruits nucleotides for t7 RNA polymerase transcription fidelity control. Biophys J 2015; 107:2130-40. [PMID: 25418098 PMCID: PMC4223216 DOI: 10.1016/j.bpj.2014.09.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/23/2014] [Accepted: 09/30/2014] [Indexed: 01/21/2023] Open
Abstract
Nucleotide selection is essential for fidelity control in gene replication and transcription. Recent work on T7 RNA polymerase suggested that a small posttranslocation free energy bias stabilizes Tyr(639) in the active site to aid nucleotide selection. However, it was not clear exactly how Tyr(639) assists the selection. Here we report a molecular-dynamics simulation study revealing atomistic detail of this critical selectivity. The study shows first that Tyr(639) blocks the active site at posttranslocation by marginally stacking to the end basepair of the DNA-RNA hybrid. The study then demonstrates that at the nucleotide preinsertion state, a cognate RNA nucleotide does not affect the local Tyr(639) stabilization, whereas a noncognate nucleotide substantially stabilizes Tyr(639) so that Tyr(639) keeps blocking the active site. As a result, further nucleotide insertion into the active site, which requires moving Tyr(639) out of the site, would be hindered for the noncognate nucleotide, but not for the cognate nucleotide. In particular, we note that water molecules assist the ribose recognition in the RNA nucleotide preinsertion, and help Tyr(639) stacking to the end basepair in the case of a DNA nucleotide. It was also seen that a base-mismatched nucleotide at preinsertion directly grabs Tyr(639) for the active site stabilization. We also find that in a mutant polymerase Y639F the strong stabilization of residue 639 in the active site cannot establish upon the DNA nucleotide preinsertion. The finding explains the reduced differentiation between ribo- and deoxyribonucleotides that has been recorded experimentally for the mutant polymerase.
Collapse
Affiliation(s)
- Baogen Duan
- Beijing Computational Science Research Center, Beijing, P. R. China
| | - Shaogui Wu
- Beijing Computational Science Research Center, Beijing, P. R. China
| | - Lin-Tai Da
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing, P. R. China.
| |
Collapse
|
43
|
Using the Hepatitis C Virus RNA-Dependent RNA Polymerase as a Model to Understand Viral Polymerase Structure, Function and Dynamics. Viruses 2015; 7:3974-94. [PMID: 26193306 PMCID: PMC4517137 DOI: 10.3390/v7072808] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/13/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022] Open
Abstract
Viral polymerases replicate and transcribe the genomes of several viruses of global health concern such as Hepatitis C virus (HCV), human immunodeficiency virus (HIV) and Ebola virus. For this reason they are key targets for therapies to treat viral infections. Although there is little sequence similarity across the different types of viral polymerases, all of them present a right-hand shape and certain structural motifs that are highly conserved. These features allow their functional properties to be compared, with the goal of broadly applying the knowledge acquired from studying specific viral polymerases to other viral polymerases about which less is known. Here we review the structural and functional properties of the HCV RNA-dependent RNA polymerase (NS5B) in order to understand the fundamental processes underlying the replication of viral genomes. We discuss recent insights into the process by which RNA replication occurs in NS5B as well as the role that conformational changes play in this process.
Collapse
|
44
|
Brown JA, Thorpe IF. Dual Allosteric Inhibitors Jointly Modulate Protein Structure and Dynamics in the Hepatitis C Virus Polymerase. Biochemistry 2015; 54:4131-41. [PMID: 26066778 PMCID: PMC4918089 DOI: 10.1021/acs.biochem.5b00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hepatitis C virus (HCV) infects close to 200 million people globally, resulting in a significant need for effective HCV therapies. The HCV polymerase (gene product NS5B) is a valuable target for therapeutics because of its role in replicating the viral genome. Various studies have identified inhibitors for this enzyme, including non-nucleoside inhibitors (NNIs) that bind distal to the enzyme active site. Recently, it has been shown that simultaneously challenging the enzyme with two NNIs results in enhanced inhibition relative to that observed after challenge with individual inhibitors, suggesting that employing multiple NNIs might be the basis of more effective therapeutics. Nevertheless, the molecular mechanisms responsible for this enhanced inhibition remain unclear. We employ molecular dynamics simulations to determine the origin of enhanced inhibition when two NNIs bind to NS5B. Our results suggest that nonoverlapping NNI sites are compatible with simultaneous binding of dual NNIs. We observe that both inhibitors act in concert to induce novel enzyme conformations and dynamics, allowing us to identify molecular mechanisms underlying enhanced inhibition of NS5B. This knowledge will be useful in optimizing combinations of NNIs to target NS5B, helping to prevent the acquisition of viral resistance that remains a significant barrier to the development of HCV therapeutics.
Collapse
Affiliation(s)
- Jodian A. Brown
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Ian F. Thorpe
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
45
|
Van Slyke GA, Arnold JJ, Lugo AJ, Griesemer SB, Moustafa IM, Kramer LD, Cameron CE, Ciota AT. Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes. PLoS Pathog 2015; 11:e1005009. [PMID: 26114757 PMCID: PMC4482725 DOI: 10.1371/journal.ppat.1005009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/05/2015] [Indexed: 02/06/2023] Open
Abstract
High rates of error-prone replication result in the rapid accumulation of genetic diversity of RNA viruses. Recent studies suggest that mutation rates are selected for optimal viral fitness and that modest variations in replicase fidelity may be associated with viral attenuation. Arthropod-borne viruses (arboviruses) are unique in their requirement for host cycling and may necessitate substantial genetic and phenotypic plasticity. In order to more thoroughly investigate the correlates, mechanisms and consequences of arbovirus fidelity, we selected fidelity variants of West Nile virus (WNV; Flaviviridae, Flavivirus) utilizing selection in the presence of a mutagen. We identified two mutations in the WNV RNA-dependent RNA polymerase associated with increased fidelity, V793I and G806R, and a single mutation in the WNV methyltransferase, T248I, associated with decreased fidelity. Both deep-sequencing and in vitro biochemical assays confirmed strain-specific differences in both fidelity and mutational bias. WNV fidelity variants demonstrated host-specific alterations to replicative fitness in vitro, with modest attenuation in mosquito but not vertebrate cell culture. Experimental infections of colonized and field populations of Cx. quinquefaciatus demonstrated that WNV fidelity alterations are associated with a significantly impaired capacity to establish viable infections in mosquitoes. Taken together, these studies (i) demonstrate the importance of allosteric interactions in regulating mutation rates, (ii) establish that mutational spectra can be both sequence and strain-dependent, and (iii) display the profound phenotypic consequences associated with altered replication complex function of flaviviruses. West Nile virus (WNV) is the most geographically widespread arthropod-borne virus (arbovirus) in the world. Like most arboviruses, WNV is a RNA virus which is highly mutable and exists in nature as genetically diverse mutant swarms. Although many recent studies have investigated the relationship between virus mutation rate and viral fitness, this had not previously been determined for WNV or other flaviviruses. We identified WNV mutations associated with variation in mutation rate using cell culture passage in the presence of a mutagen and engineered these mutations into an infectious WNV clone in order to investigate the causes and consequences of altered fidelity. Our results demonstrate that interactions among proteins which comprise the WNV replication complex can significantly alter both the extent and types of mutations that occur. In addition, we show that both increasing and decreasing WNV fidelity has host-specific effects on replication in cell culture and is associated with nearly complete ablation of WNV infection in mosquito vectors. These results have significant implications for our understanding of arbovirus evolution, replication complex function and arboviral fitness in mosquitoes, and identify important targets to study the determinants and mechanisms of vector competence and arbovirus fidelity.
Collapse
Affiliation(s)
- Greta A. Van Slyke
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
| | - Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alex J. Lugo
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sara B. Griesemer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Laura D. Kramer
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York, United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, United States of America
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
46
|
Moustafa IM, Uchida A, Wang Y, Yennawar N, Cameron CE. Structural models of mammalian mitochondrial transcription factor B2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:987-1002. [PMID: 26066983 DOI: 10.1016/j.bbagrm.2015.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/26/2022]
Abstract
Mammalian mitochondrial DNA (mtDNA) encodes 13 core proteins of oxidative phosphorylation, 12S and 16S ribosomal RNAs, and 22 transfer RNAs. Mutations and deletions of mtDNA and/or nuclear genes encoding mitochondrial proteins have been implicated in a wide range of diseases. Thus, cell survival and health of the organism require some steady-state level of the mitochondrial genome and its expression. In mammalian systems, the mitochondrial transcription factor B2 (mtTFB2 or TFB2M) is indispensable for transcription initiation. TFB2M along with two other proteins, mitochondrial RNA polymerase (mtRNAP or POLRMT) and mitochondrial transcription factor A (mtTFA or TFAM), are key components of the core mitochondrial transcription apparatus. Structural information for POLRMT and TFAM from humans is available; however, there is no available structure for TFB2M. In the present study, three-dimensional structure of TFB2M from humans was modeled using a combination of homology modeling and small-angle X-ray scattering (SAXS). The TFB2M structural model adds substantively to our understanding of TFB2M function. An explanation for the low or absent RNA methyltransferase activity is provided. A putative nucleic acid-binding site is revealed. The amino and carboxy termini, while likely lacking defined secondary structure, appear to adopt compact, globular conformations, thus "capping" the ends of the protein. Finally, sites of interaction of TFB2M with other factors, protein and/or nucleic acid, are suggested by the identification of species-specific clusters on the surface of the protein.
Collapse
Affiliation(s)
- Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Akira Uchida
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Yao Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
47
|
Multifunctionality of a picornavirus polymerase domain: nuclear localization signal and nucleotide recognition. J Virol 2015; 89:6848-59. [PMID: 25903341 DOI: 10.1128/jvi.03283-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/13/2015] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop β9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this polymerase region can impair the transport of 3D to the nucleus, reduce 3D binding to RNA, and alter the relative incorporation of standard nucleoside monophosphate versus ribavirin monophosphate. Structural data reveal that the conformational changes in this region, forming part of the template channel entry, would be involved in nucleotide discrimination. The results have implications for the understanding of viral polymerase function and for lethal mutagenesis mechanisms.
Collapse
|
48
|
Campagnola G, McDonald S, Beaucourt S, Vignuzzi M, Peersen OB. Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases. J Virol 2015; 89:275-86. [PMID: 25320316 PMCID: PMC4301111 DOI: 10.1128/jvi.01574-14] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Viral RNA-dependent RNA polymerases are considered to be low-fidelity enzymes, providing high mutation rates that allow for the rapid adaptation of RNA viruses to different host cell environments. Fidelity is tuned to provide the proper balance of virus replication rates, pathogenesis, and tissue tropism needed for virus growth. Using our structures of picornaviral polymerase-RNA elongation complexes, we have previously engineered more than a dozen coxsackievirus B3 polymerase mutations that significantly altered virus replication rates and in vivo fidelity and also provided a set of secondary adaptation mutations after tissue culture passage. Here we report a biochemical analysis of these mutations based on rapid stopped-flow kinetics to determine elongation rates and nucleotide discrimination factors. The data show a spatial separation of fidelity and replication rate effects within the polymerase structure. Mutations in the palm domain have the greatest effects on in vitro nucleotide discrimination, and these effects are strongly correlated with elongation rates and in vivo mutation frequencies, with faster polymerases having lower fidelity. Mutations located at the top of the finger domain, on the other hand, primarily affect elongation rates and have relatively minor effects on fidelity. Similar modulation effects are seen in poliovirus polymerase, an inherently lower-fidelity enzyme where analogous mutations increase nucleotide discrimination. These findings further our understanding of viral RNA-dependent RNA polymerase structure-function relationships and suggest that positive-strand RNA viruses retain a unique palm domain-based active-site closure mechanism to fine-tune replication fidelity. IMPORTANCE Positive-strand RNA viruses represent a major class of human and animal pathogens with significant health and economic impacts. These viruses replicate by using a virally encoded RNA-dependent RNA polymerase enzyme that has low fidelity, generating many mutations that allow the rapid adaptation of these viruses to different tissue types and host cells. In this work, we use a structure-based approach to engineer mutations in viral polymerases and study their effects on in vitro nucleotide discrimination as well as virus growth and genome replication fidelity. These results show that mutation rates can be drastically increased or decreased as a result of single mutations at several key residues in the polymerase palm domain, and this can significantly attenuate virus growth in vivo. These findings provide a pathway for developing live attenuated virus vaccines based on engineering the polymerase to reduce virus fitness.
Collapse
Affiliation(s)
- Grace Campagnola
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Seth McDonald
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | | | - Olve B Peersen
- Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
49
|
Zamyatkin D, Rao C, Hoffarth E, Jurca G, Rho H, Parra F, Grochulski P, Ng KKS. Structure of a backtracked state reveals conformational changes similar to the state following nucleotide incorporation in human norovirus polymerase. ACTA ACUST UNITED AC 2014; 70:3099-109. [PMID: 25478829 DOI: 10.1107/s1399004714021518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/29/2014] [Indexed: 12/30/2022]
Abstract
The RNA-dependent RNA polymerase (RdRP) from norovirus (NV) genogroup II has previously been crystallized as an apoenzyme (APO1) in multiple crystal forms, as well as as a pre-incorporation ternary complex (PRE1) bound to Mn(2+), various nucleoside triphosphates and an RNA primer-template duplex in an orthorhombic crystal form. When crystallized under near-identical conditions with a slightly different RNA primer/template duplex, however, the enzyme-RNA complex forms tetragonal crystals (anisotropic data, dmin ≃ 1.9 Å) containing a complex with the primer/template bound in a backtracked state (BACK1) similar to a post-incorporation complex (POST1) in a step of the enzymatic cycle immediately following nucleotidyl transfer. The BACK1 conformation shows that the terminal nucleotide of the primer binds in a manner similar to the nucleoside triphosphate seen in the PRE1 complex, even though the terminal two phosphoryl groups in the triphosphate moiety are absent and a covalent bond is present between the α-phosphoryl group of the terminal nucleotide and the 3'-oxygen of the penultimate nucleotide residue. The two manganese ions bound at the active site coordinate to conserved Asp residues and the bridging phosphoryl group of the terminal nucleotide. Surprisingly, the conformation of the thumb domain in BACK1 resembles the open APO1 state more than the closed conformation seen in PRE1. The BACK1 complex thus reveals a hybrid state in which the active site is closed while the thumb domain is open. Comparison of the APO1, PRE1 and BACK1 structures of NV polymerase helps to reveal a more complete and complex pathway of conformational changes within a single RdRP enzyme system. These conformational changes lend insight into the mechanism of RNA translocation following nucleotidyl transfer and suggest novel approaches for the development of antiviral inhibitors.
Collapse
Affiliation(s)
- Dmitry Zamyatkin
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Chandni Rao
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Elesha Hoffarth
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Gabriela Jurca
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hayeong Rho
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Francisco Parra
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Instituto Universitario de Biotecnologia de Asturias, 33006 Oviedo, Spain
| | - Pawel Grochulski
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Kenneth Kai Sing Ng
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
50
|
Moustafa IM, Korboukh VK, Arnold JJ, Smidansky ED, Marcotte LL, Gohara DW, Yang X, Sánchez-Farrán MA, Filman D, Maranas JK, Boehr DD, Hogle JM, Colina CM, Cameron CE. Structural dynamics as a contributor to error-prone replication by an RNA-dependent RNA polymerase. J Biol Chem 2014; 289:36229-48. [PMID: 25378410 DOI: 10.1074/jbc.m114.616193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA viruses encoding high- or low-fidelity RNA-dependent RNA polymerases (RdRp) are attenuated. The ability to predict residues of the RdRp required for faithful incorporation of nucleotides represents an essential step in any pipeline intended to exploit perturbed fidelity as the basis for rational design of vaccine candidates. We used x-ray crystallography, molecular dynamics simulations, NMR spectroscopy, and pre-steady-state kinetics to compare a mutator (H273R) RdRp from poliovirus to the wild-type (WT) enzyme. We show that the nucleotide-binding site toggles between the nucleotide binding-occluded and nucleotide binding-competent states. The conformational dynamics between these states were enhanced by binding to primed template RNA. For the WT, the occluded conformation was favored; for H273R, the competent conformation was favored. The resonance for Met-187 in our NMR spectra reported on the ability of the enzyme to check the correctness of the bound nucleotide. Kinetic experiments were consistent with the conformational dynamics contributing to the established pre-incorporation conformational change and fidelity checkpoint. For H273R, residues comprising the active site spent more time in the catalytically competent conformation and were more positively correlated than the WT. We propose that by linking the equilibrium between the binding-occluded and binding-competent conformations of the nucleotide-binding pocket and other active-site dynamics to the correctness of the bound nucleotide, faithful nucleotide incorporation is achieved. These studies underscore the need to apply multiple biophysical and biochemical approaches to the elucidation of the physical basis for polymerase fidelity.
Collapse
Affiliation(s)
| | | | - Jamie J Arnold
- From the Department of Biochemistry and Molecular Biology
| | | | - Laura L Marcotte
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - David W Gohara
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | - David Filman
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | - James M Hogle
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Coray M Colina
- the Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | | |
Collapse
|